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Age of infection

We have seen that infinite dimensionality could result from a detailed description (or an
unspecified one) of the sojourn time in compartments

Originally, age of infection was introduced to account for differences in infectivity
depending on the time since an individual became infected

For instance, it is known that infectiousness of HIV positive patients vary as a function
of time since infection
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Age of vaccination

We used age of vaccination to find the initial condition of (??)

Here we take a closer look at this type of model
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How to model time between vaccine doses

S ′ = −fS − V1(t, 0) (1a)

A ′ =
(
(1 − p)S + (1 − p1)δ1Ṽ1 + (1 − p2)δ2V2

)
f − µAA (1b)

I ′ = (pS + p1δ1Ṽ1 + p2δ2V2)f − µI (1c)
V2

′ = V1(t, a
⋆)− δ2fV2(t) (1d)(

∂

∂t
+

∂

∂a

)
V1(t, a) = −δ1fV1(t, a), 0 ≤ a ≤ a⋆ (1e)

and boundary condition

V1(t, 0) =

{
γS0

(
S(t)

S(t)+A(t)

)
if T ≤ t ≤ Te and S > 0

0 otherwise
(1f)

where f = β(δAA+ I ) and Ṽ1(t) =
∫ a⋆

0 V1(t, a)da
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Simplifying a bit

Integrate (1e) using characteristics along lines a = s and t = T + s, with s as a new
variable

V1(t, a) = V1(t − a, 0) exp
(∫ t

t−a
−δ1f (ξ) dξ

)
(2)

Define

ζ(t) =

∫ t

0
δ1f (ξ)dξ

and substitute into (2), giving

V1(t, a) = V1(t − a, 0) exp (ζ(t − a)ζ(t))

So the distributed delay is now discrete
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Simplifying a bit more
Let

ν(t) =

∫ t

0
V1(s, 0)eζ(s)ds

Then the total number of individuals having been vaccinated with a single dose is

Ṽ1(t) = e−ζ(t) (ν(t)− ν(t − a⋆))

S ′ = −fS − V1(t, 0) (3a)

A ′ =
(
(1 − p)S + (1 − p1)δ1Ṽ1 + (1 − p2)δ2V2

)
f − µAA (3b)

I ′ = (pS + p1δ1Ṽ1 + p2δ2V2)f − µI (3c)

V2
′ = V1(t − a⋆, 0)eζ(t−a⋆) − δ2fV2(t) (3d)

ζ ′ = δ1f (3e)

ν ′ = V1(t, 0)eζ(t) (3f)
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Age structure

Taking into account age can be important in some cases

▶ Demographic characteristics vary with age
▶ Interactions are in general more frequent between people of a similar age. They are

also more frequent in younger individuals
▶ Some diseases attack preferentially younger individuals
▶ The immunity of individuals changes with age, so for instance, older people may be

more susceptible to some diseases than younger people

This is based on courses given by Jia Li during a Banff summer school in 2004
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Note on age

Chronological age, as a structuring variable, is “easier” than other structuring variables

Indeed, if a is (chronological) age, then

d

dt
a = 1
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Formulation of an SIR model

Let a be the age. Assume that natural death and recovery occur at the rates µ and γ,
respectively, both dependent on a

When an individual is sick, they are subject to disease-induced death at the rate δ(a)

Governing equations are

(∂t + ∂a)S(t, a) = Λ(a)− (µ(a) + λ(t, a))S(t, a) (4a)

(∂t + ∂a)I (t, a) = −(µ(a) + γ(a) + δ(a))I (t, a) + λ(t, a)S(t, a) (4b)

(∂t + ∂a)R(t, a) = γ(a)I (t, a) (4c)
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Boundary conditions are

S(t, a0) = B (4d)
I (t, a0) = 0 (4e)
R(t, a0) = 0 (4f)

while initial conditions take the form

S(0, a) = Φ(a) (4g)
I (0, a) = Ψ(a) (4h)
R(0, a) = 0 (4i)
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Force of infection

