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Introduction to Incidence Functions

▶ Before continuing, let’s discuss incidence functions, which describe how contacts
between individuals occur and how they result in disease transmission

▶ See in particular McCallum, Barlow & Hone, How should pathogen transmission be
modelled?, Trends in Ecology & Evolution 16 (2001)
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Incidence Function versus Force of Infection

▶ Two different forms of the function representing the rate at which individuals move
from compartment S to infected compartments:

▶ S ′ = −f (S , I ,N) is an incidence function

▶ S ′ = −λ(S , I ,N)S is a force of infection

▶ The two are equivalent; the context usually determines which form is used. For
example, PDE models structured by age of infection must integrate I (t, a) over age and
therefore often use the force of infection.
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Interactions - Infection

▶ The rate at which new cases appear is the incidence function

f (S , I ,N) (1)

▶ Depends on the number S of susceptibles, I of infectious individuals, and sometimes
the total population N

▶ An incidence function includes two components:
▶ a count of the number of contacts occurring
▶ a description of the probability that such a contact, when it occurs, leads to

pathogen transmission
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Difficulty of the Choice

▶ Choosing a good function is difficult and is probably one of the most "unstable"
parts of modelling the spread of infectious diseases
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The Two Most Common Incidence Functions

▶ The two most commonly used incidence functions are the mass action incidence

f (S , I ) = βSI (2)

and the standard incidence (or proportional incidence)

f (S , I ) = β
SI

S + I
(3)

▶ In both cases, β is the disease transmission coefficient, although its exact
interpretation varies
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Units of β

▶ If X (t) is the population of compartment X at time t, then X ′ has units
number/time

▶ In a differential equation, the terms on the left and right sides of the “=” sign must
have the same units

▶ The incidence function therefore has units number/time

▶ (And if a force of infection is used, the units are 1/time)
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Units – Mass Action Incidence

▶ Mass action incidence

βSI ∝ β × number × number

has units number/time if β has units 1/(number × time)

▶ Standard incidence

βSI/N ∝ β × number × number/number ∝ β × number

has units number/time if β has units 1/time
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Mass Action Incidence

f (S , I ) = βSI (2)

▶ The mixing of susceptibles and infectious individuals is homogeneous

▶ This is a strong assumption: the number of contacts is the product of the number of
susceptibles and the number of infectious individuals, so each susceptible individual can
potentially meet each infectious individual

▶ (hence the name, by analogy with gas dynamics in chemistry/physics)

▶ When the population is large, this assumption becomes unrealistic
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Standard Incidence (Proportional)

▶ Another widely used form of the incidence function

f (S , I ,N) = β
SI

N
(3)

▶ Each susceptible meets a fraction of the infectious individuals

▶ Or vice-versa! See, e.g., Hethcote, Qualitative analyses of communicable disease
models, Mathematical Biosciences (1976)

▶ Case of a larger population
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Constant Population =⇒ Equivalence of Incidences

▶ When the total population is constant, many incidence functions are qualitatively
equivalent

▶ Suppose that N(t) ≡ N0, then

βSI = β̃
SI

N
⇐⇒ β̃ = N0β

with this β̃, (2) and (3) are identical

▶ Remember that the units differ, however
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General Incidence

f (S , I ,N) = βSqI p (4)

▶ These functions were introduced with the aim of fitting data: for fitting, this adds
two parameters p, q. We will see, however, that much theoretical work uses this
incidence
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Refuge Incidence

▶ Refuge effect; a proportion 0 < q < 1 of the population is truly susceptible, for
example due to spatial heterogeneities

f (S , I ,N) =

βI

(
N − I

q

)
, if I < qN

0, if I ≥ qN
(5)
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Negative Binomial Incidence

f (S , I ,N) = kS ln

(
1 + β

I

k

)
(6)

▶ For small values of k , this describes a highly concentrated infection process, while as
k → ∞, we tend towards a mass action incidence
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Asymptotic Contact

f (S , I ,N) =
N

1 − ε+ εN

F (S , I )

N
(7)

where F is one of the functions already described

▶ When ε = 0, contacts are proportional to N, while when ε = 1, contacts are
independent of N
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Asymptomatic Transmission

f (S , I ,N) = β
SI

c + S + I
(8)

where c is a constant. For example,

C (N)

N
F (S , I )

with C (N) = N/(1 − ε+ εN) the function describing the contact rate and F (S , I ) the
function describing disease spread, which is assumed here to be a negative binomial
incidence
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Changing Incidence

F (S , I ,N) =

βSI if N ≤ N̂

β
SI

N
if N > N̂

(9)

▶ Arino & McCluskey, Effect of a sharp change of the incidence function on the
dynamics of a simple disease, Journal of Biological Dynamics (2010)
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Change Shape or Saturate?

