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Two potential variations on the Kermack-McKendrick model

▶ Add vital dynamics, i.e., consider demographic processes

▶ Individuals do not die from the disease; after recovering, individuals are immune from
infection for some time

▶ We can of course combine both!
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Potential variations
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The model
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S ′ = b(N) + νR − dS − βSI (1a)
I ′ = βSI − (d + γ)I (1b)
R ′ = γI − (d + ν)R (1c)

Consider the initial value problem consisting in (1) to which
we adjoin initial conditions S(0) = S0 ≥ 0, I (0) = I0 ≥ 0 and
R(0) = R0 ≥ 0

Typically, we assume N0 = S0 + I0 + R0 > 0 to avoid a trivial
case
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Birth and death are relative

Remark that the notions of birth and death are relative to the population under
consideration

E.g., consider a model for human immunodeficiency virus (HIV) in an at-risk population
of intravenous drug users. Then
▶ birth is the moment the at-risk behaviour starts
▶ death is the moment the at-risk behaviour stops, whether from “real death” or

because the individual stops using drugs
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Choosing a form for demography

Before we proceed with the analysis proper, we must discuss the nature of the
assumptions on demography

To do this, we consider the behaviour of the total population

N(t) = S(t) + I (t) + R(t)
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Behaviour of the total population

Summing the equations in (1)
N ′ = b(N)− dN (2)

There are three common ways to define b(N) in (2)
1. b(N) = b

2. b(N) = bN

3. b(N) = bN − cN2

Case 3 leads to logistic dynamics of the total population and is not discussed here
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Case of a birth rate constant per capita
If b(N) = bN, then birth in (2) satisfies N ′/N = b; we say that birth is constant per
capita
In this case, (2) takes the form

N ′ = bN − dN = (b − d)N

with initial condition N(0) = N0

The solution to this scalar autonomous ODE is easy

N(t) = N0e
(b−d)t , t ≥ 0

Thus there are 3 possibilities:
▶ if b > d , N(t) → ∞, the total population explodes
▶ if b = d , N(t) ≡ N0, the total population remains constant
▶ if b < d , N(t) → 0, the total population collapses
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From now on, assume b(N) = b

▶ We want a reasonable case, we could therefore suppose that b(N) = d , which would
lead to a constant total population

▶ However, this is a little reductive, so we choose instead b(N) = b, which, we will see,
works as well even though it can initially be thought of as not being very realistic
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The model (for good this time)
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S ′ = b + νR − dS − βSI (3a)
I ′ = βSI − (d + γ)I (3b)
R ′ = γI − (d + ν)R (3c)

Consider the initial value problem consisting in (3) to which
we adjoin initial conditions S(0) = S0 ≥ 0, I (0) = I0 ≥ 0 and
R(0) = R0 ≥ 0

Typically, we assume N0 = S0 + I0 + R0 > 0 to avoid a trivial
case
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Is the system well-posed?

For an ODE epidemiological model

▶ Do solutions to (3) exist and are they unique?

▶ Is the positive cone invariant under the flow of (3)?

▶ Are solutions to (3) bounded? Some models have unbounded solutions but they are
rare and will need to be considered specifically
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Solutions exist and are unique

▶ The vector field is always C 1, implying that solutions exist and are unique

If we had instead considered an incidence of the form f (S , I ,N) = βSI/N and, say,
demography with b(N) = bN, then some discussion might have been needed if b < d
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Invariance of R3
+ under the flow (1)

Let us start by assuming that I (0) = I0 = 0. Then (3b) remains I ′ = 0, meaning that
the SR-plane (i.e., the set {I = 0}) is positively invariant under the flow of (3)

On that plane, (3) reduce to

S ′ = b + νR − dS (4a)
R ′ = −(d + ν)R (4b)

=⇒ a solution with I0 > 0 cannot enter the plane {I = 0}. Indeed, suppose that
I0 > 0 but ∃t⋆ > 0 such that I (t⋆) = 0. Then at (S(t⋆), I (t⋆) = 0,R(t⋆)), there are two
solutions to (3): the one we just generated as well as the one governed by (4)

This contradicts uniqueness of solutions to (3)
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Invariance of R3
+ under the flow (2)

We saw that I (t) > 0 if I (0) > 0

Suppose now that S = 0. Equation (3a) is then

S ′ = b + νR > 0

So if S(0) = S0 > 0, then S(t) > 0 for all t. If, on the other hand, S0 = 0, then
S(t) > 0 for t > 0 small; from what we just saw, this is then also true for all t > 0

We say the vector field points inward

=⇒ S cannot become zero

Do the same for R
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To summarise, for invariance

For simplicity, denote R⋆ = R \ {0}

▶ If (S(0), I (0),R(0)) ∈ R+ × R⋆
+ × R+, then ∀t > 0,

(S(t), I (t),R(t)) ∈ (R⋆
+)

3

▶ If (S(0), I (0),R(0)) ∈ R+ × {0} × R+, then ∀t ≥ 0,

(S(t), I (t),R(t)) ∈ R⋆
+ × {0} × R+

The model is therefore satisfactory in that it does not allow solutions to become
negative
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Remark – Know your audience

This reasoning has its place in an MSc of PhD manuscript: you need to demonstrate
that you know what to do and how to do it

In a research paper, this is not really necessary and actually often superfluous; the
statement it is easy to show that solutions exist uniquely and that the positive orthant
is invariant under the flow of the system is typically sufficient

(However, be sure to cover your bases: don’t show the proof in the paper but have it in
your notes.. it is easy to show can be a dangerous statement if it is not easy...)
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The total population is asymptotically constant

Since b(N) = b, the total population equation (2) takes the form

N ′ = b − dN

This equation has a unique equilbrium N⋆ = b/d and it is very easy to check that this
equilibrium is GAS: this is a scalar autonomous equation, so solutions are monotone;
they increase to N⋆ if N0 < N⋆ and decrease to N⋆ if N0 > N⋆

So we can work at the limit N⋆ where R = N⋆ − (S + I ) and thus drop the equation for
R
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Boundedness

It follows from what we just saw that the positive cone R3
+ is (positively) invariant

under the flow of (3)

