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The basic reproduction number R0

Used frequently in epidemiology (not only math epi)

Definition 1 (R0)

The basic reproduction number R0 is the average number of secondary cases generated
by the introduction of an infectious individual in a wholly susceptible population

▶ If R0 < 1, then on average, each infectious individual infects less than one other
person, so the epidemic has chances of dying out

▶ If R0 > 1, then on average, each infectious individual infects more than one other
person and the disease can become established in the population (or there will be a
major epidemic)
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Computation of R0

Mathematically, R0 is a bifurcation parameter aggregating some of the model
parameters and such that the disease free equilibrium (DFE) loses its local asymptotic
stability when R0 = 1 is crossed from left to right

▶ As a consequence, R0 is found by considering the spectrum of the Jacobian matrix
of the system evaluated at the DFE

▶ The matrix quickly becomes hard to deal with (size and absence of “pattern”) and
the form obtained is not unique, which is annoying when trying to interpret R0
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Preliminary setup of PvdD & Watmough 2002
x = (x1, . . . , xn)

T , xi ≥ 0, with the first m < n compartments the infected ones

Xs the set of all disease free states:

Xs = {x ≥ 0|xi = 0, i = 1, . . . ,m}

Distinguish new infections from all other changes in population
▶ Fi (x) rate of appearance of new infections in compartment i
▶ V+

i (x) rate of transfer of individuals into compartment i by all other means
▶ V−

i (x) rate of transfer of individuals out of compartment i

Assume each function continuously differentiable at least twice in each variable

x ′i = fi (x) = Fi (x)− Vi (x), i = 1, . . . , n

where Vi = V−
i − V+

i
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Some assumptions

▶ (A1) If x ≥ 0, then Fi ,V
+
i ,V−

i ≥ 0 for i = 1, . . . , n

Since each function represents a directed transfer of individuals, all are non-negative

▶ (A2) If xi = 0 then V−
i = 0. In particular, if x ∈ Xs , then V−

i = 0 for i = 1, . . . ,m

If a compartment is empty, there can be no transfer of individuals out of the
compartment by death, infection, nor any other means
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▶ (A3) Fi = 0 if i > m

The incidence of infection for uninfected compartments is zero

▶ A4 If x ∈ Xs then Fi (x) = 0 and V+
i (x) = 0 for i = 1, . . . ,m

Assume that if the population is free of disease then the population will remain free of
disease; i.e., there is no (density independent) immigration of infectives
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One last assumption for the road

Let x0 be a DFE of the system, i.e., a (locally asymptotically) stable equilibrium
solution of the disease free model, i.e., the system restricted to Xs . We need not
assume that the model has a unique DFE

Let Df (x0) be the Jacobian matrix [∂fi/∂xj ]. Some derivatives are one sided, since x0
is on the domain boundary

(A5) If F (x) is set to zero, then all eigenvalues of Df (x0) have negative real parts

Note: if the method ever fails to work, it is usually with (A5) that lies the problem
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Stability of the DFE as function of R0

Theorem 2
Suppose the DFE exists. Let then

R0 = ρ(FV−1)

with matrices F and V obtained as indicated. Assume conditions (A1) through (A5)
hold. Then
▶ if R0 < 1, then the DFE is LAS
▶ if R0 > 1, the DFE is unstable

Important to stress local nature of stability that is deduced from this result. We will see
later that even when R0 < 1, there can be several positive equilibria
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Direction of the bifurcation at R0 = 1

µ bifurcation parameter s.t. R0 < 1 for µ < 0 and R0 > 1 for µ > 0 and x0 DFE for
all values of µ and consider the system

x ′ = f (x , µ) (1)

Write
Dx f (x0, 0) = D(F(x0)− V(x0))|R0=1

as block matrix

DF(x0) =

(
F 0
0 0

)
, DV(x0) =

(
V 0
J3 J4

)

p. 9 – The method of van den Driessche and Watmough



Write [αℓk ], ℓ = m + 1, . . . , n, k = 1, . . . ,m the (ℓ−m, k) entry of −J−1
4 J3 and let v

and w be left and right eigenvectors of Dx f (x0, 0) s.t. vw = 1

Let

a =
m∑

i ,j ,k=1

viwjwk

(
1
2

∂2fi
∂xj∂xk

(x0, 0) +
n∑

ℓ=m+1

αℓk
∂2fi

∂xj∂xℓ
(x0, 0)

)
(2)

b = vDxµf (x0, 0)w =
n∑

i ,j=1

viwj
∂2fi
∂xj∂µ

(x0, 0) (3)
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Theorem 3
Consider model (1) with f (x , µ) satisfying conditions (A1)–(A5) and µ as described
above

Assume that the zero eigenvalue of Dx f (x0, 0) is simple

Define a and b by (2) and (3); assume that b ̸= 0. Then ∃δ > 0 s.t.
▶ if a < 0, then there are LAS endemic equilibria near x0 for 0 < µ < δ

▶ if a > 0, then there are unstable endemic equilibria near x0 for −δ < µ < 0

p. 11 – The method of van den Driessche and Watmough



The method of van den Driessche and Watmough
The next generation matrix method
Direction of the bifurcation at R0 = 1
How does this work?



