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See some of the work of Horst Thieme on the subject

If one considers time of sojourn in compartments from a more detailed perspective, one
obtains integro-differential models

We use here continuous random variables. See chapters 12 and 13 in [?] (link) for
arbitrary distributions

p. 1 – Distributions of times to events

https://scholar.google.ca/citations?user=o7R6ZHMAAAAJ
https://press.princeton.edu/books/paperback/9780691092911/mathematics-in-population-biology


Time to events

Suppose that a system can be in two states A and B

▶ At time t = 0, the system is in state A

▶ An event happens at some time t = τ , which triggers the switch from state A to
state B

Let T be the random variable “time spent in state A before switching into state B”

p. 2 – Distributions of times to events



The states can be anything:
▶ A: working, B : broken
▶ A: infected, B : recovered
▶ A: alive, B : dead
▶ . . .

We take a collection of objects or individuals that are in state A and want some law for
the distribution of the times spent in A, i.e., a law for T

For example, we make light bulbs and would like to tell our customers that on average,
our light bulbs last 200 years...

We conduct an infinite number of experiments, and observe the time that it takes, in
every experiment, to switch from A to B

p. 3 – Distributions of times to events
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A distribution of probability is a model

From the sequence of experiments, we deduce a model, which in this context is called a
probability distribution

We assume that T is a continuous random variable

p. 5 – Distributions of times to events



Probability density function (p.d.f.)

Since T is continuous, it has a continuous probability density function f

▶ f ≥ 0
▶

∫ +∞
−∞ f (s)ds = 1

▶ P(a ≤ T ≤ b) =
∫ b
a f (t)dt

t

f(
t)

a b

p. 6 – Distributions of times to events



Cumulative distribution function (c.d.f.)

The cumulative distribution
function is a function F (t) that
characterizes the distribution of T ,
and defined by

F (s) = P(T ≤ s) =

∫ s

−∞
f (x)dx

t
f(

t)

b

p. 7 – Distributions of times to events



Survival function

Another characterization of the distribution of the random variable T is through the
survival (or sojourn) function

The survival function of state A is given by

S(t) = 1 − F (t) = P(T > t) (1)

This gives a description of the sojourn time of a system in a particular state (the time
spent in the state)

S is a nonincreasing function (since S = 1 − F with F a c.d.f.), and S(0) = 1 (since T
is a nonnegative random variable)

p. 8 – Distributions of times to events
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The average sojourn time τ in state A is given by

τ = E (T ) =

∫ ∞

0
tf (t)dt

Since limt→∞ tS(t) = 0, it follows that

τ =

∫ ∞

0
S(t)dt

Expected future lifetime:

1
S(t0)

∫ ∞

0
t f (t + t0) dt

S(t)− S(a) = P {survive during (a, t) having survived until a}

= exp

(
−
∫ t

a
h(u)du

)
p. 10 – Distributions of times to events



Hazard rate

The hazard rate (or failure rate) is

h(t) = lim
∆t→0

S(t)− S(t +∆t)

∆t

= lim
∆t→0

P(T < t +∆t|T ≥ t)

∆t

=
f (t)

S(t)

It gives probability of failure between t and ∆t, given survival to t.

We have
h(t) = − d

dt
lnS(t)

p. 11 – Distributions of times to events
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Competing risks

Suppose now that the system starts in state A at time t = 0 and that depending on
which of the two events E1 or E2 takes place first, it switches to state B1 or B2,
respectively

Consider the random variables TA, time spent in state A (or sojourn time in A), TAB1 ,
time before switch to B1 and TAB2 , time before switch to B2

If we consider state A, we cannot observe the variables TAB1 or TAB2 . What is
observable is the sojourn time in A

T ∗
A = min (TAB1 ,TAB2)

(where ∗ indicates that a quantity is observable)

p. 13 – Distributions of times to events



Failure rate by type of event

We have two (or more) types of events whose individual failure rates have to be
accounted for

hj(t) = lim
∆t→0

P(T < t +∆t,S = Sj |T ≥ t)

