Review of first-year linear algebra



In MATH 2740, we rely on notions you acquired in MATH 1210/1220/1300. We also
use some material from first-year calculus

So let us (briefly) go over material in these courses

| also add (for some of you) a few things that will be handy and establish some
terminology that we use throughout the course



OUTLINE

Sets and logic

Complex numbers

Vectors and vector spaces
Linear systems and matrices
Matrix arithmetic
Diagonalisation

Linear independence/Bases/Dimension
Linear algebra in a nutshell



Sets and elements

Definition 1 (Set)
A set X is a collection of elements

We write x € X or x ¢ X to indicate that the element x belongs to the set X or does
not belong to the set X, respectively

Definition 2 (Subset)

Let X be a set. The set S is a subset of X, which is denoted S C X, if all its elements
belong to X

Not used here but worth noting: we say S is a proper subset of X and write S C X, if
it is a subset of X and not equal to X

p. 4 — Sets and logic



Quantifiers

A shorthand notation for “for all elements x belonging to X" is Vx € X

For example, if X = R, the field of real numbers, then Vx € R means “for all real
numbers x”

A shorthand notation for “there exists an element x in the set X" is Ix € X

V and 3 are quantifiers

p. 5 — Sets and logic



Intersection and union of sets

Let X and Y be two sets

Definition 3 (Intersection)

The intersection of X and Y, XN Y, is the set of elements that belong to X and to Y,

XNY={x:xeXand xe Y}

Definition 4 (Union)
The union of X and Y, X UY, is the set of elements that belong to X or to Y,

XUY={x:xeXorxeVY}

In mathematics, or=and/or in common parlance. We also have an exclusive or (xor)

p. 6 — Sets and logic



A teeny bit of logic

In a logical sense, a proposition is an assertion (or statement) whose truth value (true
or false) can be asserted. For example, a theorem is a proposition that has been shown
to be true. “The sky is blue” is also a proposition

Let A be a proposition. We generally write

A

to mean that A is true, and
not A

to mean that A is false. not A is the contraposition of A (or not A is the contraposite
of A)

p. 7 — Sets and logic



A teeny bit of logic (cont.)

Let A, B be propositions. Then
» A= B (read A implies B) means that whenever A is true, then so is B

» A <& B, also denoted A if and only if B (A iff B for short), means that A= B
and B= A
We also say that A and B are equivalent

Let A and B be propositions. Then

(A= B) < (not B = not A)

p. 8 — Sets and logic



Necessary or sufficient conditions

Suppose we want to establish whether a given statement P is true, depending on the
truth value of a statement H. Then we say that

» H is a necessary condition if P = H
(It is necessary that H be true for P to be true; so whenever P is true, so is H)

» H is a sufficient condition if H = P
(It suffices for H to be true for P to also be true)

» H is a necessary and sufficient condition if H < P, i.e., H and P are equivalent

p. 9 — Sets and logic



Playing with quantifiers

For the quantifiers V (for all) and 3 (there exists),

d is the contraposite of V

Therefore, for example, the contraposite of

VxeX,dyeY

IxeX,VyeyY

p. 10 — Sets and logic



Complex numbers

Definition 5 (Complex numbers)

A complex number is an ordered pair (a, b), where a, b € R. Usually written a + ib or
a-+ bi, where i? = —1 (i.e., i = /—1)
The set of all complex numbers is denoted C,

C={a+ib:a,beR}

p. 11 — Complex numbers



Definition 6 (Addition and multiplication on C)
Letting a + ib and ¢ + id € C, addition on C is defined by

(a+ib)+ (c+id)=(a+c)+i(b+d)
and multiplication on C is defined by

(a+ ib)(c + id) = (ac — bd) + i(ad + bc)

Latter is easy to obtain using regular multiplication and i = —1

p. 12 — Complex numbers



Properties

Va, 8,v € C,

a+pB=pF+aand af = fa [commutativity]
(a+8)+7=a+(B+9) and (af)y = () [associativity]
Yy+0=~and y1 =~ [identities]
Va € C, 38 € C unique s.t. a+ 5 =10 [additive inverse]
VYa#0e€C, 38 € C unique s.t. af =1 [multiplicative inverse]
Y(a+ B) =~vya+ 05 [distributivity]

p. 13 — Complex numbers



Additive & multiplicative inverse, subtraction, division

Definition 7
Let o, 8 € C

» —a is the additive inverse of ¢, i.e., the unique number in Cs.t. a+ (—a) =0
» Subtraction on C:

