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Spatial spread of an epidemic on a “road”

▶ SIS and SIR models

▶ Consider a road of length L

▶ S(x , t), I (x , t) and (when relevant) R(x , t) are the densities of individuals in the
different compartments at location x ∈ [0, L] at time t

▶ For simplicity, denote
∂

∂t
X (x , t) = Xt(x , t)
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The SIR model on the road

St(x , t) = −β(x , t)S(x , t)− dS(x , t) + dN(x) + λ1I (x , t) (1a)
It(x , t) = λ(x , t)S(x , t)− dI (x , t)− (γ1 + γ2)I (x , t) (1b)
Rt(x , t) = γ2I (x , t)− dR(x , t) (1c)

where the force of infection is

λ(x , t) =
1
N

∫ L

0
β(x , x ′)I (x , x ′)dx ′ (1d)

and the total population along the road is

N =

∫ L

0
N(x ′)dx ′ (1e)
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Take the SIS model as an example (γ2 = 0, γ1 = γ). Solve (1b) in terms of λ:

I (x , t) = exp

(
−
∫ t

0
λ(x , s)− (d + γ)tds

)
×
∫ t

0
λ(x , t ′)N(x)e

∫ t′
0 λ(x ,s)+(d+γ)t′dsdt ′

+ I (x , 0) exp
(
−
∫ t

0
λ(x , s)− (d + γ)tds

) (2)
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Substitute (2) into (1d)

λ(x , t) =

∫ L

0
β(x , x ′)n(x ′)

∫ t

0
λ(x ′, t ′)e−

∫ t
t′ λ(x

′,s)−(d+γ)(t−t′)dsdt ′dx ′

+

∫ L

0
β(x , x ′)i(x ′, 0)e−

∫ t
0 λ(x ′,s)−(d+γ)tdsdx ′

where n(x) = N(x)/N and i(x , t) = I (x , t)/N. Without demography (d = 0):

λ(x , t) =

∫ L

0
β(x , x ′)n(x ′)

∫ t

0
λ(x ′, t ′)e−

∫ t
t′ λ(x

′,s)−γ(t−t′)dsdt ′dx ′

+

∫ L

0
β(x , x ′)i(x ′, 0)e−

∫ t
0 λ(x ′,s)−γtdsdx ′
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Thus the problem is in the form

Bλ(x , t) = λ(x , t)

In both cases, B is a Hammerstein-type operator in x

▶ SIR case: B is a nonlinear Volterra operator in t ⇒existence and uniqueness of
solutions

▶ SIS case: B is not a nonlinear Volterra operator in t. However, it resembles one
and the authors establish existence and uniqueness of solutions
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In both cases, there is a travelling wave front then convergence to a steady state

In the SIS case

λ(x) = lim
t→∞

Bλ(x , t) = B∞λ(x) =

∫ L

0
β(x , x ′)n(x ′)

λ(x ′,∞)

λ(x ′,∞) + γ

which does not depend on t

They then discuss conditions s.t. this limit ̸= 0, by looking for values of z s.t.
B∞λ(x) = zλ(x) has a positive solution

Show there exists a threshold zthreshold = R0 s.t. λ(x) ≡ 0 if R0 < 1 and a positive
solution if R0 > 1
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Spatial spread of rabies with immunity

∂S

∂t
= (a− b)

(
1 − N

K

)
S + a⋆R − βSI (3a)

∂L

∂t
= βSI − σL−

(
b + (a− b)

N

K

)
L (3b)

∂I

∂t
= σL− αI − γI −

(
b + (a− b)

N

K

)
I + DI

∂2I

∂x2 (3c)

∂R

∂t
= γI + (a− a⋆)R +

(
b + (a− b)

N

K

)
R (3d)

where N = S + L+ I + R
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A model with vaccine efficacy and waning

▶ Exponential distribution of recovery times (rate γ)

▶ Susceptible individuals are vaccinated (number of vaccinated at time t is denoted
V (t))

▶ Vaccination wanes, a fraction P(t) of the vaccinated at time t = 0 remain
protected by the vaccine

▶ Vaccination is imperfect, 0 ≤ 1 − σ ≤ 1 is the vaccine efficacy
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Model structure

