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Formulating group models

▶ Age-structured models ▶ Models incorporating social structure ▶ Models with
pathogen heterogeneity ▶ Models with immunological component
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Limitations of single population ODE models

▶ Basic ODEs assume all individuals in a compartment are roughly the same ▶
Individuals can spend differing times in a compartment, but they are all the same ▶ As
seen with COVID-19, different age groups are impacted differently
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Groups can be used for many things

▶ Groups allow to introduce structure in a population without using PDEs
▶ Age structure
▶ Social structure
▶ Pathogen heterogeneity
▶ Host heterogeneity (e.g., super spreaders)

▶ In this lecture, we do not consider spatial heterogeneity; this is done in Lecture 05 ▶
We start by considering a few examples
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Age-structured models

▶ ODEs are not the best way to incorporate structure such as age ▶ Will come back to
this in Lecture 09, but give one example here
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A multi-group SIS model with age structure

▶ Feng, Huang & C3 (2004) ▶ For i = 1, . . . , n different subgroups:(
∂

∂t
+

∂

∂a

)
Si = −µi (a)Si (t, a)− Λi (a, I (t, ·))Si (t, a) + γi (a)Ii (t, a)

(
∂

∂t
+

∂

∂a

)
Ii = −µi (a)Ii (t, a) + Λi (a, I (t, ·))Si (t, a)− γi (a)Ii (t, a)

where

Λi (a, I (·, t)) := Ki (a)Ii (a, t) +
n∑

j=1

∫ ω

0
Kij(a, s)Ij(s, t) ds
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Boundary and initial conditions
For i = 1, . . . , n:

Si (t, 0) =
∫ ω

0
bi (a)[Si (t, a) + (1 − qi )Ii (t, a)] da

Ii (t, 0) = qi

∫ ω

0
bi (a)Ii (t, a) da, 0 < q1 < 1

Si (0, a) = ψ(a)

Ii (0, a) = φ(a)

(qi fraction of newborns that is infected)
Basic reproduction number in group i = 1, . . . , n:

Ri =

∫ ω

0
bi (a) exp

(
−
∫ a

0
µi (τ)dτ

)
da
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Remarks

▶ Authors obtain some results in terms of global stability ▶ Need simplifications to
move forward ▶ No numerics, because numerics for such models are hard
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Going the ODE route

▶ ODEs are way less satisfactory but can be used as-is and are much easier numerically
▶ Caveat: ODE models with age structure are intrinsically wrong, since sojourn times
in an age group is exponentially distributed instead of Dirac distributed!
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Models incorporating social structure

▶ Example: TB in foreign-born population of Canada ▶ Varughese, Langlois-Klassen,
Long, & Li (2014) ▶ New immigrants to Canada come predominantly from countries in
which TB is very active ▶ People develop TB in the first few years of their presence in
Canada ▶ Want to investigate this, together with effect of various screening measures
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Models with pathogen heterogeneity

▶ Example: Importation of a new SARS-CoV-2 variant ▶ Arino, Boëlle, Milliken &
Portet (2021) ▶ Consider what happens when a new variant N arrives in a situation
where another variant O is already circulating
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Coupling is through the force of infection

▶ For now, we have discussed incidence functions f (S , I ,N) ▶ Here, we use a force of
infection ΦX , for X ∈ {O,N} ▶ Force of infection uses S outside of function: it is the
pressure that applies to S individuals to make them infected ▶ Of course, the two are
equivalent, but in some contexts, it makes sense to use this ▶ Here, for X ∈ {O,N}:

ΦX = βX (ηXLXC2 + ξX (DXC1 + DXC2) + UXC1 + UXC2)
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Adding more groups - Importation layer

▶ How can we evaluate how much importations contribute to propagation within a
location? ▶ If an individual arrives in a new location while bearing the disease, we put
them in a special group, the importation layer ▶ In importation layer, individuals make
contacts with others in the population, but they remain in the importation layer until
recovery or death
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Force of infection with importation layer

For X ∈ {O,N}:
ΦX = ΦXI

+ΦXI

where, for X ∈ {O,N} and Z ∈ {I ,C}:

ΦXZ
= βX (ηXLXZ2 + ξX (DXZ1 + DXZ2) + UXZ1 + UXZ2)
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Models with immunological component

▶ Global dynamics of a general class of multistage models for infectious diseases. Guo,
Li & Shuai (2012) ▶ Viruses such as HIV reside in the body for a very long time,
potentially for life ▶ Throughout the course of this residence, virus loads change and
with it symptoms and infectiousness
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Analysing group models

▶ For general considerations about a method, see Lu & Shuai (2010) ▶ Techniques use
combination of classical ODE stability theory, linear algebra and graph theory ▶ They
show GAS when R0 ≤ 1 and GAS under conditions when R0 > 1 ▶ Use Lyapunov
function L =

∑n
i=1 wi Ii for DFE when R0 ≤ 1 ▶ For EEP, use a Goh type Lyapunov

function:

V = τ1

∫ S

S∗

Φ(ξ)− Φ(S∗)

Φ(ξ)
dξ +

n∑
i=1

τi

∫ Ii

I∗i

ψ(ξ)− ψ(I ∗i )

ψ(ξ)
dξ

▶ Use Kirchhoff’s matrix tree theorem to show that V ′ is negative definite

p. 19 – Analysing group models



Simulating group models

▶ This is very similar to metapopulation models which are described in Practicum 02 ▶
The variant importation model simulations will be discussed in the stochastic lectures
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