B-—a=pF+(-a)
» For a # 0, 1/« is the multiplicative inverse of o, i.e., the unique number in C
s.t.
a(l/a) =1
» Division on C:
Bla=pB(1/a)

p. 14 — Complex numbers



Definition 8 (Real and imaginary parts)

Let z=a+ ib. Then Re z = a is real part and Im z = b is imaginary part of z
If ambiguous, write Re (z) and Im (2)

Definition 9 (Conjugate and Modulus)
Let z=a+ibc C. Then

» Complex conjugate of z is
Zz=a—ib

» Modulus (or absolute value) of z is

z| =Va?+ b >0

p. 15 — Complex numbers



Properties of complex numbers

Let w,z € C, then
z+zZ=2Rez

z—2z=2ilm z

wzZ = wz
|Re z| < |z| and |Im z| < |Zz|
2| = |2]

wz| = |wl |z|

vVVvVvVvyVvVvVvyYVvyVvYvyy
N
I
N

|w+ z| < |w|+ |z [triangle inequality]

p. 16 — Complex numbers



Solving quadratic equations

Consider the polynomial

P(x) = ag + aix + ax?
where x, ag, a1, a» € R. Letting
A= af —4apay
you know that if A > 0, then
P(x) =0
has two distinct real solutions,
—a; — \/E —a1 + \/E

Xl =——FF— and Xy =
222 232

if A =0, then there is a (multiplicity 2) unique real solution
x| = —
! 232

while if A < 0, there is no solution

p. 17 — Complex numbers



Solving quadratic equations with complex numbers

Consider the polynomial
P(x) = ag + a1x + axx*

where x, ag, a1, a» € R. If instead of seeking x € R, we seek x € C, then the situation
is the same, except when A < 0
In the latter case, note that

VA = /(-1)(-A) = V=1V-A = iV-A

Since A < 0, —A > 0 and the square root is the usual one

p. 18 — Complex numbers



Solving quadratic equations with complex numbers
To summarize, consider the polynomial

P(X) = ag + aix + 32X2
where x, ag, a1, a» € R. Letting

A=2°— 4apar
1

Then
P(x) =0
has two solutions,
—a; \/Z
X2 =—F——
232
where, if A <0, x1,x> € C and take the form
—ai + i\/ AN
X2 =—F—"—
232

p. 19 — Complex numbers



Why this matters

Recall (we will come back to this later) that to find the eigenvalues of the matrix
E
A (1 A
a1 ax
we seek A solutions to det(A — AI) =0, i.e., A solutions to

]A—)\]I\:all_/\ a2

= (a1 — A)(ax — A) —apan =0
L e Nem ) - e

i.e., X solutions to
2
A — (a11 + a22)\ + aj1ax — apan =0

p. 20 — Complex numbers



Why this matters (cont.)
Let
P(\) = A\ — (a11 + a2)A + a1a — apan

From previous discussion, letting

2
A (a11 + a22)* — 4(a11a2 — aizan)
= afl + 352 + 2aj1a2 —4aj1ax + 4ajsan
3%1 + a§2 — 2at1a + 4a1pan

= (a11 — ax)? + 4azan

we have two (potentially equal) solutions to P(A\) =0

a1 +an + VA
2

X1,2 =

that are complex if A <0

0 -1
Example: (1 0>

p. 21 — Complex numbers



Vectors

A vector v is an ordered n-tuple of real or complex numbers

Denote F = R or C (real or complex numbers). For vq,...,v, €,
n
v=(vi,...,vy) €F
is a vector. vq,...,V, are the components of v

If unambiguous, we write v. Otherwise, v or vV

p. 22 — Vectors and vector spaces



Vector space

Definition 10 (Vector space)

A vector space over I is a set V together with two binary operations, vector
addition, denoted +, and scalar multiplication, that satisfy the relations:

1.