∆t

where P(T < t +∆t, S = Sj |T ≥ t) is the probability of failure due to cause Sj
(j = 1, 2 ici), i.e., S is a discrete r.v. representing the event that is taking place

p. 14 – Distributions of times to events



By the law of total probability, since only one of the event can take place, if there are n
risks, then

h(t) =
n∑

i=1

hj(t)

or, identically,

S(t) = exp

(
−
∫ t

0

∑
n
j=1hj(s) ds

)

p. 15 – Distributions of times to events



As a consequence, suppose a process is subject to two competing exponential risks with
respective distributions with parameters θ1 and θ2

Then the mean sojourn time in the initial state before being affected by one of the two
risks is

1
θ1 + θ2

p. 16 – Distributions of times to events
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The exponential distribution

The random variable T has an exponential distribution if its probability density
function takes the form

f (t) =

{
0 if t < 0,
θe−θt if t ≥ 0,

(2)

with θ > 0. Then the survival function for state A is of the form S(t) = e−θt , for
t ≥ 0, and the average sojourn time in state A is

τ =

∫ ∞

0
e−θtdt =

1
θ

p. 17 – Two “extreme” distributions and a nicer one



Particularities of the exponential distribution

The standard deviation of an exponential distribution is also 1/θ. When estimating θ, it
is impossible to distinguish the mean and the standard deviation

The exponential distribution is memoryless: its conditional probability obeys

P(T > s + t | T > s) = P(T > t), ∀s, t ≥ 0

The exponential and geometric distributions are the only memoryless probability
distributions

The exponential distribution has a constant hazard function h(t) ≡ θ

p. 18 – Two “extreme” distributions and a nicer one
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The Dirac delta distribution

If for some constant ω > 0,

S(t) =
{

1, 0 ≤ t ≤ ω
0, ω < t

meaning that T has a Dirac delta distribution δω(t), then the average sojourn time is

τ =

∫ ω

0
dt = ω

with standard deviation σ = 0

p. 20 – Two “extreme” distributions and a nicer one



The Gamma distribution

R.v. X is Gamma distributed (X ∼ Γ(k, θ)) with shape parameter k and scale
parameter θ (or rate β = 1/θ) (all positive) if its probability density function takes the
form

f (x ; k , θ) =
xk−1e−

x
θ

Γ(k)θk
(3)

where x > 0 and Γ is the Euler Gamma function, defined for all z ∈ C s.t. Re (z) > 0
by

Γ : z 7→
∫ +∞

0
tz−1 e−t dt

p. 21 – Two “extreme” distributions and a nicer one



Properties of the Gamma distribution

Mean kθ, variance kθ2

Survival function

S(t) = 1 − 1
Γ(k)

γ
(
k ,

t

θ

)
= 1 − 1

Γ(k)
γ (k , βt)

where
γ(a, x) =

∫ x

0
ta−1e−tdt

is an incomplete Gamma function

p. 22 – Two “extreme” distributions and a nicer one
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A model for a cohort with one cause of death

Consider a cohort of individuals born at the same time, e.g., the same year

▶ At time t = 0, there are initially N0 > 0 individuals
▶ All causes of death are compounded together
▶ The time until death, for a given individual, is a random variable T , with

continuous probability density distribution f (t) and survival function S(t)

N(t) the cohort population at time t ≥ 0

N(t) = N0S(t) (4)

S(t) proportion of initial population still alive at time t, so N0S(t) number in the
cohort still alive at time t

p. 24 – A simple cohort model with death



Case where T is exponentially distributed

Suppose that T has an exponential distribution with mean 1/d (or parameter d),
f (t) = de−dt . Then the survival function is S(t) = e−dt , and (4) takes the form

N(t) = N0e
−dt (5)

Now note that

d

dt
N(t) = −dN0e

−dt

= −dN(t)

with N(0) = N0.

