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What is a Branching Process?

The Core Idea
A branching process is a mathematical model for a population where individuals
produce a random number of offspring and then die.

▶ Think of bacteria splitting, a virus spreading, or even the survival of family
surnames.

▶ We start with an initial population, Z0.
▶ Each individual in generation n produces a number of offspring for generation n+1.
▶ This "number of offspring" is a random variable. All individuals produce offspring

according to the same probability distribution, independently of each other.
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The Galton-Watson Process
Let Zn be the size of the population in generation n. We typically start with Z0 = 1.
The population evolves according to the rule:

Zn+1 =
Zn∑
i=1

Xn,i

▶ The term Xn,i represents the number of offspring produced by the i-th individual in
generation n.

▶ The variables {Xn,i} are assumed to be independent and identically distributed
(i.i.d.) integer-valued random variables.

▶ We call their common distribution {pk}∞k=0 the offspring distribution, where
pk = P(X = k).

The Fundamental Questions

1. What is the long-term expected size of the population?
2. What is the probability that the population eventually dies out?
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Mean Offspring
The fate of the population hinges on a single parameter: the mean of the offspring
distribution

µ = E [X ] =
∞∑
k=0

k · pk

Expected Population Size

Using the law of total expectation, we find the expected size of the next generation:

E [Zn+1|Zn] = E

[
Zn∑
i=1

Xn,i

∣∣∣∣Zn

]
= ZnE [X ] = Znµ

Taking the expectation again, we get a simple recurrence:

E [Zn+1] = µE [Zn]

This implies:
E [Zn] = Z0µ

n
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The Three Regimes of Population Growth

The behavior of E [Zn] = Z0µ
n suggests three distinct cases:

Subcritical (µ < 1)

E [Zn] → 0. The population
is expected to shrink. It goes
extinct with probability 1.

Critical (µ = 1)

E [Zn] = Z0. The population
is expected to remain stable.
Surprisingly, it still goes
extinct with probability 1.

Supercritical (µ > 1)

E [Zn] → ∞. The population
is expected to grow
exponentially. It has a
non-zero probability of
surviving forever.
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Tool: The Probability Generating Function

To find the extinction probability, we need a powerful tool: the probability generating
function (PGF) of the offspring distribution X .

G (s) = E [sX ] =
∞∑
k=0

pks
k for |s| ≤ 1

Key Properties

▶ G (1) =
∑

pk = 1
▶ The mean can be found from the derivative: G ′(1) =

∑
kpk = µ.

▶ The PGF of Zn is the n-th iterate of G (s) with itself. If Gn(s) is the PGF of Zn,
then Gn+1(s) = G (Gn(s)).
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The Extinction Probability Equation
Let π0 be the probability of eventual extinction, starting with Z0 = 1.

π0 = P(population dies out) = lim
n→∞

P(Zn = 0)

Since P(Zn = 0) = Gn(0), and Gn+1(0) = G (Gn(0)), in the limit the extinction
probability π0 must satisfy the equation:

π0 = G (π0)
Theorem 1
The extinction probability π0 is the smallest non-negative solution to the equation
s = G (s).

▶ If µ ≤ 1, the only solution in [0, 1] is s = 1. So π0 = 1.
▶ If µ > 1, there is a unique solution in [0, 1), which is the extinction probability

π0 < 1.
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From Discrete to Continuous Time

Limitation of Galton-Watson
Generations don’t happen in synchronized steps in the real world. Individuals give birth
and die at random times.

This leads us to Continuous-Time Markov Chains (CTMCs).
▶ The state of the system is the population size, k ∈ {0, 1, 2, . . . }.
▶ Instead of generations, we have transition rates:

▶ λk : rate of birth when population is size k (moves to k + 1).
▶ δk : rate of death when population is size k (moves to k − 1).

▶ Often, we assume these rates are linear: λk = kλ and δk = kδ. This means
individuals act independently.
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Branching Process Approximation of a CTMC

The Key Insight

At the beginning of an outbreak (or for a very large population), the dynamics caused
by a single individual are largely independent of others.

This allows us to approximate the start of a CTMC population process with a branching
process.
Example: A Simple Epidemic (SIR Model)
▶ S : Susceptible, I : Infected, R : Recovered.
▶ An infected person meets others at a certain rate. If they meet a susceptible, a

new infection may occur (an "offspring").
▶ The infected person recovers (or dies) at another rate, ending their infectious

period.
▶ Question: How many new infections does a single infected person cause on

average?
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Case Study: The Basic Reproduction Number R0

Consider a single infected individual in a large population of susceptibles.
▶ Let β be the infection rate (rate of producing "offspring").
▶ Let γ be the recovery rate (rate of "dying").

The individual’s infectious lifetime is an exponential random variable with mean 1/γ.
The average number of secondary infections they cause is:

R0 = (rate of infection)× (average infectious period) = β × 1
γ
=

β

γ

The Connection
R0 is precisely the mean offspring number µ for the embedded branching process
that approximates the start of the epidemic.
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Applying Branching Theory to Epidemics

The fate of the epidemic’s initial phase is determined by R0:
▶ If R0 ≤ 1 (µ ≤ 1): The number of infected individuals is a subcritical or critical

process. The epidemic will die out with probability 1.
▶ If R0 > 1 (µ > 1): The process is supercritical. There is a positive probability that

the epidemic takes off and causes a major outbreak.
We can even calculate the probability of a major outbreak! It is 1 − π0, where π0 is the
extinction probability.
For this simple birth-death infection process, the PGF is G (s) = γ

β+γ + β
β+γ s. Solving

s = G (s) gives the extinction probability:

π0 =
γ

β
=

1
R0

The probability of a major outbreak is 1 − 1/R0.
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Summary

▶ Branching Processes model populations with i.i.d. offspring generation.
▶ The fate of the population is determined by the mean offspring number µ.

Extinction is certain if µ ≤ 1.
▶ The extinction probability π0 can be calculated as the smallest non-negative

fixed point of the probability generating function G (s).
▶ The initial stages of many large-scale Continuous-Time Markov Chains can be

approximated by a branching process.
▶ This allows us to apply the theory to real-world problems, like calculating an

epidemic’s basic reproduction number R0 and its probability of causing a major
outbreak.
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