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At the beginning of the COVID-19 crisis

▶ I was working under contract with the Public Health Agency of Canada on
COVID-19 importation risk assessment

▶ Produced daily report with list of countries most likely to next report cases of
COVID-19

▶ Used ensemble runs of a fitted global deterministic metapopulation model
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▶ Very very long days (18-20 hours, 7 days a week)

▶ including a lot of time waiting for the “cluster” to finish

=⇒ PHAC gave me money for a cluster (yay Threadrippers!!!)

=⇒ Also thought about whether my model was really adequate as our focus switched
from thinking about movement on a planetary scale to movement within Canadian
provinces
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What is wrong with deterministic models?

▶ I pointed out yesterday that SARS-CoV-2 is one single realisation of a stochastic
process

▶ Deterministic models “operate on averages” over a large (→∞) number of
realisations

▶ If we want to get a better sense of what could happen, not only on average, then we
need to see what can indeed happen
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My new focus – Introductions

▶ I started thinking in particular about introductions (or importations) of pathogens
into new populations

▶ Indeed, introductions are an obligatory step in spatial spread

p. 5 – Why incorporate stochasticity?



First piece of evidence

In real life, introductions of pathogens does not always follow the patter

{R0 < 1 =⇒→ DFE | R0 > 1 =⇒ epidemic or → EEP}
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Second piece of evidence

The start of an outbreak can be extremely slow, with very few cases for quite a while
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Why this is relevant

Far from the only reason, but as an example: Canada has remote/isolated communities
that are vulnerable to introductions of pathogens
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For First Nation and Métis Communities

Remote describes a geographical area where a community is located over 350 km
from the nearest service centre having year-round access by land and/or water
routes normally used in all weather conditions

Isolated means a geographical area that has scheduled flights and good telephone
service, but is without year-round access by land and/or water normally used in all
weather conditions

Remote-Isolated means a geographic area that has neither scheduled flights nor
year-round access by land and/or water routes normally that can be used in all
weather conditions, irrespective of the level of telephone and radio service available
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For Inuit communities

Inuit Communities to be referred to as Inuit Nunangat, not remote and isolated
communities to respect the unique language and culture of Inuit regions, as well as the
common challenges in social determinants of health, access to care, and infrastructure
found across all Inuit communities
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MB remote communities

Remote communities are communities in Manitoba that do not have per-
manent road access (i.e., no all-weather road), are more than a four-hour
drive from a major rural hospital (and a dialysis unit), or have rail or fly-in
access only. This includes Norway House, Lynn Lake, Leaf Rapids, Gillam,
and Cross Lake. If most communities in a health district are designated as
"remote", the entire district is designated as "remote". In Manitoba, remote
districts include:
▶ Northern Health Region: NO23, NO13, NO25, NO16, NO22, NO26,

NO28, NO31, and
▶ Interlake-Eastern Health Region: IE61.

Chartier M, Dart A, Tangri N, Komenda P, Walld R, Bogdanovic B, Burchill C, Koseva I,
McGowan K, Rajotte L. Care of Manitobans Living with Chronic Kidney Disease. Winnipeg,
MB. Manitoba Centre for Health Policy, December 2015
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Travel to/from remote or isolated communities

How do you think this compares to travel in non-remote/isolated communities ?

Residence time (the lake ecology version): theoretic time an average water or
comparable molecule spends in a lake, considering inflow into and outflow from the lake

Think of residence times in these communities: what is the average time a person
spends in a remote or isolated community before leaving it?

The residence time in a location is the total number of trips inbound into and
outbound from location over a duration of time (1 month here) divided by the normal
population in the location
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The paradox of travel to/from remote/isolated communities

Travel volumes small but movement rates high

ICs are highly connected to the urban centre(s) they are subordinated to

Further reinforced in Winnipeg by urban indigenous population (102,075 or 12.45% of
metro population), meaning many family connections exist
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From discrete to continuous time
Discrete-Time Markov Chains (DTMCs)

A system transitions between states at fixed, discrete time steps (n = 0, 1, 2, . . . )
▶ The future depends only on the present state (Markov Property)
▶ Governed by a transition probability matrix P , where Pij is the probability of

moving from state i to j in one step

Continuous-Time Markov Chains (CTMCs)

A system can transition between states at any point in time
▶ Time spent in a state is a continuous random variable
▶ The “holding time” in any state i follows an exponential distribution

parameterised by an exit rate qi
▶ This is a direct consequence of the Markov Property being applied to continuous

time (exponential is only continuous distribution that is “memoryless”)
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Transition rates