⇒ The ODE N ′ = −dN makes the assumption that the life expectancy at birth is
exponentially distributed

p. 25 – A simple cohort model with death



Survival function, S(t) = P(T > t), for an exponential distribution with mean 80 years
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p. 26 – A simple cohort model with death



Case where T has a Dirac delta distribution

Suppose that T has a Dirac delta distribution at t = ω, giving the survival function

S(t) =

{
1, 0 ≤ t ≤ ω

0, t > ω

Then (4) takes the form

N(t) =

{
N0, 0 ≤ t ≤ ω

0, t > ω
(6)

All individuals survive until time ω, then they all die at time ω

Here, N ′ = 0 everywhere except at t = ω, where it is undefined

p. 27 – A simple cohort model with death



Survival function, S(t) = P(T > t), for a Dirac distribution with mean 80 years
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Distributions of times to events

Two “extreme” distributions and a nicer one

A simple cohort model with death

Possible fixes to the exponential distribution issue

Sojourn times in an SIS disease transmission model



Possible fixes to the exponential distribution issue
The issue with exponential distributions
Fix 1 – Use info on the distribution as well
Fix 2 – Use an Erlang distribution
Finding the right Erlang
Example – A COVID-19 model



Survival for the exponential distribution
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Issues with the exponential distribution

▶ Survival drops quickly

▶ Survival continues way beyond the mean

Acceptable if what matters is the average duration of sojourn in a compartment (e.g.,
long term dynamics)

More iffy if one is interested in short-term dynamics

▶ Exponential distribution with parameter θ has same mean and standard deviation
1/θ, i.e., a single parameter controls mean and dispersion about the mean

p. 30 – Possible fixes to the exponential distribution issue
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Side note – What is a convolution?

▶ The convolution product is used to find the probability distribution of the sum of
two independent random variables

▶ If X and Y are two continuous random variables, and Z = X + Y , use the
convolution to find the p.d.f. fZ (z) of Z

p. 31 – Possible fixes to the exponential distribution issue



The setting

▶ Consider two independent continuous random variables X and Y with p.d.f. fX (x)
and fY (y), respectively

▶ Want to find the p.d.f. of their sum Z = X + Y

▶ Simply adding the p.d.f. or multiplying them does not yield the correct distribution
for the sum Z

▶ Convolution accounts for all possible combinations of X and Y that sum to a
specific value z

p. 32 – Possible fixes to the exponential distribution issue



Deriving the convolution formula
Start with the c.d.f. of Z :
▶ FZ (z) = P(Z ≤ z) = P(X + Y ≤ z)

▶ Since X and Y are independent, their joint p.d.f. is fX ,Y (x , y) = fX (x)fY (y)

▶ P(X +Y ≤ z) found by integrating the joint p.d.f. over the region where x + y ≤ z

FZ (z) =

∫∫
x+y≤z

fX (x)fY (y) dx dy

▶ Change the order of integration. For a fixed x , y must be less than or equal to
z − x

FZ (z) =

∫ ∞

−∞

(∫ z−x

−∞
fY (y) dy

)
fX (x) dx

▶ Inner integral is c.d.f. of Y evaluated at z − x , i.e., FY (z − x)

FZ (z) =

∫ ∞

−∞
FY (z − x)fX (x) dx

p. 33 – Possible fixes to the exponential distribution issue



Deriving the convolution formula (2)

To obtain the PDF fZ (z), we differentiate the CDF FZ (z) with respect to z

▶ fZ (z) =
d
dz FZ (z) =

d
dz

∫∞
−∞ FY (z − x)fX (x) dx

▶ Using Leibniz integral rule (differentiating under the integral sign)

fZ (z) =

∫ ∞

−∞

∂

∂z
FY (z − x)fX (x) dx

▶ Since d
duFY (u) = fY (u), and here u = z − x , we have ∂

∂z FY (z − x) = fY (z − x)

p. 34 – Possible fixes to the exponential distribution issue



The convolution pProduct formula

fZ (z) =

∫ ∞

−∞
fX (x)fY (z − x) dx

▶ This is the convolution product of fX and fY , often denoted as (fX ∗ fY )(z)