Since N(t) → N⋆, we deduce that solutions of (3) are bounded
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Seeking equilibria

We seek S = S⋆, I = I ⋆,R = R⋆ such that

0 = b + νR − dS − βSI (5a)
0 = βSI − (d + γ)I (5b)
0 = γI − (d + ν)R (5c)

From (5b), either I ⋆ = 0 or βS − (d + γ) = 0, i.e., S⋆ = (d + γ)/β

When I ⋆ = 0, substituting I ⋆ = 0 into (5c) implies that R⋆ = 0 and, in turn,
substituting I ⋆ = R⋆ = 0 into (5c) gives S⋆ = b/d . This gives the disease-free
equilibrium (DFE)

E0 := (S⋆, I ⋆,R⋆) =

(
b

d
, 0, 0

)
(6)

We return to S⋆ = (d + γ)/β in a while
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Classic method for computing R0

R0 is the surface in parameter space where the DFE loses its LAS

To find R0, we therefore study the LAS of the DFE

In an arbitrary (S , I ,R), the Jacobian matrix of (3) takes the form

J(S,I ,R) =

−d − βI −βS ν
βI βS − (d + γ) 0
0 γ −(d + ν)

 (7)
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The LAS of the DFE depends on the sign of the real parts of the eigenvalues of (7) at
that equilibrium point, so we evaluate

JE0 =

−d −βS⋆ ν
0 βS⋆ − (d + γ) 0
0 γ −(d + ν)

 (8)

Block upper triangular matrix =⇒ eigenvalues are −d < 0, −(d + ν) < 0 and
βS⋆ − (d + γ)

=⇒ LAS of the DFE determined by sign of βS⋆ − (d + γ)
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Sign of βS⋆ − (d + γ)

Recall that at the DFE (6), S⋆ = b/d , so

sign(βS⋆ − (d + γ)) = sign
(
β
b

d
− (d + γ)

)
So the DFE is LAS if

β
b

d
< d + γ ⇐⇒ β

d + γ

b

d
< 1

Denote
R0 =

β

d + γ

b

d
(9)

(We sometimes emphasise that b/d = N⋆, the total population, and thus write
R0 = βN⋆/(d + γ))
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Seeking equilibria (2)

Now consider the second EP where S⋆ = (d + γ)/β = N⋆/R0

Write (5c) as R⋆ = γI ⋆/(d + ν)

Since S⋆ + I ⋆ + R⋆ = N⋆, this means that

N⋆ − S⋆ − I ⋆ = γI ⋆/(d + ν)

so substituting S⋆ = N⋆/R0,(
1 +

γ

d + ν

)
I ⋆ =

(
1 − 1

R0

)
N⋆

So finally

I ⋆ =

(
1 − 1

R0

)
d + ν

d + ν + γ
N⋆
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The EEP

The endemic equilibrium (EEP) of (3) is

E⋆ := (S⋆, I ⋆,R⋆) = (
1
R0

N⋆,

(
1 − 1

R0

)
d + ν

d + ν + γ
N⋆,N⋆ − (S⋆ + I ⋆)

)
(10)

Remark that E⋆ is not biologically relevant when R0 ≤ 1
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Theorem 1
Let the basic reproduction number be

R0 =
β

d + γ
N⋆ (9)

and consider the EP of (3): the DFE

E0 =

(
b

d
, 0, 0

)
(6)

and the EEP

E⋆ =

(
1
R0

N⋆,

(
1 − 1

R0

)
d + ν

d + ν + γ
N⋆,N⋆ − (S⋆ + I ⋆)

)
(10)

▶ If R0 < 1, then E0 is LAS and E⋆ is not biologically relevant
▶ If R0 > 1, then E0 is unstable and E⋆ is biologically relevant
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As you can probably guess, if R0 > 1, then E⋆ is not only biologically relevant but
actually also LAS

Recall the Jacobian

J(S,I ,R) =

−d − βI −βS ν
βI βS − (d + γ) 0
0 γ −(d + ν)

 (7)

=

−βI −βS ν
βI βS − γ 0
0 γ −ν

− dI

From this, we get that −d is an eigenvalue of J
▶ there is a theorem that tells us that if λ ∈ σ(M), then λ+ k ∈ σ(M + kI)

(σ(M) is the spectrum of M, the set of eigenvalues of M)
▶ the first matrix on the second line has all column sums zero so has a zero

eigenvalue
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We could continue and after some blood, sweat and tears, get that JE⋆ has its
eigenvalues with negative real parts when E⋆ is biologically relevant, i.e., when R0 > 1

With even more blood, sweat and tears, we can actually show that the result is global

We express that on the next slide
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Theorem 2
Let the basic reproduction number be defined by (9) and consider the DFE (6) and the
EEP (10)

▶ If R0 < 1, then E0 is globally asymptotically stable (GAS) and E⋆ is not
biologically relevant

▶ If R0 > 1, then E0 is unstable and E⋆ is GAS

In other words
▶ when R0 < 1, then all solutions go to the DFE, the disease goes extinct
▶ when R0 > 1, then all solutions go to the EEP, the disease becomes endemic
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library(deSolve)
rhs_SIRS <- function(t, x, p) {

with(as.list(c(x, p)), {
dS = b + nu * R - d * S - beta * S * I
dI = beta * S * I - (d + gamma) * I
dR = gamma * I - (d + nu) * R
return(list(c(dS, dI, dR)))

})
}
# Initial conditions
N0 = 1000
I0 = 1
R0 = 0
IC = c(S = N0-(I0+R0), I = I0, R = R0)
# "Known" parametres
d = 1/(80*365.25)
b = N0 * d
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gamma = 1/14
nu = 1/365.25
# Set beta s.t. R_0 = 1.5
R_0 = 1.5
beta = R_0 * (d + gamma) / (N0-I0-R0)
params = list(b = b, d = d, gamma = gamma, beta = beta, nu = nu)
times = seq(0, 500, 1)
# Call the numerical integrator
sol_SIRS <- ode(y = IC, times = times, func = rhs_SIRS,

parms = params, method = "ode45")
# Plot the result
plot(sol_SIRS[,"time"], sol_SIRS[,"I"],

type = "l", lwd = 2,
xlab = "Time (days)", ylab = "Prevalence")
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I just did ...