Dynamics of a CTMC defined by transition rates, not probabilities

Definition 1 (Transition Rates)

For two states i ̸= j , the rate qij ≥ 0 is the instantaneous rate of transition from state i
to state j

▶ For a small time interval ∆t, the probability of transitioning from i to j is
approximately qij∆t

▶ Total exit rate from state i is qi =
∑

j ̸=i qij
▶ Time spent in state i is an exponential random variable Ti ∼ E(qi )
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The generator matrix

Generator matrix (Q-Matrix)

Collect all transition rates into a single matrix Q

▶ Off-diagonal: Qij = qij for i ̸= j (The rate of going from i to j)
▶ Diagonal: Qii = −qi = −

∑
j ̸=i qij . (The negative of the total exit rate from i)

A key property is that all rows of Q sum to zero:
∑

j Qij = 0.
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Kolmogorov equations

Let P(t) be the matrix where Pij(t) = P(X (t) = j |X (0) = i). How does P(t) evolve
over time?

Kolmogorov forward equations

Describes rate of change of probability of ending up in a target state j

d

dt
P(t) = P(t)Q

In element form:
P ′
ij(t) =

∑
k

Pik(t)Qkj
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Solution to the KFE

The solution is the matrix exponential

P(t) = etQ =
∞∑
k=0

(tQ)k

k!

The generator matrix Q “generates” the process’s evolution
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Converting your compartmental ODE model to CTMC

Easy as π :)

▶ Compartmental ODE model focuses on flows into and out of compartments

▶ ODE model has as many equations as there are compartments

▶ Compartmental CTMC model focuses on transitions

▶ CTMC model has as many transitions as there are arrows between (or into or out
of) compartments
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ODE to CTMC : focus on different components

S I S I

−βSI

+γI

+βSI

−γI

βSI

γI

ODE CTMC

focus focus
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SIS without demography

Transition Effect Weight Probability

S → S − 1, I → I + 1 new infection βSI
βSI

βSI + γI

S → S + 1, I → I − 1 recovery of an in-
fectious

γI
γI

βSI + γI

States are S , I
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SIS with demography

Transition Effect Weight Probability

S → S + 1 birth of a suscepti-
ble

b b
b+d(S+I )+βSI+γI

S → S − 1 death of a suscep-
tible

dS dS
b+d(S+I )+βSI+γI

S → S − 1, I →
I + 1

new infection βSI βSI
b+d(S+I )+βSI+γI

I → I − 1 death of an infec-
tious

dI dI
b+d(S+I )+βSI+γI

S → S + 1, I →
I − 1

recovery of an in-
fectious

γI γI
b+d(S+I )+βSI+γI

States are S , I
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Kermack & McKendrick model

Transition Effect Weight Probability

S → S − 1, I → I + 1 new infection βSI
βSI

βSI + γI

I → I − 1, R → R + 1 recovery of an in-
fectious

γI
γI

βSI + γI

States are S , I ,R
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Gillespie’s algorithm

▶ A.k.a. the stochastic simulation algorithm (SSA)

▶ Derived in 1976 by Daniel Gillespie

▶ Generates possible solutions for CTMC

▶ Extremely simple, so worth learning how to implement; there are however packages
that you can use (see later)
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Gillespie’s algorithm

Suppose system has state x(t) with initial condition x(t0) = x0 and propensity functions
ai of elementary reactions

set t ← t0 and x(t)← x0
while t ≤ tf
- ξt ←

∑
j aj(x(t))

- Draw τt from T ∼ E(ξt)
- Draw ζt from U([0, 1])
- Find r , smallest integer s.t.

∑j
k=1 ak(x(t)) > ζt

∑
j aj(x(t)) = ζtξt

- Effect the next reaction (the one indexed r)
- t ← t + τt
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Drawing at random from an exponential distribution
If you do not have an exponential distribution random number generator.. We want τt
from T ∼ E(ξt), i.e., T has probability density function

f (x , ξt) = ξte
−ξtx1x≥0

Use cumulative distribution function F (x , ξt) =
∫ x
−∞ f (s, ξt) ds

F (x , ξt) = (1− e−ξtx)1x≥0

which has values in [0, 1]. So draw ζ from U([0, 1]) and solve F (x , ξt) = ζ for x