S I

V

(1 − α)dN

αdN

dS dI

dV

βSI/N

γI
ϕS

P
(t) σβ

VI
/N
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Parametres

▶ d > 0: mortality rate

▶ γ ≥ 0: recovery rate

▶ β > 0: infectiousness of the disease

▶ ϕ ≥ 0: vaccination rate of susceptible individuals

▶ α ∈ [0, 1): fraction of newborns vaccinates

▶ 0 ≤ 1 − σ ≤ 1: efficacy of the vaccine. From now on, assume 0 ≤ σ < 1
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▶ Disease transmission: standard incidence

▶ Vaccination of newborns

▶ Birth and death rate equal (⇒constant total population)
Assumptions on P : P(t) is a nonnegative and nonincreasing function with
P(0+) = 1, and such that

∫∞
0 P(u)du is positive and finite

Constant total population ⇒ S(t) = N − I (t)− V (t); further, we switch to
proportions: S , I and V represent the proportions in the population, and N = 1 (S
used in equations for conciseness)
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The SIS model with vaccination

dI (t)

dt
= β(S(t) + σV (t))I (t)− (d + γ)I (t) (4a)

V (t) = V0(t) +

∫ t

0
(ϕS(u) + αd)P(t − u)e−d(t−u)e−σβ

∫ t
u I (x)dxdu (4b)

▶ αd proportion of vaccinated newborns,
▶ ϕS(u) proportion of vaccinated susceptibles,
▶ P(t − u) fraction of the proportion vaccinated still in the V class t − u time units

after going in,
▶ e−d(t−u) fraction of the proportion vaccinated not dead due to natural causes,
▶ e−σβ

∫ t
u I (x)dx fraction of the proportion vaccinated not gone to the infective class.
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Obtaining the initial condition

Let v(t, τ) be the (density) proportion of individuals in vaccination class-age τ still
vaccinated at time t, then(

∂

∂t
+

∂

∂τ

)
v(t, τ) = −(σβI (t) + d + η(τ))v(t, τ) (5)

where V (t) =
∫∞
0 v(t, τ)dτ . η(τ) is the vaccine waning rate coefficient, with

proportion still in the vaccination class-age τ being P(τ) = exp
(
−
∫ τ
0 η(q)dq

)
. It is

assumed that P is a survival function

Inflow in class-age zero is
v(t, 0) = ϕS(t) + αd

and v(0, τ) ≥ 0 is assumed
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Integrating (5) along characteristics, dividing the integral for V (t) at t, substituting in
the solutions, and changing integration variables, we get

V0(t) = e−
∫ t
0 (σβI (x)+d)dx

∫ ∞

0
v(0, u)

P(t + u)

P(u)
du (6)

The ratio P(t + u)/P(u) = exp
(∫ t+u

u η(q)dq
)

is well defined for t + u ≥ u ≥ 0 and
bounded above by 1.

Since V (0) is finite, the integral in V0(t) converges, and thus V0(t) is nonnegative,
nonincreasing and limt→∞ V0(t) = 0
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Let
D = {(S , I ,V );S ≥ 0, I ≥ 0,V ≥ 0,S + I + V = 1}

Theorem 1
The set D is positively invariant under the flow of (4) with I (0) > 0, S(0) > 0
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With the assumed initial conditions in D, it can be shown that the system defined by
(4a) and (4b) is equivalent to the system defined by (4a) and

d

dt
V (t) =

d

dt
V0(t) + ϕS(t) + αd − (d + σβI (t))(V (t)− V0(t)) + Q(t) (7)

where to simplify notation, we denote

Q(t) =

∫ t

0
(ϕS(u) + αd)dt(P(t − u))e−d(t−u)e−σβ

∫ t
u I (x)dxdu

The system defined by (4a) and (7) is of standard form, therefore results of Hale [?]
ensure the local existence, uniqueness and continuation of solutions of model (4)
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R0

Define R0 with vaccination as

Rv = R0

[
1 + σϕP̃ − (1 − σ)αdP̃

1 + ϕP̃

]
(8)

where R0 = β
d+γ is the reproduction number in the absence of vaccination and

P̃ = lim
t→∞

∫ t

0
P(v)e−dvdv

in such a way that P̃ < 1/d

▶ Rv ≤ R0 and, in absence of vaccination, Rv = R0
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Theorem 2
System (4) with an arbitrary loss of vaccination function P(t) always admits the
disease-free equilibrium
▶ If R0 < 1, then the DFE is the only equilibrium of the system and the disease goes

extinct
▶ If Rv < 1, the DFE is LAS; if Rv > 1, the DFE is unstable
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Reduction of the system using specific P(t) functions