What I advise not to do: illustrate a mathematical result without adding anything to
the result itself

Let us make things a bit better. See the code
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We could continue, but with a model this simple, there is little more to do: the 3
parameters of the system are combined within R0 and the latter summarises the
dynamics well

We are going to show something important: the bifurcation diagram

We saw that when R0 < 1, I → 0, whereas when R0 > 1, I → (1 − 1/R0)N. Let us
represent this (code)
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An SIRS model with vaccination

Take SIRS model (3) and assume the following

▶ Vaccination takes newborn individuals and moves them directly into the removed
compartment, without them becoming infected/infectious

▶ A fraction p is vaccinated at birth
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The model

S
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S ′ = (1 − p)b + νR − dS − βSI (11a)
I ′ = βSI − (d + γ)I (11b)
R ′ = bp + γI − (d + ν)R (11c)

Consider the initial value problem consisting in (11) to which
we adjoin initial conditions S(0) = S0 ≥ 0, I (0) = I0 ≥ 0 and
R(0) = R0 ≥ 0

Typically, we assume N0 = S0 + I0 + R0 > 0 to avoid a trivial
case
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This modification doesn’t change much

Equation (2) for the total population is unchanged

The Jacobian (7) at arbitrary point is also unchanged

The DFE is affected, though; as a consequence, so is the reproduction number
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The DFE for the SIRS vaccination model
Considering (11) at equilibrium and substituting I ⋆ = 0 into this system gives

0 = (1 − p)b + νR⋆ − dS⋆

0 = bp − (d + ν)R⋆

which we rewrite as the linear system(
d −ν
0 d + ν

)(
S⋆

R⋆

)
=

(
(1 − p)b

bp

)
Thus (

S⋆

R⋆

)
=

1
d(d + ν)

(
d + ν ν

0 d

)(
(1 − p)b

pb

)
=

1
d(d + ν)

(
(d + ν)(1 − p)b + pbν

pbd

)
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As a consequence, the DFE takes the form

E v
0 := (S⋆, I ⋆,R⋆) =

((
1 − p +

pν

d + ν

)
N⋆, 0,

pd

d + ν
N⋆

)
(12)

Substituting (12) into the eigenvalue that determines stability of the DFE,
βS⋆ − (d + γ), we get

βS⋆ − (d + γ) < 0 ⇐⇒ β

d + γ
S⋆ < 1

⇐⇒ β

d + γ

(
1 − p +

pν

d + ν

)
N⋆ < 1

So we define

Rv
0 =

β

d + γ

(
1 − p +

pν

d + ν

)
N⋆ (13)
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Herd immunity

Therefore
▶ Rv

0 < R0 if p > 0
▶ To control the disease, Rv must take a value less than 1, i.e.,

Rv < 1 ⇐⇒ p > 1 − 1
R0

(14)

By vaccinating a fraction p > 1 − 1/R0 of newborns, we thus are in a situation where
the disease is eventually eradicated

This is herd immunity (bis repetita)
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Incubation periods

▶ SIS and SIR: progression from S to I is instantaneous

▶ Several incubation periods:

Disease Incubation period
Yersinia Pestis 2-6 days
Ebola haemorrhagic fever (HF) 2-21 days
Marburg HF 5-10 days
Lassa fever 1-3 weeks
Tse-tse weeks–months
HIV/AIDS months–years
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Hypotheses

▶ There is demography
▶ New individuals are born at a constant rate b

▶ There is no vertical transmssion: all “newborns” are susceptible
▶ The disease is non lethal, it causes no additional mortality
▶ New infections occur at the rate f (S , I ,N)

▶ There is a period of incubation for the disease
▶ There is a period of time after recovery during which the disease confers immunity

to reinfection (immune period)
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SLIRS

S

L

I

R

b
dS

dL

dI

dR

f (S , I ,N)

εL

γI

ν
R

The model is as follows:

S ′ = b + νR − dS − f (S , I ,N) (15a)
L ′ = f (S , I ,N)− (d + ε)L (15b)
I ′ = εL− (d + γ)I (15c)
R ′ = γI − (d + ν)R (15d)

Meaning of the parameters:
▶ 1/ε average duration of the incubation period
▶ 1/γ average duration of infectious period
▶ 1/ν average duration of immune period
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The basic reproduction number R0

Used frequently in epidemiology (not only math epi)

Definition 3 (R0)

The basic reproduction number R0 is the average number of secondary cases generated
by the introduction of an infectious individual in a wholly susceptible population

▶ If R0 < 1, then on average, each infectious individual infects less than one other
person, so the epidemic has chances of dying out

▶ If R0 > 1, then on average, each infectious individual infects more than one other
person and the disease can become established in the population (or there will be a
major epidemic)
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Computation of R0

Mathematically, R0 is a bifurcation parameter aggregating some of the model
parameters and such that the disease free equilibrium (DFE) loses its local asymptotic
stability when R0 = 1 is crossed from left to right

▶ As a consequence, R0 is found by considering the spectrum of the Jacobian matrix
of the system evaluated at the DFE

▶ The matrix quickly becomes hard to deal with (size and absence of “pattern”) and
the form obtained is not unique, which is annoying when trying to interpret R0

p. 46 – Endemic SIRS-type models with demography



Preliminary setup of PvdD & Watmough 2002
x = (x1, . . . , xn)

T , xi ≥ 0, with the first m < n compartments the infected ones

Xs the set of all disease free states:

Xs = {x ≥ 0|xi = 0, i = 1, . . . ,m}

Distinguish new infections from all other changes in population
▶ Fi (x) rate of appearance of new infections in compartment i
▶ V+

i (x) rate of transfer of individuals into compartment i by all other means
▶ V−

i (x) rate of transfer of individuals out of compartment i

Assume each function continuously differentiable at least twice in each variable

x ′i = fi (x) = Fi (x)− Vi (x), i = 1, . . . , n

where Vi = V−
i − V+

i
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Some assumptions

▶ (A1) If x ≥ 0, then Fi ,V
+
i ,V−

i ≥ 0 for i = 1, . . . , n

Since each function represents a directed transfer of individuals, all are non-negative