F (x , ξt) = ζ ⇔ 1− e−ξtx = ζ

⇔ e−ξtx = 1− ζ

⇔ ξtx = − ln(1− ζ)

⇔ x =
− ln(1− ζ)

ξt
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Gillespie’s algorithm (SIS model with only I eq.)

set t ← t0 and I (t)← I (t0)
while t ≤ tf
- ξt ← β(P⋆ − i)i + γi
- Draw τt from T ∼ E(ξt)
- v ← [β(P⋆ − i)i , ξt ] /ξt
- Draw ζt from U([0, 1])
- Find pos such that vpos−1 ≤ ζt ≤ vpos
- switch pos

- 1: New infection, I (t + τt) = I (t) + 1
- 2: End of infectious period, I (t + τt) = I (t)− 1

- t ← t + τt
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Sometimes Gillespie goes bad

▶ Recall that the inter-event time is exponentially distributed
▶ Critical step of the Gillespie algorithm:

▶ ξt ← weight of all possible events (propensity)
▶ Draw τt from T ∼ E(ξt)

▶ So the inter-event time τt → 0 if ξt becomes very large for some t

▶ This can cause the simulation to grind to a halt
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Example: a birth and death process

▶ Individuals born at per capita rate b

▶ Individuals die at per capita rate d

▶ Let’s implement this using classic Gillespie

(See simulate_birth_death_CTMC.R on course GitHub repo)

p. 38 – Continuous time Markov chains
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Gillespie’s algorithm (birth-death model)

set t ← t0 and N(t)← N(t0)
while t ≤ tf
- ξt ← (b + d)N(t)
- Draw τt from T ∼ E(ξt)
- v ← [bN(t), ξt ] /ξt
- Draw ζt from U([0, 1])
- Find pos such that vpos−1 ≤ ζt ≤ vpos
- switch pos

- 1: Birth, N(t + τt) = N(t) + 1
- 2: Death, N(t + τt) = N(t)− 1

- t ← t + τt
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birth_death_CTMC = function(b = 0.01, d = 0.01) {
t_0 = 0 # Initial time
N_0 = 100 # Initial population

# Vectors to store time and state. Initialise with initial condition.
t = t_0
N = N_0

t_f = 1000 # Final time

# Track the current time and state (could just check last entry in t
# and N, but will take more operations)
t_curr = t_0
N_curr = N_0
while (t_curr<=t_f) {

xi_t = (b+d)*N_curr
if (N_curr == 0) {

break # Avoid error with rexp when xi_t = 0
}
tau_t = rexp(1, rate = xi_t)
t_curr = t_curr+tau_t
v = c(b*N_curr, xi_t)/xi_t
zeta_t = runif(n = 1)
pos = findInterval(zeta_t, v)+1
switch(pos,

{ N_curr = N_curr+1}, # Birth
{ N_curr = N_curr-1}) # Death

N = c(N, N_curr)
t = c(t, t_curr)

}
plot(t, N, type = "l",

xlab = "Time", ylab = "Population size",
main = paste("Birth-death CTMC with b =", b, "and d =", d))

}
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b = 0.03 & d = 0.01...

We want to run the function with these parameter values but I know in advance this
will not work well, so let’s tweak the function a bit. We add a test:

if (t[length(t)]-t[(length(t)-1)] < 1e-8) {
# If the time step is too small, stop the simulation
message("Stopping simulation because time step is too small")
break

}
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Last one did not go well

▶ Wanted 1000 time units (days?)
▶ Interrupted at 114.1159893 because of the test

(Slide with b < d : sim stopped because the population went extinct, I did not stop
it!)

▶ At stop time
▶ N = 1031
▶ |N| = 1858 (and |t| as well, of course!)
▶ time was moving slowly

tail(diff(results$t))

## [1] 1.497551e-02 1.349073e-02 5.506925e-02 9.530629e-02 4.257897e-02
## [6] 1.981556e-06
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Tau-leaping (and packages) to the rescue!

