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SIR is a little too simple for many diseases:

▶ No incubation period

▶ A lot of infectious diseases (in particular respiratory) have mild and less mild forms
depending on the patient

=⇒ model with SIR but also L(atent) and (A)symptomatic individuals, in which I are
now symptomatic individuals
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Basic reproduction number & Final size

We find the basic reproduction number

R0 = β
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α
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The final size relation takes the form

S0(lnS0 − lnS∞) = R0(S0 − S∞) +
R0I0
ρ

(2)
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Adding treatment
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A method for computing R0 in epidemic models

▶ This method is not universal! It works in a relatively large class of models, but not
everywhere

▶ If it doesn’t work, the next generation matrix method does work, but should be
considered only for obtaining the reproduction number, not to deduce LAS

▶ Here, I change the notation in the paper, for convenience

p. 10 –



Standard form of the system

Suppose system can be written in the form

S ′ = b(S , I ,R)− DSβ(S , I ,R)hI (3a)
I ′ = ΠDSβ(S , I ,R)hI − VI (3b)
R ′ = f(S , I ,R) + WI (3c)

where S ∈ Rm, I ∈ Rn and R ∈ Rk are susceptible, infected and removed
compartments, respectively

IC are ≥ 0 with at least one of the components of I (0) positive
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S ′ = b(S , I ,R)− DSβ(S , I ,R)hI (3a)

▶ b : Rm
+ × Rn

+ × Rk
+ → Rm continuous function encoding recruitment and death of

uninfected individuals
▶ D ∈ Rm×m diagonal with diagonal entries σi > 0 the relative susceptibilities of

susceptible compartments, with convention that σ1 = 1
▶ Scalar valued function β : Rm

+ × Rn
+ × Rk

+ → R+ represents infectivity, with, e.g.,
β(S , I ,R) = β for mass action

▶ h ∈ Rn row vector of relative horizontal transmissions
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I ′ = ΠDSβ(S , I ,R)hI − VI (3b)

▶ Π ∈ Rn×m has (i , j) entry the fraction of individuals in j th susceptible
compartment that enter i th infected compartment upon infection

▶ D ∈ Rm×m diagonal with diagonal entries σi > 0 the relative susceptibilities of
susceptible compartments, with convention that σ1 = 1

▶ Scalar valued function β : Rm
+ × Rn

+ × Rk
+ → R+ represents infectivity, with, e.g.,

β(S , I ,R) = β for mass action
▶ h ∈ Rn row vector of relative horizontal transmissions
▶ V ∈ Rn×n describes transitions between infected states and removals from these

states due to recovery or death
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R ′ = f(S , I ,R) + WI (3c)

▶ f : Rm
+ × Rn

+ × Rk
+ → Rk continuous function encoding flows into and out of

removed compartments because of immunisation or similar processes
▶ W ∈ Rk×n has (i , j) entry the rate at which individuals in the j th infected

compartment move into the i th removed compartment
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Suppose E0 is a locally stable disease-free equilibrium (DFE) of the system without
disease, i.e., an EP of

S ′ = b(S , 0,R)

R ′ = f(S , 0,R)

Theorem 1
Let

R0 = β(S0, 0,R0)hV−1ΠDS0 (4)

▶ If R0 < 1, the DFE E0 is a locally asymptotically stable EP of (3)
▶ If R0 > 1, the DFE E0 of (3) is unstable

If no demography (epidemic model), then just R0, of course
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Final size relations

Assume no demography, then system should be writeable as

S ′ = −DSβ(S , I ,R)hI (5a)
I ′ = ΠDSβ(S , I ,R)hI − VI (5b)
R ′ = WI (5c)

For w(t) ∈ Rn
+ continuous, define

w∞ = lim
t→∞

w(t) and ŵ =

∫ ∞

0
w(t) dt
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Define the row vector

Rm ∋ Γ = (Γ1, . . . , Γm) = β(S0, 0,R0)hV−1ΠD

then
R0 = ΓS(0)
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Suppose incidence is mass action, i.e., β(S , I ,R) = β and m > 1

Then for i = 1, . . . ,m, express Si (∞) as a function of S1(∞) using

Si (∞) = Si (0)
(

S1(∞)

S1(0)

)σi/σ1

then substitute into

1
σi

ln

(
Si (0)
Si (∞)

)
= ΓD−1 (S(0)− S(∞)) + βhV−1I (0)

=
1
σ1

ln

(
S1(0)
S1(∞)

)
which is a final size relation for the general system when Si (0) > 0
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If incidence is mass action and m = 1 (only one susceptible compartment), reduces to
the KMK form

ln

(
S0

S∞

)
=

R0

S0
(S0 − S∞) + βhV−1I0 (6)
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In the case of more general incidence functions, the final size relations are inequalities
of the form, for i = 1, . . . ,m,

ln

(
Si (0)
Si (∞)

)
≥ σiΓD−1 (S(0)− S(∞)) + σiβ(K )hV−1I (0)

where K is the initial total population
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The SLIAR model

▶ Paper we have already seen: Arino, Brauer, PvdD, Watmough & Wu. Simple models
for containment of a pandemic, Journal of the Royal Society Interface (2006)

▶ However, suppose additionally that L are also infectious
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Here, S = S , I = (L, I ,A)T and R = R , so m = 1, n = 3 and

h = [ε 1 δ], D = 1, Π =

1
0
0

 and V =

 κ 0 0
−pκ α 0

−(1 − p)κ 0 η


Incidence is mass action so β(E0) = β and thus

R0 = βhV−1ΠDS0

= β [ε 1 δ]

 1/κ 0 0
p/α 1/α 0

(1 − p)/η 0 1/η
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For final size, since m = 1, we can use (6):
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Suppose I0 = (0, I0, 0), then
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A model with vaccination
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A model with vaccination

Fraction γ of S0 are vaccinated before the epidemic; vaccination reduces probability and
duration of infection, infectiousness and reduces mortality

SU
′ = −βSU [IU + σI IV ] (7a)

SV
′ = −σSβSV [IU + σI IV ] (7b)

LU
′ = βSU [IU + σI IV ]− κULU (7c)

LV
′ = σSβSV [IU + σI IV ]− κV LV (7d)

IU
′ = κULU − αU IU (7e)

IV
′ = κV LV − αV IV (7f)

R ′ = fUαU II + fVαV IV (7g)

with SU(0) = (1 − γ)S0 and SV (0) = γS0
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Here, m = 2, n = 4,

h = [0 0 1 σI ], D =

(
1 0
0 σS

)
, Π =


1 0
0 1
0 0
0 0


and

V =


κU 0 0 0
0 κV 0 0

−κU 0 αU 0
0 −κV 0 αV


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So

Γ =

[
β

αU

σIσSβ

αV

]
, Rc = S0β
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)
and the final size relation is
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Adapting treatment to counter emergence of resistance

This work was undertaken at the request of the Public Health Agency of Canada during
the pandemic preparadness phase prior to the 2009 p-H1N1 pandemic

Problem: we have antivirals to use against influenza, either prophylactically or
curatively. Using these antivirals may promote the emergence of antiviral-resistant
strains. How do we minimise this risk?
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