▶ (A2) If xi = 0 then V−
i = 0. In particular, if x ∈ Xs , then V−

i = 0 for i = 1, . . . ,m

If a compartment is empty, there can be no transfer of individuals out of the
compartment by death, infection, nor any other means
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▶ (A3) Fi = 0 if i > m

The incidence of infection for uninfected compartments is zero

▶ A4 If x ∈ Xs then Fi (x) = 0 and V+
i (x) = 0 for i = 1, . . . ,m

Assume that if the population is free of disease then the population will remain free of
disease; i.e., there is no (density independent) immigration of infectives
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One last assumption for the road

Let x0 be a DFE of the system, i.e., a (locally asymptotically) stable equilibrium
solution of the disease free model, i.e., the system restricted to Xs . We need not
assume that the model has a unique DFE

Let Df (x0) be the Jacobian matrix [∂fi/∂xj ]. Some derivatives are one sided, since x0
is on the domain boundary

(A5) If F (x) is set to zero, then all eigenvalues of Df (x0) have negative real parts

Note: if the method ever fails to work, it is usually with (A5) that lies the problem
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Stability of the DFE as function of R0

Theorem 4
Suppose the DFE exists. Let then

R0 = ρ(FV−1)

with matrices F and V obtained as indicated. Assume conditions (A1) through (A5)
hold. Then
▶ if R0 < 1, then the DFE is LAS
▶ if R0 > 1, the DFE is unstable

Important to stress local nature of stability that is deduced from this result. We will see
later that even when R0 < 1, there can be several positive equilibria
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Direction of the bifurcation at R0 = 1

µ bifurcation parameter s.t. R0 < 1 for µ < 0 and R0 > 1 for µ > 0 and x0 DFE for
all values of µ and consider the system

x ′ = f (x , µ) (16)

Write
Dx f (x0, 0) = D(F(x0)− V(x0))|R0=1

as block matrix

DF(x0) =

(
F 0
0 0

)
, DV(x0) =

(
V 0
J3 J4

)
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Write [αℓk ], ℓ = m + 1, . . . , n, k = 1, . . . ,m the (ℓ−m, k) entry of −J−1
4 J3 and let v

and w be left and right eigenvectors of Dx f (x0, 0) s.t. vw = 1

Let

a =
m∑

i ,j ,k=1

viwjwk

(
1
2

∂2fi
∂xj∂xk

(x0, 0) +
n∑

ℓ=m+1

αℓk
∂2fi

∂xj∂xℓ
(x0, 0)

)
(17)

b = vDxµf (x0, 0)w =
n∑

i ,j=1

viwj
∂2fi
∂xj∂µ

(x0, 0) (18)
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Theorem 5
Consider model (16) with f (x , µ) satisfying conditions (A1)–(A5) and µ as described
above

Assume that the zero eigenvalue of Dx f (x0, 0) is simple

Define a and b by (17) and (18); assume that b ̸= 0. Then ∃δ > 0 s.t.
▶ if a < 0, then there are LAS endemic equilibria near x0 for 0 < µ < δ

▶ if a > 0, then there are unstable endemic equilibria near x0 for −δ < µ < 0
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Example of the SLIRS model (15)

Variation of the infected variables in (15) are described by

L ′ = f (S , I ,N)− (ε+ d)L

I ′ = εL− (d + γ)I

Write

I ′ =

(
L
I

)′
=

(
f (S , I ,N)

0

)
−
(

(ε+ d)L
(d + γ)I − εL

)
=: F − V (19)
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Denote

f ⋆
L :=

∂

∂L
f

∣∣∣∣
(S,I ,R)=E0

f ⋆
I :=

∂

∂I
f

∣∣∣∣
(S,I ,R)=E0

the values of the partials of the incidence function at the DFE E0

Compute the Jacobian matrices of vectors F and V at the DFE E0

F =

(
f ⋆
L f ⋆

I

0 0

)
and V =

(
ε+ d 0
−ε d + γ

)
(20)
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Thus

V−1 =
1

(d + ε)(d + γ)

(
d + γ 0
ε d + ε

)

Also, in the case N is constant, ∂f /∂L = 0 and thus

FV−1 =
f ⋆
I

(d + ε)(d + γ)

(
ε d + ε
0 0

)

As a consequence,

R0 = ε
f ⋆
I

(d + ε)(d + γ)
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Theorem 6
Let

R0 =
εf ⋆

I

(d + ε)(d + γ)
(21)

Then
▶ if R0 < 1, the DFE is LAS
▶ if R0 > 1, the DFE is unstable

It is important here to stress that the result we obtain concerns the local asymptotic
stability. We see later that even when R0 < 1, there can be several locally
asymptotically stable equilibria
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Application

The DFE is
(S̄ , L̄, Ī , R̄) = (N, 0, 0, 0)

▶ Mass action incidence (frequency-dependent contacts):

f ⋆
I = βS̄ ⇒ R0 =

ϵβN

(ϵ+ d)(γ + d)

▶ Standard incidence (proportion-dependent contacts):

f ⋆
I =

βS̄

N
⇒ R0 =

ϵβ

(ϵ+ d)(γ + d)
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Links between SLIRS-type models

S ′ = b + νR − dS − f (S , I ,N)

L ′ = f (S , I ,N)− (d + ε)L

I ′ = εL− (d + γ)I

R ′ = γI − (d + ν)R

SLIR SLIRS where ν = 0
SLIS Limit of SLIRS when ν → ∞
SLI SLIR where γ = 0
SIRS Limit of SLIRS when ε → ∞
SIR SIRS where ν = 0
SIS Limit of SIRS when ν → ∞

Limit SLIS when ε → ∞
SI SIS where ν = 0
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Values of R0

(S̄ , Ī , N̄) values of S , I and N at DFE. Denote f̄I = ∂f /∂I (S̄ , Ī , N̄).