As before, two examples

▶ The distribution of waning times is exponential, which leads to an ODE system.
Treated briefly here, just so as to emphasize the presence of a so-called backward
bifurcation, a rather uncommon phenomenon in epidemiological models

▶ The waning time is a constant, which leads to a DDE model. We show that the
backward bifurcation is also present
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Case reducing to an ODE system
Assume P(v) = e−θv , θ > 0. V0(t) = V0(0)e−(d+θ)te−

∫ t
0 σβI (x)dx from (6). Then (4a)

and (7) give the ODE system

dI

dt
= β(1 − I − (1 − σ)V )I − (d + γ)I (9a)

dV

dt
= ϕ(1 − I − V )− σβIV − (d + θ)V + αd (9b)

which with no newborn vaccination (α = 0) is the model studied in Kribs-Zaletta &
Velasco-Hernandez, 2000 (extended to SIR with vaccination: Arino, McCluskey and van
den Driessche).

From Theorem 2 the DFE always exists, with

IDFE = 0,SDFE =
θ + d(1 − α)

d + θ + ϕ
,VDFE =

ϕ+ αd

d + θ + ϕ
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Backward bifurcation

Assume that R0 > 1, then endemic equilibria (positive I equilibria, denoted by I ⋆) can
be obtained analytically from the quadratic equation

P(I ) = AI 2 + BI + C = 0

where

A = −σβ

B = σ(β − (d + γ))− (d + θ + σϕ)

C = (d + γ)(d + θ + ϕ)(Rv − 1)/β

with
Rv = R0

d + θ + σϕ− α(1 − σ)d

d + θ + ϕ

from (8).
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Backward bifurcation leading to two endemic equilibria occurs for σ > 0 if
P ′(0) = B > 0, P(0) = C < 0 and B2 > 4AC (we always have P(1) < 0)

▶ On an (Rv , I ) bifurcation diagram, this occurs for Rc < Rv < 1, where Rc is the
value of Rv at the saddle node bifurcation point where the two values of I coincide,
i.e., I = Ic = B/(−2A)

▶ For Rv < Rc , there is no endemic equilibrium (EEP). For Rv > 1, the constant
term C > 0, and there is a unique EEP

▶ In the case of forward bifurcation, Rc = 1; this is the case in particular if the vaccine
is totally effective (σ = 0)
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By standard planar ODE arguments the following can be shown

Theorem 3
For the ODE system (9) with V (0) ≥ 0, I (0) > 0, and R0 > 1

(i) if Rv < Rc , then the disease dies out,

(ii) if Rc < Rv < 1, then the EEP with larger I is l.a.s., and the EEP with smaller I is
unstable

(iii) if Rv > 1, then the unique EEP is globally asymptotically stable in D − {I = 0}
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Pertussis:
▶ 3 week average disease duration (γ = 0.04762)
▶ Average lifetime 75 years (d = 3.6530E − 05)
▶ Average number of adequate contacts per infective per day is estimated at 0.4

(β = 0.4)
▶ Most newborns are vaccinated in the first few months of life (α = 0.9)
▶ Vaccine is effective, σ = 0.1 (90% effective vaccine).
▶ Pertussis vaccine begins to wane after about 3 years and the average waning time

of the vaccine 1/θ is assumed to be 5 years, giving θ = 5.4794E − 04

With these parameter values, there is backward bifurcation for a range of ϕ values given
by 0.0254 ≤ ϕ ≤ 0.1506
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With the above parame-
ter values, R0 = 8.3936
and Rv (ϕ) = 0.8807 for
ϕ = 0.1, which is in
the range of backward bi-
furcation since the critical
value Rc(ϕ) = 0.8669 <
Rv (ϕ) < 1
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Step function case: a delay integral model

Suppose that

P(v) =

{
1 if v ∈ [0, ω]
0 otherwise

Since V0(t) = 0 for t > ω, with S = 1 − I − V the integral equation (4b) becomes, for
t > ω

