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Outline



SLIRS model with constant population



Incubation periods

▶ SIS and SIR: progression from S to I is instantaneous

▶ Several incubation periods:

Disease Incubation period
Yersinia Pestis 2-6 days
Ebola haemorrhagic fever (HF) 2-21 days
Marburg HF 5-10 days
Lassa fever 1-3 weeks
Tse-tse weeks–months
HIV/AIDS months–years
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Hypotheses

▶ There is demography
▶ New individuals are born at a constant rate b

▶ There is no vertical transmssion: all “newborns” are susceptible
▶ The disease is non lethal, it causes no additional mortality
▶ New infections occur at the rate f (S , I ,N)

▶ There is a period of incubation for the disease
▶ There is a period of time after recovery during which the disease confers immunity

to reinfection (immune period)
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The model is as follows:

S ′ = b + νR − dS − f (S , I ,N) (1a)
L ′ = f (S , I ,N)− (d + ε)L (1b)
I ′ = εL− (d + γ)I (1c)
R ′ = γI − (d + ν)R (1d)

Meaning of the parameters:
▶ 1/ε average duration of the incubation period
▶ 1/γ average duration of infectious period
▶ 1/ν average duration of immune period
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Example of the SLIRS model (1)

Variation of the infected variables in (1) are described by

L ′ = f (S , I ,N)− (ε+ d)L

I ′ = εL− (d + γ)I

Write

I ′ =

(
L
I

)′
=

(
f (S , I ,N)

0

)
−
(

(ε+ d)L
(d + γ)I − εL

)
=: F − V (2)
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Denote

f ⋆
L :=

∂

∂L
f

∣∣∣∣
(S,I ,R)=E0

f ⋆
I :=

∂

∂I
f

∣∣∣∣
(S,I ,R)=E0

the values of the partials of the incidence function at the DFE E0

Compute the Jacobian matrices of vectors F and V at the DFE E0

F =

(
f ⋆
L f ⋆

I

0 0

)
and V =

(
ε+ d 0
−ε d + γ

)
(3)
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Thus

V−1 =
1

(d + ε)(d + γ)

(
d + γ 0
ε d + ε

)

Also, in the case N is constant, ∂f /∂L = 0 and thus

FV−1 =
f ⋆
I

(d + ε)(d + γ)

(
ε d + ε
0 0

)

As a consequence,

R0 = ε
f ⋆
I

(d + ε)(d + γ)
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Theorem 1
Let

R0 =
εf ⋆

I

(d + ε)(d + γ)
(4)

Then
▶ if R0 < 1, the DFE is LAS
▶ if R0 > 1, the DFE is unstable

It is important here to stress that the result we obtain concerns the local asymptotic
stability. We see later that even when R0 < 1, there can be several locally
asymptotically stable equilibria
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Application

The DFE is
(S̄ , L̄, Ī , R̄) = (N, 0, 0, 0)

▶ Mass action incidence (frequency-dependent contacts):

f ⋆
I = βS̄ ⇒ R0 =

ϵβN

(ϵ+ d)(γ + d)

▶ Standard incidence (proportion-dependent contacts):

f ⋆
I =

βS̄

N
⇒ R0 =

ϵβ

(ϵ+ d)(γ + d)
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Links between SLIRS-type models

S ′ = b + νR − dS − f (S , I ,N)

L ′ = f (S , I ,N)− (d + ε)L

I ′ = εL− (d + γ)I

R ′ = γI − (d + ν)R

SLIR SLIRS where ν = 0
SLIS Limit of SLIRS when ν → ∞
SLI SLIR where γ = 0
SIRS Limit of SLIRS when ε → ∞
SIR SIRS where ν = 0
SIS Limit of SIRS when ν → ∞

Limit SLIS when ε → ∞
SI SIS where ν = 0
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Values of R0

(S̄ , Ī , N̄) values of S , I and N at DFE. Denote f̄I = ∂f /∂I (S̄ , Ī , N̄).

SLIRS εf̄I
(d+ε)(d+γ)

SLIR εf̄I
(d+ε)(d+γ)

SLIS εf̄I
(d+ε)(d+γ)

SLI εf̄I
(d+ε)(d+γ)

SIRS εf̄I
d+γ

SIR f̄I
d+γ

SIS f̄I
d+γ

SI f̄I
d+γ
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