SLIRS εf̄I
(d+ε)(d+γ)

SLIR εf̄I
(d+ε)(d+γ)

SLIS εf̄I
(d+ε)(d+γ)

SLI εf̄I
(d+ε)(d+γ)

SIRS εf̄I
d+γ

SIR f̄I
d+γ

SIS f̄I
d+γ

SI f̄I
d+γ
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Endemic SIRS-type models with demography
The SIRS model(s)
Mathematical analysis of the SIRS model
Some numerics with the SIRS model
Herd immunity in the SIRS model
SLIRS model with constant population
Computing R0 more efficiently
A better vaccination model?





SLIRS with vaccination

S I R

V

b

dS dI dR

dV

βSI/N

ϕS

φV σ
β
V
I/
N

γI

νR

p. 63 – Endemic SIRS-type models with demography



The usual situation
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What can happen with vaccination – Backward bifurcation
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Endemic SIRS-type models with demography

What if there’s another guest at the party?

Last remarks



What if there’s another guest at the party?
Two Ross-Macdonald-type models
A little complexification of Ross-Macdonald
A model for cholera
A model for zoonotic transmission of waterborne disease



See, e.g., Simoy & Aparicio, Ross-Macdonald models: Which one should we use?, Acta
Tropica (2020)

Ross introduced the model in 1911. Later “tweaked” by Macdonald to include mosquito
latency period

Here, I show a version in the paper cited, with some notation changed
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SH IH RH

SV IV

βH IV
SH
H γH IH

βVSV
IH
H

bH

bV

dHSH dH IH dHRH

dVSV dV IV
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Reproduction number

R0 =
βHβV

(γH + γV )dV

V ⋆

H⋆
(22)

where H⋆ and V ⋆ are the total host and vector populations, respectively
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SH LH IH RH

SV LV IV

βH IV
SH
H εHLH γH IH

βVSV
IH
H

εV LV

bH

bV

dHSH dHLH dH IH dHRH

dVSV dV LV dV IV
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Reproduction number

R0 =
βHβV

(γH + γV )dV

εV
dV + εV

εH
dH + εH

V ⋆

H⋆
(23)

where H⋆ and V ⋆ are the total host and vector populations, respectively

Here
fX =

εX
dX + εX

are the fractions of latent individuals (of type X = {V ,H}) who survive the latency
period
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What if there’s another guest at the party?
Two Ross-Macdonald-type models
A little complexification of Ross-Macdonald
A model for cholera
A model for zoonotic transmission of waterborne disease



Recall this guy?

SH IH RH

SV IV

βH IV
SH
H γH IH

βVSV
IH
H

bH

bV

dHSH dH IH dHRH

dVSV dV IV
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Let us add a few arrows

SH IH RH

SV IV

ΦH γH IH

ΦV

ρH IH

νHRH

bH

bV

dHSH dH IH dHRH

dVSV dV IV
p. 72 – What if there’s another guest at the party?



Arino, Ducrot & Zongo, A metapopulation model for malaria with transmission-blocking
partial immunity in hosts, Journal of Mathematical Biology (2012)

Incidence functions take the form

ΦH = bH(H,V )σVH
IV
V

and

ΦV = bV (H,V )

(
σHV

IH
H

+ σ̂HV
RH

H

)
where bH and bV are numbers per unit time of mosquito bites a human has and the
number of humans a mosquito bites, respectively
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Parameters of the incidence function

▶ σHV probability of transmission of the parasite (in gametocyte form) from an
infectious human to a susceptible mosquito

▶ σ̂HV probability of transmission of the parasite (in gametocyte form) from a
semi-immune human to a susceptible mosquito

▶ σVH probability of transmission of the parasite (in sporozoite form) from an
infectious mosquito to a susceptible human

Additional parameter that can be factored in (all per unit time)
▶ aH maximum number of mosquito bites a human can receive
▶ aV number of times one mosquito would “want to” bite humans
▶ a average number of bites given to humans by each mosquito
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People to read for malaria models (IMOBO)

See also the work of

▶ Gideon Ngwa at the University of Buea

▶ Nakul Chitnis at the Swiss Tropical and Public Health Institute

Many others...
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More complex models may be needed for malaria

Timing of processes is critical in malaria

Plasmodium life cycle in the mosquito is commensurate with mosquito lifetime

Need models that are able to account for that, because ODEs are not really good at
this (see beginning of Stochastic systems lecture)

Mathematics becomes more complicated
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What if there’s another guest at the party?
Two Ross-Macdonald-type models
A little complexification of Ross-Macdonald
A model for cholera
A model for zoonotic transmission of waterborne disease





Codeço’s model

S I

B

dHH

dHS γI

bBB dBB

β B
K+B S

ζI

S ′ = dH(H − S)− β
B

K + B
S (24a)

I ′ = β
B

K + B
S − γI (24b)

B ′ = (bB − dB)B + ζI (24c)

K concentration of cholera in water giving
50% chance of catching it

Note that the dashed arrow from I to B is not a flow: individuals do not convert into
vibrio cholerae
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What if there’s another guest at the party?
Two Ross-Macdonald-type models
A little complexification of Ross-Macdonald
A model for cholera
A model for zoonotic transmission of waterborne disease





Zoonotic transmission of waterborne disease

Zoonoses are animal diseases that are transmitted to humans

Model here used for instance to model Giardia transmission from possums to humans
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Susceptible humans Infectious humans

Susceptible animals Infectious animals

Live oo/cysts in water

P2P transmission

conversion of oo/cysts to infection

recovery

A2A transmission

recovery

Death of oo/cysts in water

pick up rate

deposit rate
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SH IH

SA IA

W

βH

ρ

γH IH

βA

γAIA

µW

η

αI
A

p. 82 – What if there’s another guest at the party?



