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SIR is a little too simple for many diseases:

» No incubation period

» A lot of infectious diseases (in particular respiratory) have mild and less mild forms
depending on the patient

= model with SIR but also L(atent) and (A)symptomatic individuals, in which | are
now symptomatic individuals
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Basic reproduction number & Final size

We find the basic reproduction number
o(1—
RO_B<P+(P))50_5P50
n «

where

The final size relation takes the form

50(|n So—In 500) = Ro(So — Soo) + 'Rg/o

(1)
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Adding treatment
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Figure 3. Total number of doses used in a population of 1000
individuals over the course of the outbreak as a function of the
mean times to treatment and prophylaxis (in days), for Ry=
1.5, with §,=999 and I,=1.
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Figure 4. Total cases as a function of the treatment rates, for
RO: 15, with 80:999 and I(]:l.



5. CONCLUSIONS

Compartmental models facilitate the analysis of sensi-
tivity of the model to errors in measuring parameters or
to changes in the control parameters. This is particu-
larly valuable before the beginning of an epidemic when
the values of some parameters are only guesses. For
example, a sensitivity analysis of our model shows the
importance of estimating the parameter p representing
the fraction of latent members that will develop
symptoms. This parameter is almost impossible to
determine accurately, and it is taken to be 2/3 in
Longini et al. (2004) and 1/2 in Ferguson et al. (2005).
In view of the many uncertainties in estimating
parameters for pandemic influenza, it is important to
consider a large range of values, and the simplicity of
calculation offered by a deterministic compartmental
model lends itself to doing this as an initial step before
more complicated models such as those of Ferguson
et al. (2005) and Longini et al. (2005) are invoked. The
calculations reported here involve nothing more com-
plicated than the solution of a system of two transcen-
dental equations.
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A method for computing R in epidemic models

» This method is not universal! It works in a relatively large class of models, but not
everywhere

» If it doesn’t work, the next generation matrix method does work, but should be
considered only for obtaining the reproduction number, not to deduce LAS

» Here, | change the notation in the paper, for convenience

p. 10 -



Standard form of the system

Suppose system can be written in the form

S’ =b(S,1,R)— DSB3(S,1,R)hl
I' =TIDSB(S,1,R)hl — VI (
R'=f(S,1,R)+WI

— —
w W w
O T o
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where S € R™, I € R" and R € R¥ are susceptible, infected and removed
compartments, respectively

IC are > 0 with at least one of the components of /(0) positive

p. 11 -



p. 12 -

S’ =b(S,I,R) — DSA(S, 1, R)hl (3a)

> b:RT xR} x Rfﬁ — R™ continuous function encoding recruitment and death of
uninfected individuals

» D e R™*™ diagonal with diagonal entries o; > 0 the relative susceptibilities of
susceptible compartments, with convention that o1 = 1

» Scalar valued function 3 : RT x R x Ri — R represents infectivity, with, e.g.,
B(S,1,R) = 3 for mass action

» h c R" row vector of relative horizontal transmissions



p. 13 -

I' =TIDSB(S,1,R)hl — VI (3b)

IT € R™™ has (i, j) entry the fraction of individuals in j*® susceptible
compartment that enter i*" infected compartment upon infection

D € R™*™ diagonal with diagonal entries o; > 0 the relative susceptibilities of
susceptible compartments, with convention that o7 = 1

Scalar valued function 3 : RT x R x Ri — R represents infectivity, with, e.g.,
B(S,1,R) = B for mass action
h € R" row vector of relative horizontal transmissions

V € R™" describes transitions between infected states and removals from these
states due to recovery or death



R’ =f(S,1,R)+WI (3¢)

> f:RT xR] x ]Ri — Rk continuous function encoding flows into and out of
removed compartments because of immunisation or similar processes

> W € R¥*" has (i, ) entry the rate at which individuals in the j** infected
compartment move into the i*" removed compartment

p. 14 -



Suppose Ey is a locally stable disease-free equilibrium (DFE) of the system without
disease, i.e., an EP of

S’ =b(S,0,R)
R’ =1(S,0,R)
Theorem 1
Let
Ro = B(So,0, Ro)hV~'TIDS, (4)