> 9 [

© N o o

Vu,v,we V,u+(v+w)=(u+v)+w
YVwweV, v+w=w+v
30 € V, the zero vector, such that v +0 =v forall v e V

Vv € V, there exists an element w € V, the additive inverse of v, such that
v+w=20

VaeRand Vv,w e V, a(v+ w) =av + aw
Va,f e Rand Vv € V, (a + B)v = av + v
Va,f € Rand Vv € V, o(Bv) = (af)v
VveV,lv=v

p. 23 — Vectors and vector spaces



Norms

Definition 11 (Norm)
Let V be a vector space over F, and v € V be a vector. The norm of v, denoted ||v
is a function from V to R, that has the following properties:
1. Forall v e V, ||v|]| > 0 with ||v| =0iff v =0
2. ForallaeFandallveV,|
3. Forall u,v eV, [[u+v| < |u] +|v|

]

av|| = af |[v]

p. 24 — Vectors and vector spaces



Let V be a vector space (for example, R? or R3)

The zero element (or zero vector) is the vector 0 = (0,...,0)

The additive inverse of v = (vi,...,v,)is —v =(—v1,...,—Vy)

For v =(v1,...,vpn) € V, the length (or Euclidean norm) of v is the scalar
vl =/ -+

, i.e., the vector in the

To normalize the vector v consists in considering v = v/||v|
same direction as v that has unit length

p. 25 — Vectors and vector spaces



Standard basis vectors

(0,0,1) are the standard basis vectors of

/7
R3. A vector v = (1, v2, v3) can then be r ————————— ;
written : k !
1
I 2i g m—
I
|
I

2i s
v =wvii+ wj+ vk / J *’3j : /,/
| d
I I

) 7
Vectors i = (1,0,0), j = (0,1,0) and k = 7 -
e :

[

[

[

'
_____________ v
X
For V (R"), the standard basis vectors are usually denoted ey, ..., e,, with
ex=(0,...,0,1,0,...,0)
—_——  —
k—1 n—k+1

p. 26 — Vectors and vector spaces



Dot product

Definition 12 (Dot product)

Let a=(a1,...,an) € R", b= (b1,...,b,) € R". The dot product of a and b is the
scalar

n
aeb=> ajbj=ayb +---+ anb,
i=1

The dot product is a special case of inner product

p. 27 — Vectors and vector spaces



Properties of the dot product

Theorem 13

Fora,b,c € R" and a € R,

> aea—al?

aeb—=bea
ae(b+c)=aeb+aec
(ea)eb=c(aeb)=ae(ab)

>
>
| 2
> Qea=0

p. 28 — Vectors and vector spaces

(soaea>0, withaea=0iffa=0)
(e is commutative)
(e distributive over +)



Some results stemming from the dot product

If 0 is the angle between the vectors a and b, then

aeb=|a| ||b|| cost

For any two vectors a and b, we have
laeb| <|all ||b]

with equality if and only if @ is a scalar multiple of b, or one of them is 0.

a and b are orthogonal if and only if ae b= 0.

p. 29 — Vectors and vector spaces



Scalar and vector projections
Scalar projection of v onto a (or component of v along a):

COINP,4,, — aev

llall

\
\
Vector (or orthogonal) projection of v onto a: /
DIOIgy_(sor) 2 _ s, Orthogonal

Tt/ Wl el projection

of von a

p. 30 — Vectors and vector spaces



Linear systems

Definition 17 (Linear system)

A linear system of m equations in n unknowns takes the form

anxi + apxe + - 4+ ainxn = by
aix1 + apxa + - 4+ amxn = b

. . . (1)
amXx1 + amx2 + -+ 4+ ampXn = by

The aj;, xj and b; could be in R or C, although here we typically assume they are in R

The aim is to find x1, xo, . . ., x,, that satisfy all equations simultaneously

p. 31 — Linear systems and matrices



Theorem 18 (Nature of solutions to a linear system)

A linear system can have
» no solution
» a unique solution

» infinitely many solutions

p. 32 — Linear systems and matrices



Operations on linear systems

You learned to manipulate linear systems using
» Gaussian elimination
» Gauss-Jordan elimination

with the aim to put the system in row echelon form (REF) or reduced row echelon
form (RREF)

p. 33 — Linear systems and matrices



Matrices and linear systems

Writing
al a2 - dn X1 b
Z T e R b I
dml dm2 - dmn X.n bn

where Ais an m x n matrix, x and b are n (column) vectors (or n x 1 matrices), then
the linear system in the previous slide takes the form