V (t) =

∫ t

t−ω
(ϕ(1 − I (u)− V (u)) + αd)e−d(t−u)e−σβ

∫ t
u I (x)dxdu (10)
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Differentiating (10) (see equation (7)) gives the model as the two dimensional system,
for t > ω

d

dt
I (t) = β(1 − I (t)− (1 − σ)V (t))I (t)− (d + γ)I (t) (11a)

d

dt
V (t) = ϕ(1 − I (t)− V (t)) (11b)

− ϕ(1 − I (t − ω)− V (t − ω))e−dωe−σβ
∫ t
t−ω I (x)dx

− σβIV − dV + αd
(
1 − e−dωe−σβ

∫ t
t−ω I (x)dx

)
Hereafter, shift time by ω so that these equations hold for t > 0
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The well posedness of the problem follows from Theorem 1 and from the fact that
solutions of (4) exist and are unique. For a constant waning period, the basic
reproduction number from (8) is

Rv = R0
d + (σϕ− α(1 − σ)d)(1 − e−dω)

d + ϕ(1 − e−dω)
(12)

With IDF = 0, from Theorem 2

VDF =
(ϕ+ αd)(1 − e−dω)

d + ϕ(1 − e−dω)
, SDF =

d − αd(1 − e−dω)

d + ϕ(1 − e−dω)
(13)
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Finding the EEP’s

From nullclines, there exists one (or more) endemic equilbria (EEP) iff there exists
0 < I ⋆ ≤ 1 such that

V ⋆ = f (I ⋆) = g(I ⋆) (14)

where
f (I ) =

1 − 1/R0 − I

1 − σ
(15)

for σ < 1, and

g(I ) =
(ϕ(1 − I ) + αd)(1 − e−dω−σβωI )

ϕ(1 − e−dω−σβωI ) + d + σβI
(16)
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Visualising and locating the bifurcation

From the nullcline equations, an EEP exists iff there exists an I ⋆ ∈ (0, 1] such that
equations (14)-(16) hold. So we study the zeros of

H(I ) =
1 − 1/R0 − I

1 − σ
− (ϕ(1 − I ) + αd)(1 − e−dω−σβωI )

ϕ(1 − e−dω−σβωI ) + d + σβI

To state the problem in a formal way, let A = {α, β, γ, ω, ϕ, σ} be the set of
parameters of interest, and denote

H(I ,A) = f (I )− g(I ) (17)

to show the dependence on these parameters.
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We proceed as follows.
1. Choose a parameter ai ∈ A.
2. Fix all other aj ’s (j ̸= i).
3. Choose ai ,min, ai ,max and ∆ai for ai .
4. For all ai ,k = ai ,min + k∆ai (k such that ai ,k ≤ ai ,max), compute I ⋆ such that

H(I ⋆, ai ,k) = 0.
Step 4 is carried out using the MatLab fzero function.
Further precision can be gained by showing that

H(0) =
Rv − 1

(1 − σ)R0

and that, for σ < 1

H(1) = − 1
(1 − σ)R0

− αd(1 − e−dω−σβω)

ϕ(1 − e−dω−σβω) + d + σβ
< 0
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Define Rc as previously. For R0 > 1 and Rv < 1, there are several possibilities.
▶ If Rv < Rc , then there is no EEP. H(0) and H(1) are strictly negative, and

numerical simulations seem to indicate that H has no roots in (0, 1] (i.e., that
H < 0 on this interval).

▶ If Rc < Rv < 1, then there are endemic equilibria. Here, since H(0) and H(1) are
strictly negative, the only possibility is thus to have an even number of zeros of H.
Numerical simulations appear to indicate that the number of endemic equilibria is
2.