» If Ry < 1, the DFE Ey is a locally asymptotically stable EP of (3)
» If Rg > 1, the DFE Ey of (3) is unstable

If no demography (epidemic model), then just Rg, of course

p. 15 -—



Final size relations

Assume no demography, then system should be writeable as

S’ = —DSB(S,1,R)hl (5a)
I’ =TIDSB(S,1,R)hl — VI (5b)
R’ =WI (5¢)

For w(t) € R continuous, define

W‘X’:tll)m w(t) and W:/O w(t) dt

oo

p. 16 -—



Define the row vector
R™ 5T =(T,...,Tm) = B(So,0, Ro)hVIID

then
Ro = I'S(0)

p. 17 -



Suppose incidence is mass action, i.e., 5(S,/,R) = and m>1

Then for i =1,..., m, express S;(cc) as a function of S1(c0) using

then substitute into

in i _ -1 _ S(0 -1
| <5,~(oo)> D~ (5(0) — S(0)) + BAV~11(0)

= (sﬁ&)

which is a final size relation for the general system when S;(0) > 0

p. 18 -—



If incidence is mass action and m = 1 (only one susceptible compartment), reduces to
the KMK form

In (i) = 7;‘;(50 — Soo) + BAV (6)

p. 19 -



In the case of more general incidence functions, the final size relations are inequalities
of the form, for i=1,... m,

n S,‘(O) o —1 — S(oco . -1
| <s,-(oo)>2 TD1(5(0) - S(c0)) + 73B(K)hV11(0)

where K is the initial total population

p. 20 -






The SLIAR model

» Paper we have already seen: Arino, Brauer, PvdD, Watmough & Wu. Simple models
for containment of a pandemic, Journal of the Royal Society Interface (2006)

» However, suppose additionally that L are also infectious

p. 21 -—
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Here, S =S, 1 =(L,/,A)T and R=R,so m=1, n=3 and

1 K 0 0
h=[z1¢], D=1 II=|(0 and V= —pK a 0
0 —(1=p)r 0 7

Incidence is mass action so S(Ep) = (3 and thus

Ro = BhVIIDS,

/s 0 0 /1
ﬁ[alé]( p/a 1/« O) (O) So
(L=p)/n 0 1/n) \O

(it
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For final size, since m = 1, we can use (6):

S R _
In (5:) = 5—5(50 — S.) + BhV

Suppose Iy = (0, lp,0), then

If Iy = (Lo7 Io,Ao), then

~S. S(1 —
|n(5°)_7305° > +5<£+p+ ( p)>Lo+Ao+lo
a n n a

S So
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A model with vaccination

‘ BSu(ly + orlv)

‘O’Sﬁsv(lu-l-m/v) . kyLy
( Ly —

p. 25 -—



A model with vaccination

Fraction v of Sy are vaccinated before the epidemic; vaccination reduces probability and
duration of infection, infectiousness and reduces mortality

Su' = —-BSully + a1lv] (7a)
Sv'=—0osBSv[ly + a/lv] (7b)
Ly" = BSully + oilv] — kuly (7c)
Ly' =0osBSylly +oilv] — kvlLy (7d)
lv" = kuyly —ayly (7e)
lv'=kvly —ayly (7f)
R' = fyayl + fyayly (7g)

with Su(O) = (1 — "}/)50 and Sv(O) = ’}/50

p. 26 -—



Here, m =2, n= 4,

h=[0010], D:<

1 0
0 os

and
Ky 0
_ 0 Kv
v —Ky 0
0 —Rvy

p. 27 -—
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Gy ay ay ay

and the final size relation is

In ((1 - V)SU(0)> _

Sy(o0)
il(l —1)5u(0) — Su(o0)]
o8 B

+ ——[vSv(0) = Sv(0)] + —1
ay ay

p. 28 -—
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Adapting treatment to counter emergence of resistance

This work was undertaken at the request of the Public Health Agency of Canada during
the pandemic preparadness phase prior to the 2009 p-HIN1 pandemic

Problem: we have antivirals to use against influenza, either prophylactically or
curatively. Using these antivirals may promote the emergence of antiviral-resistant
strains. How do we minimise this risk?

p. 30 -
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