▶ Alternatively, by symmetry

fZ (z) =

∫ ∞

−∞
fY (y)fX (z − y) dy

▶ Key condition – Valid only if X and Y are independent r.v.

p. 35 – Possible fixes to the exponential distribution issue



Exponential distributions are “bad” but also cool

X1 and X2 2 i.i.d. (independent and identically distributed) exponential r.v. with
parametres θ1 and θ2. Then the probability density function of the r.v. Z = X1 + X2 is
given by the convolution

fZ (z) =

∫ ∞

−∞
fX1(x1)fX2(z − x1) dx1

=

∫ z

0
θ1e

−θ1x1θ2e
−θ2(z−x1) dx1

= θ1θ2e
−θ2z

∫ z

0
e(θ2−θ1)x1 dx1

=


θ1θ2

θ2 − θ1

(
e−θ1z − e−θ2z

)
if θ1 ̸= θ2

θ2ze−θz if θ1 = θ2 =: θ
(7)

p. 36 – Possible fixes to the exponential distribution issue



The tool we use

Theorem 1
Let Xi be independent exponentially distributed random variables with parameter ξ and
Y =

∑n
i=1 Xi

Then the random variable Y ⇝ E (n, ξ), an Erlang distribution with shape parameter n
and scale parameter ξ

(Erlang distribution: Gamma distribution with integer shape parameter)

p. 37 – Possible fixes to the exponential distribution issue



Consequences for compartmental models
If n compartments are traversed successively by individuals, with each compartment
having an outflow rate of 1/ξ (or a mean sojourn time of ξ), then the time of sojourn
from entry into the first compartment to exit from the last is Erlang distributed with
mean E (Y ) = nξ and variance Var(Y ) = nξ2

X

X1 X2 Xk XN−1 XN

µX

εX1 εX2
εXN−2 εXN−1 εXN

Average sojourn time N/ε

Average sojourn time 1/µ

I have a Shiny app for this :)
p. 38 – Possible fixes to the exponential distribution issue

https://daytah-or-dahtah.ovh:3838/Erlang_shiny/
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Example: EVD incubation periods

During the 2014 Ebola Virus Disease (EVD) crisis in Western Africa, the WHO Ebola
Response Team estimated incubation periods in a 2015 paper

Table S2 in the Supplementary Information in that paper gives the best fit for the
distribution of incubation periods for EVD as a Gamma distribution with mean 10.3
days and standard deviation 8.2, i.e., nε = 10.3 and ε

√
n = 8.2

From this, ε = 8.22/10.3 ≃ 6.53 and n = 10.32/8.22 ≃ 1.57. However, that is a
Gamma distribution

p. 39 – Possible fixes to the exponential distribution issue



Switching to a compartmental model approach

To use multiple compartments to better fit residence times, we need to find the closest
possible Erlang distribution to this Gamma distribution

=⇒ compute RSS errors between data points generated from the given Gamma
distribution and an Erlang

error_Gamma <- function(theta,shape,t,data) {
test_points <- dgamma(t, shape = shape, scale = theta)
ls_error <- sum((data-test_points)^2)
return(ls_error)

}

p. 40 – Possible fixes to the exponential distribution issue



p. 41 – Possible fixes to the exponential distribution issue



optimize_gamma <- function(t,d) {
max_shape <- 10
error_vector <- mat.or.vec(max_shape,1)
scale_vector <- mat.or.vec(max_shape,1)
for (i in 1:max_shape) {

result_optim <- try(optim(par = 3,
fn = error_Gamma,
lower = 0,
method = "L-BFGS-B",
shape = i,
t = t,
data = d),