Transmission λ(t, a) of the disease takes the form

λ(t, a) = r(a)

∫ ∞

a0

β(a, s)ρ(a, s)
I (t, s)

N(t, s)
ds

where
▶ r(a) is the number of contacts by individuals of age a per unit time
▶ β(a, s) is the probability of disease transmission to a susceptible of age a by an

infectious of age s

▶ ρ(a, s) is the meeting rate between people of age a and people of age s

▶ N(t, a) = S(t, a) + I (t, a) + R(t, a) is the distribution of total population
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To simplify, assume that β(a, s) is separable

β(a, s) = f (a)g(s)

where f (a) is the susceptibility of individuals aged a and g(s) is the force of infection of
individuals aged s

Then
λ(t, a) = r(a)f (a)

∫ ∞

a0

g(s)ρ(a, s)
I (t, s)

N(t, s)
ds (5)
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Analysis of the SIR model

We seek the DFE by setting I = 0

We find (S , I ,R) = (S0(a), 0, 0) with

S0(a) = Be−M(a) + e−M(a)

∫ a

a0

eM(x)Λ(x)dx

where
M(a) =

∫ a

a0

µ(s)ds
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Consider the perturbed solution u(t, a) = S(t, a)− S0(a). Assume that the meeting
rate ρ is also separable,

ρ(a, s) = p1(a)p2(s)

Then
λ̃(t, a) := r(a)f (a)p1(a)

∫ ∞

a0

g(s)p2(s)

S0(s)
I (t, s)ds ≃ λ(t, a)

and we obtain the linearisation

(∂t + ∂a)u = −µ(a)u − λ̃(t, a)S0(a)

(∂t + ∂a)I = −(µ(a) + γ(a) + δ(a))I + λ̃(t, a)S0(a)

(∂t + ∂a)R = γ(a)I
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Let
u(t, a) = ũ(a)ec(t−a) I (t, a) = Ĩ (a)ec(t−a)

and denote

b(a) = S0(a)r(a)f (a)p1(a) W =

∫ ∞

a0

g(s)p2(s)

S0(s)
e−cs Ĩ (s)ds
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Then

dũ(a)

da
= −µ(a)ũ(a)− b(a)ecaW

dĨ (a)

da
= −(µ(a) + γ(a))Ĩ (a) + b(a)ecaW

Ĩ (a) = We−M(a)−Γ(a)

∫ ∞

a0

eM(s)+Γ(s)b(s)ecsds

where Γ(a) =
∫ a
a0
γ(s)ds

Therefore

W = W

∫ ∞

a0

g(s)p2(s)

S0(s)
e−M(s)−Γ(s)

∫ s

a0

eM(v)+Γ(v)b(v)e−c(s−v)dvds
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Let then

H(c) :=

∫ ∞

a0

g(s)p2(s)

S0(s)
e−M(s)−Γ(s)

∫ s

a0

eM(v)+Γ(v)b(v)e−c(s−v)dvds

We seek roots of the characteristic equation H(c) = 1

We have
dH(c)

dc
= −

∫ ∞

a0

g(s)p2(s)

S0(s)
e−M(s)−Γ(s)

∫ s

a0

(s − v)eM(v)+Γ(v)b(v)e−c(s−v)dvds < 0

implying that H(c) is a decreasing function
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▶ Let c⋆ be a real solution to H(c) = 1. If H(0) > 1, then c > 0, whereas if H(0) < 1,
c < 0

▶ Suppose that c⋆ = α+ iβ is a complex root of H(c) = 1. Then

Re H(c) =

∫ ∞

a0

g(s)p2(s)

S0(s)
e−M(s)−Γ(s)

∫ s

a0

eM(v)+Γ(v)b(v)e−α(s−v) cosβ(s − v)dvds

As a consequence, H(0) < 1 =⇒ α < 0

So H(0) = 1 is a threshold and we take R0 = H(0)
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Analysis using semigroups: SIA model