In between these two situations Rv = Rc and there is one endemic equilibrium I ⋆.
Using the same procedure as for the visualisation of the bifurcation, it is possible to
compute Rc by finding the value I ⋆ such that H(I ⋆,A) = 0 and H ′(I ⋆,A) = 0, for a
given parameter ai ∈ A.
If Rv > 1 then H(0) > 0 and so there is an odd number of endemic equilibria.
Numerical simulations indicate that there is a unique EEP.
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Numerical bifurcation analysis

Same parameter values as in ODE case, except that the constant waning time (the
delay) ω has to be substituted for θ. We take ω = 1825, i.e., corresponding to a 5 years
waning time

These parameters give R0 = 8.3936 and Rv (ϕ) = 0.8819, which is in the range of the
backward bifurcation since (using the above method) Rc(ϕ) = 0.8675

The bifurcation diagram is very like that depicted in earlier for the ODE. Numerical
simulations of the DDE model (using dde23) indicate that there are no additional
bifurcations; solutions either go to the DFE or to the (larger) EEP

p. 36 – A model with arbitrary sojourn time
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(a) Values of I ⋆ as a function of ω by solving H(I ,A) = 0 with ai = ω. (b) Value of
I (t) versus time, obtained by numerical integration of system (11) with initial data
I (t) = c , for t ∈ [−ω, 0], ω = 1825, c varying from 0 to 1 by steps of 0.02
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Age of infection

We have seen that infinite dimensionality could result from a detailed description (or an
unspecified one) of the sojourn time in compartments

Originally, age of infection was introduced to account for differences in infectivity
depending on the time since an individual became infected

For instance, it is known that infectiousness of HIV positive patients vary as a function
of time since infection

p. 38 – Age of infection
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Age of vaccination

We used age of vaccination to find the initial condition of (4)

Here we take a closer look at this type of model

p. 39 – Age of infection





How to model time between vaccine doses

S ′ = −fS − V1(t, 0) (18a)

A ′ =
(
(1 − p)S + (1 − p1)δ1Ṽ1 + (1 − p2)δ2V2

)
f − µAA (18b)

I ′ = (pS + p1δ1Ṽ1 + p2δ2V2)f − µI (18c)
V2

′ = V1(t, a
⋆)− δ2fV2(t) (18d)(

∂

∂t
+

∂

∂a

)
V1(t, a) = −δ1fV1(t, a), 0 ≤ a ≤ a⋆ (18e)

and boundary condition

V1(t, 0) =

{
γS0

(
S(t)

S(t)+A(t)

)
if T ≤ t ≤ Te and S > 0

0 otherwise
(18f)

where f = β(δAA+ I ) and Ṽ1(t) =
∫ a⋆

0 V1(t, a)da
p. 41 – Age of infection



Simplifying a bit

Integrate (18e) using characteristics along lines a = s and t = T + s, with s as a new
variable

V1(t, a) = V1(t − a, 0) exp
(∫ t

t−a
−δ1f (ξ) dξ

)
(19)

Define

ζ(t) =

∫ t

0
δ1f (ξ)dξ

and substitute into (19), giving

V1(t, a) = V1(t − a, 0) exp (ζ(t − a)ζ(t))

So the distributed delay is now discrete
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Simplifying a bit more
Let

ν(t) =

∫ t

0
V1(s, 0)eζ(s)ds

Then the total number of individuals having been vaccinated with a single dose is

Ṽ1(t) = e−ζ(t) (ν(t)− ν(t − a⋆))

S ′ = −fS − V1(t, 0) (20a)

A ′ =
(
(1 − p)S + (1 − p1)δ1Ṽ1 + (1 − p2)δ2V2

)
f − µAA (20b)

I ′ = (pS + p1δ1Ṽ1 + p2δ2V2)f − µI (20c)

V2
′ = V1(t − a⋆, 0)eζ(t−a⋆) − δ2fV2(t) (20d)

ζ ′ = δ1f (20e)

ν ′ = V1(t, 0)eζ(t) (20f)

p. 43 – Age of infection
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Age structure

Taking into account age can be important in some cases

▶ Demographic characteristics vary with age
▶ Interactions are in general more frequent between people of a similar age. They are

also more frequent in younger individuals
▶ Some diseases attack preferentially younger individuals
▶ The immunity of individuals changes with age, so for instance, older people may be

more susceptible to some diseases than younger people

This is based on courses given by Jia Li during a Banff summer school in 2004
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Note on age

Chronological age, as a structuring variable, is “easier” than other structuring variables

Indeed, if a is (chronological) age, then

d

dt
a = 1
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Formulation of an SIR model

Let a be the age. Assume that natural death and recovery occur at the rates µ and γ,
respectively, both dependent on a

When an individual is sick, they are subject to disease-induced death at the rate δ(a)