Ax =b

p. 34 — Linear systems and matrices



Notation for vectors

We usually assume vectors are column vectors and thus write, e.g.,
X1

X2

X = : :(Xl,XQ,...,Xn)T

Xn

Here, T is the transpose operator (more on this soon)

p. 35 — Linear systems and matrices



Consider the system
Ax=b

If b =0, the system is homogeneous and always has the solution x = 0 and so the
“no solution” option in Theorem 18 goes away

p. 36 — Linear systems and matrices



Definition 19 (Matrix)

An m-by-n or m x n matrix is a rectangular array of elements of R or C with m rows

and n columns,
dil -+ din

A= lay] =

dmi  °°° dmn

We always list indices as “row,column”

We denote M () or F™” the set of m x n matrices with entries in F = {R, C}.
Often, we omit F in M, if the nature of F is not important

When m = n, we usually write M,

p. 37 — Matrix arithmetic



Basic matrix arithmetic

Let A € Mpmp, B € My, be matrices (of the same size) and c € F = {R,C} be a
scalar

» Scalar multiplication
cA = [cajj]

> Addition
A+ B= [a,-j + b,'j]

» Subtraction (addition of —B = (—1)B to A)
A—B=A+(-1)B = [a; + (—1)bj] = [aj — bj]
» Transposition of A gives a matrix AT = M, with

AT:[aj,-], j=1,....n, i=1,...,m

p. 38 — Matrix arithmetic



Matrix multiplication

The (matrix) product of A and B, AB, requires the “inner dimensions” to match, i.e.,
the number of columns in A must equal the number of rows in B

Suppose that is the case, i.e., let A€ My, B € M,,. Then the i,j entry in C := AB

takes the form .
cj =Y awby
k=1

Recall that the matrix product is not commutative, i.e., in general, AB # BA (when
both those products are defined, i.e., when A, B € M,)

p. 39 — Matrix arithmetic



Special matrices

Definition 20 (Zero and identity matrices)

The zero matrix is the matrix 0,,, whose entries are all zero. The identity matrix is a
square n X n matrix I, with all entries on the main diagonal equal to one and all off
diagonal entries equal to zero

Definition 21 (Symmetric matrix)

A square matrix A € M, is symmetric if Vi,j =1,...,n, aj = aj;. In other words,
A€ M, is symmetric if A= AT

p. 40 — Matrix arithmetic



Properties of symmetric matrices

Theorem 22

1. IFAc M,, then A+ AT is symmetric
2. If A€ M, then AAT € M, and ATA € M,, are symmetric

X symmetric <= X = X, so use X = the matrix whose symmetric property you
want to check
1. Trueif A+ AT = (A+ AT)T. We have

A+ AT = AT (AT =AT+ A=A+ AT
2. AAT symmetric if AAT = (AAT)7T. We have
(AAT)T — (AT)TAT :AAT

AT A works similarly

p. 41 — Matrix arithmetic



Determinants
Definition 23 (Determinant)

Let A € M, with n > 2. The determinant of A is the scalar

det(A) = |A| = Zau 7

where C;j = (—1)'/det(A;) is the (i,j)-cofactor of A and Aj is the submatrix of A
from which the ith row and jth column have been removed

This is a cofactor expansion along the ith row
This is a recursive formula: it gives result in terms of n M, _1 matrices, to which it
must in turn be applied, all the way down to

ail a2
det = ajjax — azaz
a1 axn

p. 42 — Matrix arithmetic



Two special matrices and their determinants

Definition 24

A € M, is upper triangular if a; = 0 when / > j, lower triangular if a; = 0 when
Jj > i, triangular if it is either upper or lower triangular and diagonal if it is both upper
and lower triangular

When A diagonal, we often write A = diag(ai1, a2, ..., ann)

Theorem 25
Let A€ M, be triangular or diagonal. Then

n
det(A) = H ajj = ai1a22 - - - ann
i=1

p. 43 — Matrix arithmetic



Inversion /Singularity

Definition 26 (Matrix inverse)
A € M, is invertible (or nonsingular) if 3JA~! € M, s.t.
AATL=ATIA=T
A~1! is the inverse of A. If A1 does not exist, A is singular
Theorem 27
Let Aec M,, x,b € F". Then
> A invertible <= det(A) #0