The full model

SA
′ = −βASAIA + γAIA (25a)

IA
′ = βASAIA − γAIA (25b)

W ′ = αIA − ηW (SH + IH)− µW (25c)
SH

′ = −ρηWSH − βHSH IH + γH IH (25d)
IH

′ = ρηWSH + βHSH IH − γH IH (25e)

Considered with NA = SA + IA and NH = SH + IH constant
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Simplified model

Because NA and NH are constant, (25) can be simplified:

IA
′ = βANAIA − γAIA − βAI

2
A (26a)

W ′ = αIA − ηWNH − µW (26b)

IH
′ = ρηW (NH − IH) + βHNH IH − γH IH − βH I

2
H (26c)

Three EP: DFE (0, 0, 0); endemic disease in humans because of H2H transmission;
endemic in both H and A because of W
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Three EP: DFE (0, 0, 0); endemic disease in humans because of H2H transmission;
endemic in both H and A because of W

Let
R0A =

βA
γA

NA and R0H =
βH
γH

NH (27)

▶ DFE LAS if R0A < 1 and R0H < 1, unstable if R0A > 1 or R0H > 1
▶ If R0H > 1 and R0A < 1, (26) goes to EP with endemicity only in humans
▶ Endemic EP with both A and H requires R0A > 1 and R0H < 1

Note that proof is not global
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Endemic SIRS-type models with demography

What if there’s another guest at the party?

Last remarks



To simplify or not to simplify?

▶ In the KMK epidemic model (??) and the SIRS endemic model (3), since the total
population is constant or asymptotically constant, it is possible to omit one of the state
variables since N⋆ = S + I + R

▶ We often use R = N⋆ − S − I

▶ This can greatly simplify some computations

▶ Whether to do it or not is a matter of preference
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To normalise or not to normalise?

▶ In the KMK epidemic model (??) and the SIRS endemic model (3), since the total
population is constant or asymptotically constant, it is possible to normalise to N = 1

▶ This can greatly simplify some computations

▶ However, I am not a big fan: it is important to always have the “sizes” of objects in
mind

▶ If you do normalise, at least for a paper destined to mathematical biology, always do
a “return to biology”, i.e., interpret your results in a biological light, which often implies
to return to original values
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Where we are

▶ An epidemic SIR model (the KMK SIR) in which the presence or absence of an
epidemic wave is characterised by the value of R0

▶ The KMK SIR has explicit solutions (in some sense). This is an exception!

▶ An endemic SIRS model in which the threshold R0 = 1 is such that, when R0 < 1,
the disease goes extinct, whereas when R0 > 1, the disease becomes established in the
population

▶ Some simple variations on these models

▶ A few models for vector-borne or water-borne diseases
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Global properties of the SLIRS model

p. 89 – Last remarks



SLIRS - Mukherjee, Chattopadhyay Tapaswi

SLIRS (SEIRS) with constant birth d , per capita death d and incidence function

f (S , I ,N) = βSqI p

They establish uniform boundedness, then define

V (S ,E , I ) =
1
2
(
(S − S⋆)2 + (E − E ⋆)2 + (I − I ⋆)2

)
Mukherjee, Chattopadhyay Tapaswi, Math. Comput. Modelling 18 (1993)
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Matrix A and theorem

Defining

A =

 βI ∗pg(S) + d + ν 1
2(ν − βI ∗pg(S)) 1

2(βS
qh(I ) + ν)

1
2(ν − βI ∗pg(S)) ε+ d −1

2(βS
qh(I ) + ε)

1
2(βS

qh(I ) + ν) −1
2(βS

qh(I ) + ε) γ + d


with functions g and h such that

Sq − S∗q = (S − S⋆)g(S), I p − I ∗p = (I − I ⋆)h(I )

Theorem: The function V is such that V ′ < 0 if

▶ 4(βI ∗pg(S) + d + ν)(ε+ d) > (ν − βI ∗pg(S))2

▶ detA > 0
Clearly, hard to check in practice, so the system is studied in other ways.
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Li Muldowney (1995)

Li Muldowney (1995)
S ′ = d − βSqI p − dS

L′ = βSqI p − (ε+ d)L

I ′ = εL− (γ + d)I

R ′ = γI − dR

p. 92 – Last remarks

https://doi.org/10.1016/0025-5564(95)92756-5


Li, Muldowney PvdD - CAMQ (1999)

SLIRS (SEIRS) with incidence

f (S , I ,N) = βg(I )S

where g such that g(0) = 0, g(I ) > 0 for I ∈ (0, 1] and g ∈ C 1(0, 1]. Normalize total
population to S + E + I + R = 1. Additional assumption on g :
(H) c = limI→0+

g(I )
I ≤ +∞; when 0 < c < +∞, g(I ) ≤ cI for small I
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Basic reproduction number

We have
∂f

∂I
= β

∂g

∂I

Since
∂g

∂I
= limI→0+

g(I )

I
= c ,

R0 =
cβε

(d + ε)(d + γ)
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Uniform persistence theorem

Theorem: If g(I ) satisfies (H), then the system with incidence f (S , I ,N) = βSqI p is
uniformly persistent ⇐⇒ R0 > 1.
The system is uniformly persistent if there exists 0 < ϵ0 < 1 such that any solution

(S(t),E (t), I (t),R(t)) of SEIRS with initial conditions (S(0),E (0), I (0),R(0)) ∈
◦
Γ

satisfies
lim inft→∞ S(t) ≥ ϵ0, lim inft→∞ E (t) ≥ ϵ0
lim inft→∞ I (t) ≥ ϵ0, lim inft→∞ R(t) ≥ ϵ0
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No closed orbits theorem

Theorem: Suppose the incidence f (S , I ,N) = βSqI p satisfies (H) and

|g ′(I )|I ≤ g(I ) for I ∈ (0, 1]

Suppose additionally that R0 > 1 and one of the conditions

is satisfied, where
η0 = min

I∈[ϵ0,1]
g(I ) > 0

and ϵ0 is as previously defined. Then there is no rectifiable closed curve invariant under
the SEIRS flow. Moreover, every semi-trajectory in Γ converges to an equilibrium.
The proof uses compound matrices (see later).
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Lyapunov function for SLIR and SLIS

Andrei Korobeinikov considers an SLIR with normalized constant population 1 and
vertical transmission:

S ′ = d − βSI − pdI − qdL− dS

L′ = βSI + pdI − (ε+ d − qd)L

I ′ = εL− (γ + d)I

▶ p proportion of newborns from I who are I at birth
▶ q proportion of newborns from L who are L at birth
▶ R does not influence the system dynamics, so is not shown
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Equilibria