Two key ingredients to explain

▶ Where does FV−1 come from?

▶ Why on earth use the spectral radius of FV−1?
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The next generation matrix FV−1
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The spectral radius

If you know ODE and discrete time systems, the statement in Theorem 2 that the DFE
is LAS when the spectral radius of FV−1 < 1 should be somewhat confusing

LAS in an ODE requires all eigenvalues to have negative real parts (the spectral
abscissa s(·) is negative), whereas the spectral radius being less than one is typically the
condition for local attractivity of a fixed point in a discrete time system

Key ingredient is the equivalence s(F − V ) < 0 ⇐⇒ ρ(FV−1) < 1

Let’s prove it before explaining its relevance to the disease case
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The equivalence

Lemma 4
Let F and V be defined as earlier, s(·) and ρ(·) denote the spectral abscissa and
spectral radius of a matrix, respectively. Then

s(F − V ) < 0 ⇐⇒ ρ(FV−1) < 1 (4)
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Example of the SLIRS model (??)

Variation of the infected variables in (??) are described by

L ′ = f (S , I ,N)− (ε+ d)L

I ′ = εL− (d + γ)I

Write

I ′ =

(
L
I

)′
=

(
f (S , I ,N)

0

)
−
(

(ε+ d)L
(d + γ)I − εL

)
=: F − V (5)
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Denote

f ⋆
L :=

∂

∂L
f

∣∣∣∣
(S,I ,R)=E0

f ⋆
I :=

∂

∂I
f

∣∣∣∣
(S,I ,R)=E0

the values of the partials of the incidence function at the DFE E0

Compute the Jacobian matrices of vectors F and V at the DFE E0

F =

(
f ⋆
L f ⋆

I

0 0

)
and V =

(
ε+ d 0
−ε d + γ

)
(6)

p. 17 – Revisiting some known examples



Thus

V−1 =
1

(d + ε)(d + γ)

(
d + γ 0
ε d + ε

)

Also, in the case N is constant, ∂f /∂L = 0 and thus

FV−1 =
f ⋆
I

(d + ε)(d + γ)

(
ε d + ε
0 0

)

As a consequence,

R0 = ε
f ⋆
I

(d + ε)(d + γ)
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Theorem 5
Let

R0 =
εf ⋆

I

(d + ε)(d + γ)
(7)

Then
▶ if R0 < 1, the DFE is LAS
▶ if R0 > 1, the DFE is unstable

It is important here to stress that the result we obtain concerns the local asymptotic
stability. We see later that even when R0 < 1, there can be several locally
asymptotically stable equilibria
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Application

The DFE is
(S̄ , L̄, Ī , R̄) = (N, 0, 0, 0)

▶ Mass action incidence (frequency-dependent contacts):

f ⋆
I = βS̄ ⇒ R0 =

ϵβN

(ϵ+ d)(γ + d)

▶ Standard incidence (proportion-dependent contacts):

f ⋆
I =

βS̄

N
⇒ R0 =

ϵβ

(ϵ+ d)(γ + d)
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Links between SLIRS-type models

S ′ = b + νR − dS − f (S , I ,N)

L ′ = f (S , I ,N)− (d + ε)L

I ′ = εL− (d + γ)I

R ′ = γI − (d + ν)R

SLIR SLIRS where ν = 0
SLIS Limit of SLIRS when ν → ∞
SLI SLIR where γ = 0
SIRS Limit of SLIRS when ε → ∞
SIR SIRS where ν = 0
SIS Limit of SIRS when ν → ∞

Limit SLIS when ε → ∞
SI SIS where ν = 0
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Values of R0

(S̄ , Ī , N̄) values of S , I and N at DFE. Denote f̄I = ∂f /∂I (S̄ , Ī , N̄).

SLIRS εf̄I
(d+ε)(d+γ)

SLIR εf̄I
(d+ε)(d+γ)

SLIS εf̄I
(d+ε)(d+γ)

SLI εf̄I
(d+ε)(d+γ)

SIRS εf̄I
d+γ

SIR f̄I
d+γ

SIS f̄I
d+γ

SI f̄I
d+γ
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