▶ Approximation method (compared to classic Gillespie, which is exact)
▶ Roughly: consider "groups" of events instead of individual events
▶ Good news: GillespieSSA2 and adaptivetau, two standard packages for SSA in

R, implement tau leaping
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library(GillespieSSA2)
Pop <- 1000
I_0 <- 2
IC <- c(S = (Pop-I_0), I = I_0)
gamma = 1/3
# R0=beta/gamma*S0, so beta=R0*gamma/S0
beta = as.numeric(1.5*gamma/IC["S"])
params <- c(gamma = gamma, beta = beta)
t_f = 100
reactions <- list(

reaction("beta*S*I", c(S=-1,I=+1), "new_infection"),
reaction("gamma*I", c(S=+1,I=-1), "recovery")

)
set.seed(NULL)

sol <- ssa(
initial_state = IC,
reactions = reactions,
params = params,
method = ssa_exact(),
final_time = t_f,

)
plot(sol$time, sol$state[,"I"], type = "l",

xlab = "Time (days)", ylab = "Number infectious")
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Parallelisation

To see multiple realisations: good idea to parallelise, then interpolate results. Write a
function, e.g., run_one_sim that .. runs one simulation

Use some parallelisation mechanisms to run run_one_sim in parallel. One easy way to
do it is to use a parallel version of lapply, which applies a function to a list

Here, I am showing parallelisation using a recent-ish package called future (and
future.apply, which contains the relevant lapply equivalent)

I am also illustrating another SSA library that I find less tricky on Windows because the
reactions are not precompiled: adaptivetau
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library(adaptivetau)
library(future.apply)
# It is useful to have the transitions, rates and
# names defined in a function
CTMC_SIS <- function() {

# Define transitions for adaptivetau
transitions <- list(

c(S = -1, I = +1), # new_infection
c(S = +1, I = -1) # recovery

)
# Define rate function
rates <- function(x, params, t) {

c(
params[["beta"]] * x["S"] * x["I"],
params[["gamma"]] * x["I"]

)
}
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event_names = c("new_infection", "recovery")
return(list(transitions = transitions,

rates = rates,
event_names = event_names))

}

run_one_sim = function(CTMC, params) {
IC <- c(S = (params$Pop-params$I_0),

I = params$I_0)
set.seed(NULL)
sol <- ssa.exact(

init.values = IC,
transitions = CTMC$transitions,
rateFunc = CTMC$rates,
params = params,
tf = params$t_f

)
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# Interpolate result (just I will do)
wanted_t =

seq(from = 0, to = params$t_f, by = 0.01)
interp_I = approx(x = sol[,"time"],

y = sol[,"I"],
xout = wanted_t)

names(interp_I) = c("time", "I")
sol$interp_I = interp_I
# Return result
return(sol)

}

# By default, use all available cores
plan(multisession)
## To use fewer workers, leaving one empty for
# instance
# plan(multisession, availableCores()-1)
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## To run sequentially
# plan(sequential)

# Set up parameters not needing computation
params <- list(gamma = 1/3,

Pop = 1000,
I_0 = 2,
R0 = 1.5,
t_f = 100, nb_sims = 50)

IC <- c(S = (params$Pop-params$I_0),
I = params$I_0)

# R0=beta/gamma*S0, so beta=R0*gamma/S0
params =

c(params,
beta = as.numeric(params$R0*params$gamma /

IC["S"]))
# Run the simulation
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CTMC <- CTMC_SIS()
SIMS = future_lapply(

X = 1:params$nb_sims,
FUN = function(x) run_one_sim(CTMC, params))

# Liberate the workers!
stopCluster(cl)

## Error in stopCluster(cl): could not find function "stopCluster"

# Find max y value for plot
y_max = max(unlist(lapply(SIMS, function(x) max(x$interp_I$I))),

na.rm = TRUE)
# Now plot
plot(SIMS[[1]]$interp_I$time,

SIMS[[1]]$interp_I$I,
type = "l", lwd = 0.5,
xlab = "Time (days)",
ylab = "Number infectious",
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ylim = c(0, y_max),
main = paste("CTMC with R0 =", params$R0))

for (i in 2:length(SIMS)) {
lines(SIMS[[i]]$interp_I$time,

SIMS[[i]]$interp_I$I,
type = "l", lwd = 0.5)

}
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Common part – The function we run I
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Common part – The function we run II
run_one_sim = function(params) {

IC <- c(S = (params$Pop-params$I_0), I = params$I_0)
params_local <- c(gamma = params$gamma, beta = params$beta)
reactions <- list(

# propensity function effects name for reaction
reaction("beta*S*I", c(S=-1,I=+1), "new_infection"),
reaction("gamma*I", c(S=+1,I=-1), "recovery")

)
set.seed(NULL)
sol <- ssa(

initial_state = IC,
reactions = reactions,
params = params_local,
method = ssa_exact(),
final_time = params$t_f,
log_firings = TRUE # This way we keep track of events