▶ C. Kribs-Zaleta. To switch or taper off: the dynamics of saturation, Mathematical
Biosciences (2004)
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Two Different Incidence Functions

▶ We will consider the role of two different functions: a continuous and differentiable
function

βsm(N) = β0
N

N + A
(10)

and a continuous but with a switch (abrupt transition?)

βsw (N) =

β0
N

A
, N < A

β0, N ≥ A
(11)

▶ These functions represent saturation in different ways
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The Model

▶ SIS model in non-constant population

I ′ = β(N)(N − I )
I

N
− (d + γ + δ)I (1)

N ′ = bN

(
1 − N

K

)
− dN − δI (2)
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Non-dimensionalization of the Model

▶ Let N̄ = (1 − d
b )K , i = I/N and n = N/N̄. Then

i ′ = (β(N̄n)− δ)i(1 − i)− (b + γ)i + (b − d)in (12a)
n′ = (b − d)n(1 − n)− δin (12b)

p. 20 – Example of a Problem Related to Incidence Functions



The Basic Reproduction Number

▶ Whatever incidence function is used

R0 =
β(N̄)

d + γ + δ
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Analysis with β = βsw

▶ With β = βsw , there are 2 sub-models
▶ Case I β(N) = β0N/A; 3 equilibria (i⋆, n⋆) in [0, 1]2:
▶ the origin, always unstable
▶ the ESMP (0, 1), GAS when R0 < 1
▶ a unique EE that exists and is LAS when R0 > 1

▶ Case II β(N) = β0. We have 4 equilibria (i⋆, n⋆):
▶ the origin, always unstable
▶ the ESMP, GAS when R0 < 1
▶ a unique EE that exists and is LAS when R0 > 1
▶ an extinction PE that exists when β ≥ b + γ + δ and is LAS iff, i.e., when R0 > 1

but the EE does not exist
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Detailed Analysis

▶ Let a = A/N̄
▶ If a > 1, all equilibria are below the switching point and the model reduces to Case I
(model without saturation)
▶ If a < 1, there is a single ESMP (as well as the unstable trivial equilibrium) and there
is a unique EE which is the EE of Case I iff

a > 1 − 1
k

(
1 − d + γ + δ

β0

)
and the EE of Case II otherwise
▶ The model with switch does not have the extinction PE of Case II
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R0 in the Model with Switch

▶ In the model with switch

R0 =
β0

d + γ + δ

1
max(a, 1)
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R0 in the Model with Differentiable Saturation

▶ In the model with differentiable saturation (10)

R0 =
β0

d + γ + δ

1
a+ 1

▶ We have the trivial PE (unstable), the ESMP (GAS when R0 < 1) and a unique EE
that exists and is LAS when R0 > 1
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Main Differences Between the Models

▶ The main difference between the models is quantitative: the point where R0 < 1
changes; this reflects that βsm < βsw
▶ Both models predict the eradication of the disease for a large region of the parameter
space and exclude the possibility of extinction that the classical model with standard
incidence allows
▶ Also, in both cases, the EE is such that

lim
R0→∞

i⋆ = min(k, 1)

i.e., for k < 1 (i.e., r < d + δ), the prevalence at the EE never approaches 100%
because the reproductive resilience of the population is so low that the population
becomes too small for the disease to spread to all, regardless of the value of R0
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The Basic Model

S ′ = bN − dS − F (S , I ) + γI (13a)
I ′ = F (S , I )− (d + δ + γ)I (13b)

▶ So the dynamics of the total population are

N ′ = (b − d)N − δI

and the system has EEs iff d < b < d + δ
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System in Proportions

▶ We switch to the system in proportions s = S/N and i = I/N. The total population
is not constant and we therefore consider

i ′ = f (i ,N)− (b + δ + γ)i + δi2 (14a)
N ′ = (b − d − δi)N (14b)

with
f (i ,N) =

F (S , I )

N

▶ We define
f (i , 0) = lim

N→0
f (i ,N)

and we assume that this limit exists (we exclude, for example, that F (αS , αI ) is
sub-linear in α near 0)
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Existence of Solutions