To illustrate the use of the semigroup method in this context, we consider an SIA
model describing the evolution of HIV/AIDS

The model is almost equivalent to (4), with a few differences

The I compartment contains inviduals bearing HIV, but not yet in the AIDS stage

The rate γ(a) represents the progression towards the AIDS stage

The AIDS stage is represented by compartment A, where individuals are subject to a
specific mortality rate
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(∂t + ∂a)S(t, a) = Λ(a)− (d(a) + λ(t, a))S(t, a) (6a)
(∂t + ∂a)I (t, a) = −(d(a) + γ(a))I (t, a) + λ(t, a)S(t, a) (6b)
(∂t + ∂a)A(t, a) = γ(a)A(t, a)− (d(a) + δ(a))A(t, a) (6c)

Assume

λ(t, a) = h(a)

∫ ∞

a0

ρ(a, a′)
I (t, a′)

T (t, a′)
da′ (6d)

where T (t, a′) = S(t, a′) + I (t, a′)
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An individual in AIDS stage no longer has contacts. Therefore the dynamics of S and I
do not depend on the dynamics of A, and we consider the system consisting of the first
two variables

Let ω be the maximum age. The system in proportions takes the form

x :=
S

T
y :=

I

T

As we are only considering S and I , we have x + y = 1 and the system reads

(∂t + ∂a)y(t, a) = (1 − y)(−γ(a)y + λ(t, a)) (7a)

λ(t, a) = h(a)

∫ ω

0
p(a, a′)y(t, a′)da′ (7b)
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Let X = {f ∈ L1(0, ω)}. Define

(Af )(a) := − d

da
f (a), f ∈ D(A)

with D(a) = {f ∈ X , f is absolutely continuous, f (0) = 0}, and

F (f )(a) ≡ (1 − f (a))

(
−γ(a)f (a) + h(a)

∫ ω

0
p(a, a′)f (a′)da′

)
an operator from X → X

Let Ω = {f ∈ X , 0 ≤ f ≤ 1 a.e.}. Then (7) takes the form

dy

dt
= Ay + F (y)

y(0) = y0 ∈ Ω
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Let
(Bf )(a) = −df (a)

da
− γ(a)f (a) (Pf )(a) = h(a)

∫ ω

0
p(a, a′)f (a′)da′

We have

(∂t + ∂a)y = −γ(a)y + h(a)

∫ ω

0
ρ(a, a′)y(t, a′)da′ ⇔ dy

dt
= (B + P)y

B + P generates a C0-semigroup T (t), t ≥ 0, which is eventually uniformly continuous

p. 24 – Structuration in age



The resolvant of B + P is

R(λ;B + P) = (Sλ − I )−1G

with
(Gf )(a) =

∫ a

0
e−λ(a−σ) Γ(a)

Γ(σ)
f (σ)dσ

(Sλf )(a) =

∫ ω

0

∫ a

0
e−λ(a−σ) Γ(a)

Γ(σ)
ρ(σ, ξ)dσf (ξ)dξ

where we denoted

Γ(a) = exp

(
−
∫ a

0
γ(a′)da′

)
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R0

R0 is the spectral radius of the operator

(Sf )(a) =

∫ ω

0

∫ a

0

Γ(a)

Γ(σ)
h(σ)p(σ, ξ)dσf (ξ)dξ
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Pair formation

ρ(t, a, a′) proportion of partners of an individual aged a who are aged a′

r(t, a) mean number of partners of an individual aged a

T (t, a) total number of individuals aged a

The following conditions must hold
▶ 0 ≤ ρ ≤ 1
▶

∫∞
0 ρ(t, a, a′)da′ = 1

▶ ρ(t, a, a′)r(t, a)T (t, a) = ρ(t, a′, a)r(t, a′)T (t, a′)

▶ r(t, a)T (t, a)r(t, a′)T (t, a′) = 0 ⇒ ρ(t, a, a′) = 0
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