)
# Interpolate result (just I will do)
wanted_t = seq(from = 0, to = params$t_f, by = 0.01)
sol$interp_I = approx(x = sol$time, y = sol$state[,"I"],

xout = wanted_t)
names(sol$interp_I) = c("time", "I")
# Return result
return(sol)

}

p. 60 – Continuous time Markov chains
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Benefit of parallelisation

Run the parallel code for 100 sims between ‘tictoc::tic()‘ and ‘tictoc::toc()‘, giving
‘66.958 sec elapsed‘, then the sequential version

tictoc::tic()
SIMS = lapply(X = 1:params$number_sims,

FUN = function(x) run_one_sim(params))
tictoc::toc()

which gives ‘318.141 sec elapsed‘ on a 6C/12T Intel(R) Core(TM) i9-8950HK CPU @
2.90GHz (4.75× faster) or ‘12.067 sec elapsed‘ versus ‘258.985 sec elapsed‘ on a
32C/64T AMD Ryzen Threadripper 3970X 32-Core Processor (21.46× faster !)

p. 62 – Continuous time Markov chains
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Investigating outbreak types using a simple CTMC SIS

X(t) =
(
SA(t), IA(t)

)

CTMC X(t) characterized by transitions

Description Transition Rate

Infection
(
SA, IA

)
→

(
SA − 1, IA + 1

)
βASAIA

Recovery
(
SA, IA

)
→

(
SA + 1, IA − 1

)
γAIA
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Investigating outbreak types using a simple CTMC SIS with a twist

Regular chain of this type has I = 0 as sole absorbing state

We add another absorbing state: if I = Î , then the chain has left the stochastic phase
and is in a quasi-deterministic phase with exponential growth

Doing this, time to absorption measures become usable additionally to first passage
time ones

And the question becomes: how long does the chain “linger on” (“stutter”) before it is
absorbed? We define the inter-absorption trajectory as the stochastic phase
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Problem of the value of the upper bound Î

▶ Choose Î too small and the stochastic phase will not last long

▶ Choose Î too large and absorption will only be at the DFE

▶ So, how does one choose Î ?
▶ A formula of Whittle (1955)
▶ Multitype branching process (MTBP)
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One last thought for the road

V. Chetail. Crisis without borders: What does international law say about border
closure in the context of Covid-19? Frontiers in Political Science, 2 (12) (2020)

[..] a powerful expression of state’s sovereignty, immigration control provides a
typical avenue for governments to reassure their citizens and bolster a national
sense of belonging, while providing an ideal scapegoat for their own failure or
negligence.
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Why incorporate stochasticity?

Continuous time Markov chains

Branching process approximations of CTMC



What is a Branching Process?

The Core Idea
A branching process is a mathematical model for a population where individuals
produce a random number of offspring and then die.

▶ Think of bacteria splitting, a virus spreading, or even the survival of family
surnames.

▶ We start with an initial population, Z0.
▶ Each individual in generation n produces a number of offspring for generation n+1.
▶ This "number of offspring" is a random variable. All individuals produce offspring

according to the same probability distribution, independently of each other.
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The Galton-Watson Process
Let Zn be the size of the population in generation n. We typically start with Z0 = 1.
The population evolves according to the rule:

Zn+1 =
Zn∑
i=1

Xn,i

▶ The term Xn,i represents the number of offspring produced by the i-th individual in
generation n.

▶ The variables {Xn,i} are assumed to be independent and identically distributed
(i.i.d.) integer-valued random variables.

▶ We call their common distribution {pk}∞k=0 the offspring distribution, where
pk = P(X = k).

The Fundamental Questions

1. What is the long-term expected size of the population?
2. What is the probability that the population eventually dies out?
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Mean Offspring
The fate of the population hinges on a single parameter: the mean of the offspring
distribution

µ = E [X ] =
∞∑
k=0

k · pk

Expected Population Size

Using the law of total expectation, we find the expected size of the next generation:

E [Zn+1|Zn] = E

[
Zn∑
i=1

Xn,i

∣∣∣∣Zn

]
= ZnE [X ] = Znµ

Taking the expectation again, we get a simple recurrence:

E [Zn+1] = µE [Zn]

This implies:
E [Zn] = Z0µ

n
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The Three Regimes of Population Growth

The behavior of E [Zn] = Z0µ
n suggests three distinct cases:

Subcritical (µ < 1)

E [Zn]→ 0. The population
is expected to shrink. It goes
extinct with probability 1.

