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Codeço’s model
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K concentration of cholera in water giving
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Note that the dashed arrow from I to B is not a flow: individuals do not convert into
vibrio cholerae
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A model for cholera
A model for zoonotic transmission of waterborne disease





Zoonotic transmission of waterborne disease

Zoonoses are animal diseases that are transmitted to humans

Model here used for instance to model Giardia transmission from possums to humans
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The full model

SA
′ = −βASAIA + γAIA (2a)

IA
′ = βASAIA − γAIA (2b)

W ′ = αIA − ηW (SH + IH)− µW (2c)
SH

′ = −ρηWSH − βHSH IH + γH IH (2d)
IH

′ = ρηWSH + βHSH IH − γH IH (2e)

Considered with NA = SA + IA and NH = SH + IH constant
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Simplified model

Because NA and NH are constant, (2) can be simplified:

IA
′ = βANAIA − γAIA − βAI

2
A (3a)

W ′ = αIA − ηWNH − µW (3b)

IH
′ = ρηW (NH − IH) + βHNH IH − γH IH − βH I

2
H (3c)

Three EP: DFE (0, 0, 0); endemic disease in humans because of H2H transmission;
endemic in both H and A because of W
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Three EP: DFE (0, 0, 0); endemic disease in humans because of H2H transmission;
endemic in both H and A because of W

Let
R0A =

βA
γA

NA and R0H =
βH
γH

NH (4)

▶ DFE LAS if R0A < 1 and R0H < 1, unstable if R0A > 1 or R0H > 1
▶ If R0H > 1 and R0A < 1, (3) goes to EP with endemicity only in humans
▶ Endemic EP with both A and H requires R0A > 1 and R0H < 1

Note that proof is not global
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To simplify or not to simplify?

▶ In the KMK epidemic model (??) and the SIRS endemic model (??), since the total
population is constant or asymptotically constant, it is possible to omit one of the state
variables since N⋆ = S + I + R

▶ We often use R = N⋆ − S − I

▶ This can greatly simplify some computations

▶ Whether to do it or not is a matter of preference
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To normalise or not to normalise?

▶ In the KMK epidemic model (??) and the SIRS endemic model (??), since the total
population is constant or asymptotically constant, it is possible to normalise to N = 1

▶ This can greatly simplify some computations

▶ However, I am not a big fan: it is important to always have the “sizes” of objects in
mind

▶ If you do normalise, at least for a paper destined to mathematical biology, always do
a “return to biology”, i.e., interpret your results in a biological light, which often implies
to return to original values
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Where we are

▶ An epidemic SIR model (the KMK SIR) in which the presence or absence of an
epidemic wave is characterised by the value of R0

▶ The KMK SIR has explicit solutions (in some sense). This is an exception!

▶ An endemic SIRS model in which the threshold R0 = 1 is such that, when R0 < 1,
the disease goes extinct, whereas when R0 > 1, the disease becomes established in the
population

▶ Some simple variations on these models

▶ A few models for vector-borne or water-borne diseases
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