Governing equations are

(∂t + ∂a)S(t, a) = Λ(a)− (µ(a) + λ(t, a))S(t, a) (21a)

(∂t + ∂a)I (t, a) = −(µ(a) + γ(a) + δ(a))I (t, a) + λ(t, a)S(t, a) (21b)

(∂t + ∂a)R(t, a) = γ(a)I (t, a) (21c)

p. 47 – Structuration in age



Boundary conditions are

S(t, a0) = B (21d)
I (t, a0) = 0 (21e)
R(t, a0) = 0 (21f)

while initial conditions take the form

S(0, a) = Φ(a) (21g)
I (0, a) = Ψ(a) (21h)
R(0, a) = 0 (21i)
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Force of infection

Transmission λ(t, a) of the disease takes the form

λ(t, a) = r(a)

∫ ∞

a0

β(a, s)ρ(a, s)
I (t, s)

N(t, s)
ds

where
▶ r(a) is the number of contacts by individuals of age a per unit time
▶ β(a, s) is the probability of disease transmission to a susceptible of age a by an

infectious of age s

▶ ρ(a, s) is the meeting rate between people of age a and people of age s

▶ N(t, a) = S(t, a) + I (t, a) + R(t, a) is the distribution of total population
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To simplify, assume that β(a, s) is separable

β(a, s) = f (a)g(s)

where f (a) is the susceptibility of individuals aged a and g(s) is the force of infection of
individuals aged s

Then
λ(t, a) = r(a)f (a)

∫ ∞

a0

g(s)ρ(a, s)
I (t, s)

N(t, s)
ds (22)
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Analysis of the SIR model

We seek the DFE by setting I = 0

We find (S , I ,R) = (S0(a), 0, 0) with

S0(a) = Be−M(a) + e−M(a)

∫ a

a0

eM(x)Λ(x)dx

where
M(a) =

∫ a

a0

µ(s)ds
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Consider the perturbed solution u(t, a) = S(t, a)− S0(a). Assume that the meeting
rate ρ is also separable,

ρ(a, s) = p1(a)p2(s)

Then
λ̃(t, a) := r(a)f (a)p1(a)

∫ ∞

a0

g(s)p2(s)

S0(s)
I (t, s)ds ≃ λ(t, a)

and we obtain the linearisation

(∂t + ∂a)u = −µ(a)u − λ̃(t, a)S0(a)

(∂t + ∂a)I = −(µ(a) + γ(a) + δ(a))I + λ̃(t, a)S0(a)

(∂t + ∂a)R = γ(a)I
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Let
u(t, a) = ũ(a)ec(t−a) I (t, a) = Ĩ (a)ec(t−a)

and denote

b(a) = S0(a)r(a)f (a)p1(a) W =

∫ ∞

a0

g(s)p2(s)

S0(s)
e−cs Ĩ (s)ds
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Then

dũ(a)

da
= −µ(a)ũ(a)− b(a)ecaW

dĨ (a)

da
= −(µ(a) + γ(a))Ĩ (a) + b(a)ecaW

Ĩ (a) = We−M(a)−Γ(a)

∫ ∞

a0

eM(s)+Γ(s)b(s)ecsds

where Γ(a) =
∫ a
a0
γ(s)ds

Therefore

W = W

∫ ∞

a0

g(s)p2(s)

S0(s)
e−M(s)−Γ(s)

∫ s

a0

eM(v)+Γ(v)b(v)e−c(s−v)dvds
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Let then

H(c) :=

∫ ∞

a0

g(s)p2(s)

S0(s)
e−M(s)−Γ(s)

∫ s

a0

eM(v)+Γ(v)b(v)e−c(s−v)dvds

We seek roots of the characteristic equation H(c) = 1

We have
dH(c)

dc
= −

∫ ∞

a0

g(s)p2(s)

S0(s)
e−M(s)−Γ(s)

∫ s

a0

(s − v)eM(v)+Γ(v)b(v)e−c(s−v)dvds < 0

implying that H(c) is a decreasing function
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▶ Let c⋆ be a real solution to H(c) = 1. If H(0) > 1, then c > 0, whereas if H(0) < 1,
c < 0

▶ Suppose that c⋆ = α+ iβ is a complex root of H(c) = 1. Then

Re H(c) =

∫ ∞

a0

g(s)p2(s)