Critical (µ = 1)

E [Zn] = Z0. The population
is expected to remain stable.
Surprisingly, it still goes
extinct with probability 1.

Supercritical (µ > 1)

E [Zn]→∞. The population
is expected to grow
exponentially. It has a
non-zero probability of
surviving forever.
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Tool: The Probability Generating Function

To find the extinction probability, we need a powerful tool: the probability generating
function (PGF) of the offspring distribution X .

G (s) = E [sX ] =
∞∑
k=0

pks
k for |s| ≤ 1

Key Properties

▶ G (1) =
∑

pk = 1
▶ The mean can be found from the derivative: G ′(1) =

∑
kpk = µ.

▶ The PGF of Zn is the n-th iterate of G (s) with itself. If Gn(s) is the PGF of Zn,
then Gn+1(s) = G (Gn(s)).
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The Extinction Probability Equation
Let π0 be the probability of eventual extinction, starting with Z0 = 1.

π0 = P(population dies out) = lim
n→∞

P(Zn = 0)

Since P(Zn = 0) = Gn(0), and Gn+1(0) = G (Gn(0)), in the limit the extinction
probability π0 must satisfy the equation:

π0 = G (π0)
Theorem 2
The extinction probability π0 is the smallest non-negative solution to the equation
s = G (s).

▶ If µ ≤ 1, the only solution in [0, 1] is s = 1. So π0 = 1.
▶ If µ > 1, there is a unique solution in [0, 1), which is the extinction probability

π0 < 1.
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From Discrete to Continuous Time

Limitation of Galton-Watson
Generations don’t happen in synchronized steps in the real world. Individuals give birth
and die at random times.

This leads us to Continuous-Time Markov Chains (CTMCs).
▶ The state of the system is the population size, k ∈ {0, 1, 2, . . . }.
▶ Instead of generations, we have transition rates:

▶ λk : rate of birth when population is size k (moves to k + 1).
▶ δk : rate of death when population is size k (moves to k − 1).

▶ Often, we assume these rates are linear: λk = kλ and δk = kδ. This means
individuals act independently.
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Branching Process Approximation of a CTMC

The Key Insight

At the beginning of an outbreak (or for a very large population), the dynamics caused
by a single individual are largely independent of others.

This allows us to approximate the start of a CTMC population process with a branching
process.
Example: A Simple Epidemic (SIR Model)
▶ S : Susceptible, I : Infected, R : Recovered.
▶ An infected person meets others at a certain rate. If they meet a susceptible, a

new infection may occur (an "offspring").
▶ The infected person recovers (or dies) at another rate, ending their infectious

period.
▶ Question: How many new infections does a single infected person cause on

average?
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Case Study: The Basic Reproduction Number R0

Consider a single infected individual in a large population of susceptibles.
▶ Let β be the infection rate (rate of producing "offspring").
▶ Let γ be the recovery rate (rate of "dying").

The individual’s infectious lifetime is an exponential random variable with mean 1/γ.
The average number of secondary infections they cause is:

R0 = (rate of infection)× (average infectious period) = β × 1
γ
=

β

γ

The Connection
R0 is precisely the mean offspring number µ for the embedded branching process
that approximates the start of the epidemic.
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Applying Branching Theory to Epidemics

The fate of the epidemic’s initial phase is determined by R0:
▶ If R0 ≤ 1 (µ ≤ 1): The number of infected individuals is a subcritical or critical

process. The epidemic will die out with probability 1.
▶ If R0 > 1 (µ > 1): The process is supercritical. There is a positive probability that

the epidemic takes off and causes a major outbreak.
We can even calculate the probability of a major outbreak! It is 1− π0, where π0 is the
extinction probability.
For this simple birth-death infection process, the PGF is G (s) = γ

β+γ + β
β+γ s. Solving

s = G (s) gives the extinction probability:

π0 =
γ

β
=

1
R0

The probability of a major outbreak is 1− 1/R0.
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Summary

▶ Branching Processes model populations with i.i.d. offspring generation.
▶ The fate of the population is determined by the mean offspring number µ.

Extinction is certain if µ ≤ 1.
▶ The extinction probability π0 can be calculated as the smallest non-negative

fixed point of the probability generating function G (s).
▶ The initial stages of many large-scale Continuous-Time Markov Chains can be

approximated by a branching process.
▶ This allows us to apply the theory to real-world problems, like calculating an

epidemic’s basic reproduction number R0 and its probability of causing a major
outbreak.
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