TRUE)
if (!inherits(result_optim,"try-error")) {

error_vector[i] <- result_optim$value
scale_vector[i] <- result_optim$par

} else {
error_vector[i] <- NaN
scale_vector[i] <- NaN

}
}
result_optim <- data.frame(seq(1,max_shape),

scale_vector,
error_vector)

colnames(result_optim) <- c("shape","scale","error")
result_optim <- result_optim[complete.cases(result_optim),]
return(result_optim)

}

p. 42 – Possible fixes to the exponential distribution issue



time_points <- seq(0,60)
data_points <- dgamma(time_points, shape = 1.57,

scale = 6.53)
# Run the minimization
optim_fits <- optimize_gamma(time_points,data_points)
# Which is the best Erlang to fit the data
idx_best <- which.min(optim_fits$error)

p. 43 – Possible fixes to the exponential distribution issue



We find the best fit below, which is obtained using 2 compartments
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p. 44 – Possible fixes to the exponential distribution issue
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Extends the SLIAR model to take into account non-exponentially distributed stage
durations (see lecture 05)

p. 46 – Possible fixes to the exponential distribution issue



The original model (well, almost the first one)

S L1 L2

I1

A1

I2

A2

RI

RA

D

ΦS εL1

(1−
π)εL

2

πε
L 2

γI1

γA1

(1
−
δ)
γI 2

γA2

δγI2

p. 47 – Possible fixes to the exponential distribution issue



Reinterpreting terms

Here D stands for detected, U is undetected

p. 48 – Possible fixes to the exponential distribution issue



Working out when the first COVID-19 case occurred

▶ Details of emergence and precise timeline before amplification started unknown

▶ Amplification in Wuhan
▶ Cluster of pneumonia cases mostly related to the Huanan Seafood Market
▶ 27 December 2019: first report to local government
▶ 31 December 2019: publication
▶ 8 January 2020: identification of SARS-CoV-2 as causative agent
▶ ∼ 23 January 2020: lockdown Wuhan and Hubei province + face mask mandates

▶ By 2020-01-29, virus in all provinces of mainland CHN

p. 49 – Possible fixes to the exponential distribution issue



Evidence of earlier spread

▶ Report to Wuhan authorities on 27 December 2019

▶ First export detections in Thailand and Japan on 13 and 16 January 2020 (with
actual importations on 8 and 6 January)

=⇒ amplification must have been occuring for a while longer

▶ France: sample taken from 42-year-old male (last foreign travel to Algeria in August
2019) who presented to ICU on 27 December 2019

▶ Retrospective studies in United Kingdom and Italy also showed undetected
COVID-19 cases in prepandemic period

p. 50 – Possible fixes to the exponential distribution issue



Untangling the first case issue

▶ Robert, Rossman & Jaric. Dating first cases of COVID-19. PLoS Pathogens (2021)
Find likely timing of first case of COVID-19 in China as November 17 (95% CI October
4)

▶ Pekar, Worobey, Moshiri, Scheffler & Wertheim. Timing the SARS-CoV-2 index case
in Hubei province. Science (2021)
Period between mid-October and mid-November 2019 is plausible interval when the
first case of SARS-CoV-2 emerged in Hubei province

Important when trying to understand global spread, so let me illustrate with the model I
used, taking into account model evolution since

p. 51 – Possible fixes to the exponential distribution issue



Back-calculating the start of spread (example of China)

Cumulative confirmed case counts in China as reported to WHO was c = 547 cases on
tc = 2020-01-22

Let u be a point in parameter space. Solve ODE numerically over [0, t], with S(0) the
population of China, L1(0) = 1 and other state variables 0. This gives a solution
x(t, t0 = 0, u)

Extracting L2(t, t0 = 0, u) from this solution, obtain cumulative number of new
detections as

C (t) =

∫ t

t0=0
pε2L2(s, t0, u) ds

Let t⋆ be s.t. C (t⋆) = 547; then ti = 2020-01-22 − t⋆

p. 52 – Possible fixes to the exponential distribution issue



p. 53 – Possible fixes to the exponential distribution issue
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An SIS model
Hypotheses