Theorem 1
The solutions of (14a)–(14b) in the positively invariant band

D = {(i ,N) : 0 ≤ i ≤ 1, N ≥ 0}

exist for all t > 0
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Density-Dependent Incidence

▶ The first case we consider is one with an incidence of the form we have already seen

F (S , I ,N) =

βSI if N ≤ N̂

β
SI

N
if N > N̂

(9)

where we normalize so that N̂ = 1
▶ We denote by DL the part of D where N ≤ 1 and by DH where N ≥ 1
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Explicit Solution in DH

Theorem 2
Suppose that at time t = τ ≥ 0, we have (iτ ,Nτ ) := (i(τ),N(τ)) ∈ DH . Then there
exists a potentially infinite interval I with left endpoint the point t = τ , such that for
all t ∈ I, we have (i(t),N(t)) ∈ DH with

i(t) =
Kiτ

Ψ(t − τ)
(3)

N(t) = Nτe
(b−d)(t−τ) exp

(
−δKiτ

∫ t

τ

du

Ψ(u − τ)

)
(4)

where K = β − (d + γ + δ) and

Ψ(u) = iτ (β − δ)(1 − e−Ku) + Ke−Ku

p. 31 – A Bit More on Changes in Incidence



Equilibria of the System
Theorem 3
Let

N∆ =
δ(d + δ + γ)

β(d + δ − b)

For all parameter values, the ESMP is

e0 := (i0,N0) = (0, 0)

▶ If b < d , there is no other PE and e0 is GAS
▶ If d < b, e0 is unstable
▶ If d < b < d + δ, then the presence of EE e⋆ = (i⋆,N⋆), i⋆ = (b − d)/δ depends

on
▶ If N∆ < 1, e⋆ = (i⋆,N∆) LAS
▶ If N∆ = 1, e⋆ = (i⋆,N) for all N ≥ 1
▶ If N∆ > 1, e⋆ does not exist

▶ If d + δ ≤ b, there is no EE
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Incidence with Exceeding Capacities

▶ Suppose

F (S , I ,N) =


β1

SI

N
if I ≤ Î

β1
SI

N
+ β2S(I − Î ) if I > Î

(15)

or, in proportions, f (i ,N) is of the form{
β1(1 − i)i if iN ≤ Î

β1(1 − i)i + β2(1 − i)(iN − Î ) if iN > Î
(16)
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The Regions in the Plane

▶ Here, the change does not occur for a value of N but along the hyperbola N = Î/i ,
for i ∈]0, 1], and we adapt the regions DL and DH
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Equilibria

▶ We potentially have 3 PEs

e0 = (0, 0) ē = (iLS , 0) e⋆ = (iN ,NHS(iN))

with

iLS = 1 − b + γ

β1 − δ
, (5)

iN =
b − d

δ
(6)

and

NHS(i) =
Î

i
+

b + γ

β2(1 − i)
− β1 − δ

β2
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Stability of the Equilibria

Theorem 4
The system (14a)–(14b) with incidence (16) has, potentially, 3 PEs, whose stability is
given by the following table, in which we use

E =
β1

b + δ + γ

and

SN =
(b + γ)(b − d)

d + δ − b
+

β2 Î (d + δ − b)

d − b
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Stability Table

e0 ē e⋆
b < d , E < 1 GAS Does not exist Does not exist
b < d , E > 1 Unstable GAS Does not exist
d < b < d + δ, iLS < iN , SN > 0 Unstable Unstable LAS
d < b < d + δ, iLS < iN , SN < 0 Unstable Unstable Unstable
d < b < d + δ, iLS > iN Unstable GAS Does not exist
d + δ < b Unstable Unstable Does not exist

▶ The SAG is obtained using an extension of Dulac’s Theorem taking into account the
existence, in a C 1 field, of a curve on which the field is C 0
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Periodic Solutions

▶ This system admits periodic solutions
▶ We consider the case

d < b < d + δ, iLS < iN , SN > 0 Unstable Unstable LAS
d < b < d + δ, iLS < iN , SN < 0 Unstable Unstable Unstable

Theorem 5
For all ε > 0 and all S0

N > 0, there exists S̄N ∈]− S0
N , 0[ such that the system

(14a)–(14b) with incidence (16) has a non-trivial periodic orbit in Bε(e⋆) (open ball
centered at e⋆ and radius ε) for SN = S̄N
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