S0(s)
e−M(s)−Γ(s)

∫ s

a0

eM(v)+Γ(v)b(v)e−α(s−v) cosβ(s − v)dvds

As a consequence, H(0) < 1 =⇒ α < 0

So H(0) = 1 is a threshold and we take R0 = H(0)
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Analysis using semigroups: SIA model

To illustrate the use of the semigroup method in this context, we consider an SIA
model describing the evolution of HIV/AIDS

The model is almost equivalent to (21), with a few differences

The I compartment contains inviduals bearing HIV, but not yet in the AIDS stage

The rate γ(a) represents the progression towards the AIDS stage

The AIDS stage is represented by compartment A, where individuals are subject to a
specific mortality rate
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(∂t + ∂a)S(t, a) = Λ(a)− (d(a) + λ(t, a))S(t, a) (23a)
(∂t + ∂a)I (t, a) = −(d(a) + γ(a))I (t, a) + λ(t, a)S(t, a) (23b)
(∂t + ∂a)A(t, a) = γ(a)A(t, a)− (d(a) + δ(a))A(t, a) (23c)

Assume

λ(t, a) = h(a)

∫ ∞

a0

ρ(a, a′)
I (t, a′)

T (t, a′)
da′ (23d)

where T (t, a′) = S(t, a′) + I (t, a′)
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An individual in AIDS stage no longer has contacts. Therefore the dynamics of S and I
do not depend on the dynamics of A, and we consider the system consisting of the first
two variables

Let ω be the maximum age. The system in proportions takes the form

x :=
S

T
y :=

I

T

As we are only considering S and I , we have x + y = 1 and the system reads

(∂t + ∂a)y(t, a) = (1 − y)(−γ(a)y + λ(t, a)) (24a)

λ(t, a) = h(a)

∫ ω

0
p(a, a′)y(t, a′)da′ (24b)
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Let X = {f ∈ L1(0, ω)}. Define

(Af )(a) := − d

da
f (a), f ∈ D(A)

with D(a) = {f ∈ X , f is absolutely continuous, f (0) = 0}, and

F (f )(a) ≡ (1 − f (a))

(
−γ(a)f (a) + h(a)

∫ ω

0
p(a, a′)f (a′)da′

)
an operator from X → X

Let Ω = {f ∈ X , 0 ≤ f ≤ 1 a.e.}. Then (24) takes the form

dy

dt
= Ay + F (y)

y(0) = y0 ∈ Ω
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Let
(Bf )(a) = −df (a)

da
− γ(a)f (a) (Pf )(a) = h(a)

∫ ω

0
p(a, a′)f (a′)da′

We have

(∂t + ∂a)y = −γ(a)y + h(a)

∫ ω

0
ρ(a, a′)y(t, a′)da′ ⇔ dy

dt
= (B + P)y

B + P generates a C0-semigroup T (t), t ≥ 0, which is eventually uniformly continuous
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The resolvant of B + P is

R(λ;B + P) = (Sλ − I )−1G

with
(Gf )(a) =

∫ a

0
e−λ(a−σ) Γ(a)

Γ(σ)
f (σ)dσ

(Sλf )(a) =

∫ ω

0

∫ a

0
e−λ(a−σ) Γ(a)

Γ(σ)
ρ(σ, ξ)dσf (ξ)dξ

where we denoted

Γ(a) = exp

(
−
∫ a

0
γ(a′)da′

)
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R0

R0 is the spectral radius of the operator

(Sf )(a) =

∫ ω

0

∫ a

0

Γ(a)

Γ(σ)
h(σ)p(σ, ξ)dσf (ξ)dξ
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Pair formation

ρ(t, a, a′) proportion of partners of an individual aged a who are aged a′

r(t, a) mean number of partners of an individual aged a

T (t, a) total number of individuals aged a

The following conditions must hold
▶ 0 ≤ ρ ≤ 1
▶

∫∞
0 ρ(t, a, a′)da′ = 1

▶ ρ(t, a, a′)r(t, a)T (t, a) = ρ(t, a′, a)r(t, a′)T (t, a′)

▶ r(t, a)T (t, a)r(t, a′)T (t, a′) = 0 ⇒ ρ(t, a, a′) = 0
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