- DFE: E0 = (1, 0, 0) - EE: E ⋆ = (S⋆, L⋆, I ⋆) with

S⋆ =
1
Rv

0
L⋆ =

d

ε+ d

(
1 − 1

Rv
0

)
I⋆ = dε

(ε+d)(γ+d)

(
1 − 1

Rv
0

)
whereRv

0 =
βε

(γ+d)(ε+d)−qd(ε+d)−pdε isthebasicreproductionnumberwithverticaltransmission.WehaveR0 =

Rv
0 iff p = q = 0. Also, Rv

0 = 1 when R0 = 1.
E ⋆ is biologically valid only when Rv

0 > 1.
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Lyapunov function

We use the function
V =

∑
ai (xi − x⋆i ln xi )

Theorem:
▶ If R0 > 1, then (??)-(??) has the GAS equilibrium E ⋆

▶ If R0 ≤ 1, then (??)-(??) has the DFE E0 GAS and E ⋆ is not biologically valid
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Compound matrices

p. 100 – Last remarks



The compound matrix method

- Extension of Dulac’s criterion to higher-dimensional systems - Useful to rule out
periodic orbits - Was very popular for a while, but main limitation: - Becomes difficult
to use when system dimension ≥ 4
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Fiedler reference

See Fiedler Special Matrices and Their Applications in Numerical Mathematics (2013)
for details. Let A = (aij), i = 1, . . . ,m, j = 1, . . . , n an m × n matrix and k an integer,
1 ≤ k ≤ min(m, n). Let M = {1, . . . ,m} and N = {1, . . . , n}, M(k) and N(k) the sets
of k-tuples of elements of M and N ordered lexicographically, respectively.
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k-th compound matrix

The k-th compound matrix A(k) of A is the C (m, k)× C (n, k) matrix, with rows
indexed by elements of M(k) and columns by elements of N(k), such that the element
A(k)(I , J), I ∈ M(k), J ∈ N(k) is the determinant detA(I , J). A(I , J) is the submatrix of
A consisting of rows in I and columns in J. Another interpretation of A(k) is as the
k-th exterior product of A.
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Additive compound matrix
Suppose A is an n × n matrix. The matrix (I + tA)(k) is a C (n, k)× C (n, k) matrix
whose elements are polynomials in t of degree at most k . Grouping monomials of the
same degree in t:

(I + tA)(k) = A(k,0) + tA(k,1) + · · ·+ tkA(k,k)

where the matrices A(k,s) do not depend on t. The matrix A(k,1) is the k-th additive
compound matrix of A and is denoted A[k]. It satisfies

A[k] = lim
h→0

(
1
h

(
(I + hA)(k) − I (k)

))
This can also be written as

A[k] = D+(I + hA)(k)|h=0

where D+ is the right derivative.
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Theorem for additive compound matrix

Theorem: Suppose A = (apq). Then, for I , J ∈ N(k)

A[k](I , J) =


∑

p∈I app if J = I

0 if |I ∩ J| ≤ k − 2
(−1)σapq if |I ∩ J| = k − 1

where p is the element of I \ (I ∩ J), q is the element of J \ (I ∩ J) and σ is the
number of elements of I ∩ J between p and q.
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Case k=2

When k = 2: Theorem: Suppose A = (aij). For all i = 1, . . . ,C (n, 2), let (i) = (i1, i2)
be the i-th element of the lexicographic order of pairs (i1, i2) of integers with
1 ≤ i1 < i2 ≤ n. Then the element (i , j) of A[2] is

aij =


ai1i1 + ai2i2 if (j) = (i)
(−1)r+sair js if exactly one element ir of (i) does not appear in (j) and js does not appear in (i)
0 if no element of (i) appears in (j)

where p is the element in I \ (I ∩ J), q is the element in J \ (I ∩ J) and σ is the number
of elements of I ∩ J between p and q.
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Example

Let

A2 =

(
a11 a12
a21 a22

)
, A3 =

a11 a12 a13
a21 a22 a23
a31 a32 a33



A4 =


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44


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Example continued

Then

A
[2]
2 = a11 + a22, A

[2]
3 =

a11 + a22 a23 −a13
a32 a11 + a33 a12
−a31 a21 a22 + a33


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Example continued 2

A
[2]
4 =



a11 + a22 a23 a24 −a13 −a14 0
a32 a11 + a33 a34 a12 0 −a14
a42 a43 a11 + a44 0 a12 a13
−a31 a21 0 a22 + a33 a34 −a24
−a41 0 a21 a43 a22 + a44 a23

0 −a41 a31 −a42 a32 a33 + a44


A
[3]
3 = a11 + a22 + a33

A
[3]
4 = ()

p. 109 – Last remarks



Theorem for compound matrices

Theorem: Let A,B be two n × n matrices. Then
▶ The number of nonzero off-diagonal elements of A[k] is C (n − 2, k − 1) times the

number of nonzero off-diagonal elements of A
▶ A[1] = A, A[n] = trA
▶ (A+ B)[k] = A[k] + B [k] (hence the name additive)
▶ Let S be a nonsingular n × n matrix. Then

(SAS)[k] = SkA[k](S−1)(k)
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Theorem for eigenvalues

Theorem: Let A be a real m ×m matrix. For A to have all eigenvalues with strictly
negative real parts, it is necessary and sufficient that
▶ the second additive compound matrix A[2] has all eigenvalues with strictly negative

real parts
▶ (−1)mdet(A) > 0
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Role in stability

Consider the differential equation
x ′ = f (x)

Theorem: A sufficient condition for a periodic orbit γ = {p(t) : 0 ≤ t ≤ ω} of
x ′ = f (x) to be asymptotically orbitally stable with asymptotic phase is that the linear
system

z ′(t) =

(
∂f [2]

∂x
(p(t))

)
z(t)

is asymptotically stable.
Li Muldowney (1995)

p. 112 – Last remarks



Global stability in metapopulations
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Remarks on global stability in metapopulations