▶ Individuals typically recover from the disease

▶ The disease does not confer immunity

▶ There is no birth or death (from the disease or natural)
⇒ Constant total population N ≡ N(t) = S(t) + I (t)

▶ Infection is of standard incidence type

p. 54 – Sojourn times in an SIS disease transmission model



Recovery

▶ Traditional models suppose that recovery occurs with rate constant γ

▶ Here, of the individuals that become infective at time t0, a fraction S(t − t0)
remain infective at time t ≥ t0

▶ ⇒ For t ≥ 0, S(t) is a survival function. As such, it verifies S(0) = 1 and S is
nonnegative and nonincreasing

p. 55 – Sojourn times in an SIS disease transmission model



Model for infectious individuals

Since N is constant, S(t) = N − I (t) and we need only consider the following equation
(where S is used for clarity)

I (t) = I0(t) +

∫ t

0
β
S(u)I (u)

N
S(t − u)du (8)

▶ I0(t) number of individuals who were infective at time t = 0 and still are at time t
▶ I0(t) is nonnegative, nonincreasing, and such that limt→∞ I0(t) = 0

▶ S(t − u) proportion of individuals who became infective at time u and who still are
at time t

p. 56 – Sojourn times in an SIS disease transmission model



Expression under the integral

Integral equation for the number of infective individuals:

I (t) = I0(t) +

∫ t

0
β
(N − I (u))I (u)

N
S(t − u)du (8)

The term
β
(N − I (u))I (u)

N
S(t − u)

▶ β(N − I (u))I (u)/N is the rate at which new infectives are created, at time u

▶ multiplying by S(t − u) gives the proportion of those who became infectives at
time u and who still are at time t

Summing over [0, t] gives the number of infective individuals at time t

p. 57 – Sojourn times in an SIS disease transmission model



Case of an exponentially distributed time to recovery

Suppose S(t) such that sojourn time in the infective state has exponential distribution
with mean 1/γ, i.e., S(t) = e−γt

Initial condition function I0(t) takes the form

I0(t) = I0(0)e−γt

with I0(0) the number of infective individuals at time t = 0. Obtained by considering
the cohort of initially infectious individuals, giving a model such as (4)

Equation (8) becomes

I (t) = I0(0)e−γt +

∫ t

0
β
(N − I (u))I (u)

N
e−γ(t−u)du (9)
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Taking the time derivative of (9) yields

I ′(t) = −γI0(0)e−γt − γ

∫ t

0
β
(N − I (u))I (u)

N
e−γ(t−u)du

+ β
(N − I (t))I (t)

N

= −γ

(
I0(0)e−γt +

∫ t

0
β
(N − I (u))I (u)

N
e−γ(t−u)du

)
+ β

(N − I (t))I (t)

N

= β
(N − I (t))I (t)

N
− γI (t)

This is the classical logistic type ordinary differential equation (ODE) for I in an SIS
model without vital dynamics (no birth or death)
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Case of a step function survival function

Consider case where the time spent infected has survival function

S(t) =

{
1, 0 ≤ t ≤ ω,

0, t > ω.

i.e., the sojourn time in the infective state is a constant ω > 0

In this case (8) becomes

I (t) = I0(t) +

∫ t

t−ω
β
(N − I (u))I (u)

N
du. (10)

Here, it is more difficult to obtain an expression for I0(t). It is however assumed that
I0(t) vanishes for t > ω
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When differentiated, (10) gives, for t ≥ ω,

I ′(t) = I ′0(t) + β
(N − I (t))I (t)

N
− β

(N − I (t − ω)) I (t − ω)

N
.

Since I0(t) vanishes for t > ω, this gives the delay differential equation (DDE)

I ′(t) = β
(N − I (t))I (t)

N
− β

(N − I (t − ω))I (t − ω)

N
.
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