- Unlike local analysis, there is no algorithm to systematically address this problem - It
is handled case by case. Two examples in the rest of this lecture - Some elements of
systematic global theory: work by Zhisheng Shuai and collaborators, mainly - The
question, as often: is global stability really important? It depends on the context of the
work...
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|P|-SLIRS model

Consider a particular case of the |P|-SLIRS system with constant birth

S ′
p = bp + νpRp − Φp − dpSp +

∑
q∈PmSpqSq

L′p = Φp − (εp + dp) Lp +
∑

q∈PmLpqLq

I ′p = εpLp − (γp + dp)Ip +
∑

q∈PmIpqIq

R ′
p = γpIp − (νp + dp)Rp +

∑
q∈PmRpqRq

and standard incidence
Φp = βp

SpIp
Np

Arino van den Driessche, Fields Inst. Commun. 48:1-13 (2006)
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Global stability theorem for |P|-SLIRS

Theorem: Compute R0 as explained earlier. If R0 < 1, then the DFE of the
|P|-SLIRS system is globally asymptotically stable.
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Proof for |P|-SLIRS

Since Sp ≤ Np for all t, it follows that Φp ≤ βpNpIp/Np = βpIp, and equation for Lp
gives the inequality

L′p ≤ βpIp − (εp + dp)Lp +
∑
q∈P

mLpqLq

To use a comparison theorem, define a linear system consisting of the equations for Lp
and Ip:

L′p = βpIp − (εp + dp)Lp +
∑
q∈P

mLpqLq

I ′p = εpLp − (γp + dp + δp)Ip +
∑
q∈P

mIpqIq
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Proof continued

- The linear system above has matrix F − V as its coefficient matrix, so (by arguments
in the proof of the R0 result of van den Driessche Watmough) satisfies lim

t→∞
Lp = 0

and lim
t→∞

Ip = 0 for R0 = ρ(FV−1) < 1 - Using a comparison theorem, these limits also
hold for the nonlinear subsystem - It follows by the same reasoning as before that
lim
t→∞

Rp = 0 and lim
t→∞

Sp = N⋆
p

Thus, when R0 < 1, the DFE is GAS, the disease dies out.
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|S||P|-SLIRS (multi-species)

Consider the system with total constant population, equal movement for all states and
irreducible

S ′
sp = dspNsp + νspRsp − Φsp − dspSsp +

∑
q∈PmspqSsq

L′sp = Φsp − (εsp + dsp)Lsp +
∑

q∈PmspqLsq

I ′sp = εspLsp − (γsp + dsp)Isp +
∑

q∈PmspqIsq

Rsp = γspIsp − (νsp + dsp)Rsp +
∑

q∈PmspqRsq

and standard incidence
Φsp =

∑
k∈S

βskp
SspIkp
Np

Arino et al., Math. Med. Biol. 22(2):129-142 (2005)
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Global stability theorem for |S||P|-SLIRS

Theorem: For the |S||P|-SLIRS model, define R0 as above. If R0 < 1, then the DFE
is GAS.
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Proof for |S||P|-SLIRS

To establish GAS of the DFE when R0 < 1, consider the non-autonomous system
consisting of the equations for Lsp, Isp, Rsp, where Lsp is written as

L′sp =
∑
j∈S

βsjp(Nsp − Lsp − Isp − Rsp)
Ijp
Njp

− (dsp + εsp)Lsp +
∑
q∈P

mspqLsq −
∑
q∈P

msqpLsp

where Ssp is replaced by Nsp − Lsp − Isp − Rsp, and Nsp solves

d

dt
Nsp =

∑
q∈P

mspqNsq
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Proof continued

By similar reasoning as for the DFE, we have

lim
t→∞

Nsp(t) = N⋆
sp > 0

Write the non-autonomous system as

x ′ = f (t, x)

where x is the 3|S||P|-dimensional vector of Lsp, Isp, Rsp. The DFE corresponds to
x = 0. Nsp(t) → N⋆

sp as t → ∞.
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Proof continued 2

Substitute the limit N⋆
sp for Nsp in the equation for Lsp:

L′sp =
∑
j∈S

βsjp(N
⋆
sp − Lsp − Isp − Rsp)

Ijp
N⋆
jp

− (dsp + εsp)Lsp +
∑
q∈P

mspqLsq

The non-autonomous system is asymptotically autonomous, with limiting system

x ′ = g(x)
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Proof continued 3

To show that 0 is GAS for the limiting system, consider the linear system

x ′ = Lx

where x is the 3|S||P|-dimensional vector of Lsp, Isp, Rsp. In L, replace Ssp/Njp by
N⋆
sp/N

⋆
jp. The equations for Isp and Rsp are not affected, while the equation for Lsp

becomes

L′sp =
∑
j∈S

βsjp
N∗
sp

N∗
jp

Ijp − (dsp + εsp)Lsp +
∑
q∈P

mspqLsq

Comparing the nonlinear and linear systems, g(x) ≤ Lx for all x ∈ R3|S||P|
+ .
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Proof continued 4

In the linear system, the equations for Lsp and Isp do not involve Rsp. Let x̃ be the part
of x corresponding to Esp and Isp, and L̃ the corresponding submatrix. The method
used for the DFE can be applied to prove stability of x̃ = 0 for the subsystem x̃ ′ = L̃x̃ ,
with L̃ = F − V . If R0 < 1, then x̃ = 0 is a stable equilibrium of the subsystem. When
x̃ = 0, the equation for Rs becomes

R ′
s = (Ms − Ds)Rs

with Rs = (Rs1, . . . ,Rs|P|)
T , Ds = diag(ds1, . . . , ds|P|).
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Proof continued 5

From previous results, −Ms is a singular M-matrix and −Ms + Ds is a nonsingular
M-matrix for all Ds . Thus, the equilibrium Rs = 0 of this linear system is stable.
Therefore, the equilibrium x = 0 of the linear system is stable when R0 < 1. Using a
standard comparison theorem, it follows that 0 is a GAS equilibrium of the limiting
system.
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Final conclusion

When R0 < 1, the linear system has a unique equilibrium (the DFE) since its
coefficient matrix F − V is nonsingular. Global stability follows from results on
asymptotically autonomous systems.
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