> If A invertible, A1 is unique
> If A invertible, then Ax = b has the unique solution x = A~1b

p. 44 — Matrix arithmetic



Revisiting matrix arithmetic

With addition, subtraction, scalar multiplication, multiplication, transposition and
inversion, you can perform arithmetic on matrices essentially as on scalar, if you bear in
mind a few rules

» The sizes have to be compatible
» The order is important since matrix multiplication is not commutative

» Transposition and inversion change the order of products:

(AB)T = BTAT and (AB)! =B !A7!

p. 45 — Matrix arithmetic



Eigenvalues / Eigenvectors / Eigenpairs

Definition 28
Let A€ M,. A vector x € F" such that x # 0 is an eigenvector of A if 3\ € F called

an eigenvalue, s.t.
Ax = Ax

A couple (A, x) with x # 0 s.t. Ax = A\x is an eigenpair

If (X, x) eigenpair, then for ¢ # 0, (), cx) also eigenpair since A(cx) = cAx = cAx and
dividing both sides by c..

p. 46 — Diagonalisation



Similarity

Definition 29 (Similarity)
A, B € M,, are similar (A ~ B) if 3P € M,, invertible s.t.

P'AP =B

Theorem 30 (~ is an equivalence relation)

A, B,C e M,, then

> A~ A (~ reflexive)
» AvB — B~ A (~ symmetric)
» AvBandB~C — A~C (~ transitive)

p. 47 — Diagonalisation



Similarity (cont.)

A, B e M, with A~ B. Then
» det A=det B
» A invertible <= B invertible

» A and B have the same eigenvalues

p. 48 — Diagonalisation



Diagonalisation

Definition 32 (Diagonalisability)
A € M, is diagonalisable if 3D € M, diagonal s.t. A~ D

In other words, A € M, is diagonalisable if there exists a diagonal matrix D € M,, and
a nonsingular matrix P € M, s.t. P"1AP =D

Could of course write PAP~! = D since P invertible, but P~1AP makes more sense for
computations

p. 49 — Diagonalisation



Theorem 33
A € M, diagonalisable <= A has n linearly independent eigenvectors

Corollary 34 (Sufficient condition for diagonalisability)

A € M, has all its eigenvalues distinct =—> A diagonalisable

For P"LAP = D: in P, put the linearly independent eigenvectors as columns and in D,
the corresponding eigenvalues

p. 50 — Diagonalisation



Linear combination and span

Definition 35 (Linear combination)

Let V be a vector space. A linear combination of a set {vy, ..., vx} of vectorsin V is
a vector
vy + -+ CeVk

where ¢;,...,ck €F

Definition 36 (Span)

The set of all linear combinations of a set of vectors vy, ..., v, is the span of
{Vl, coog Vk},

span(vi,...,vk) ={awi + -+ ckvk:c,...,cx €F}

p. 51 — Linear independence/Bases/Dimension



Finite/infinite-dimensional vector spaces

Theorem 37

The span of a set of vectors in V is the smallest subspace of V' containing all the
vectors in the set

Definition 38 (Set of vectors spanning a space)

If span(vy,...,vx) =V, wesay vq,..., v spans V

Definition 39 (Dimension of a vector space)

A vector space V is finite-dimensional if some set of vectors in it spans V. A vector
space V is infinite-dimensional if it is not finite-dimensional

p. 52 — Linear independence/Bases/Dimension



Linear (in)dependence

Definition 40 (Linear independence/Linear dependence)

A set {wy,..., v} of vectors in a vector space V is linearly independent if
(avn+-+aw=0)e(a="=c=0),

where c1,...,ck € F. A set of vectors is linearly dependent if it is not linearly

independent.

If linearly dependent, assume w.l.o.g. that ¢; # 0, then

2 Ck
V1:——V2—..._7vk
a a

i.e., vq Is a linear combination of the other vectors in the set

p. 53 — Linear independence/Bases/Dimension



Theorem 41

Let V be a finite-dimensional vector space. Then the cardinal (number of elements) of
every linearly independent set of vectors is less than or equal to the number of elements
in every spanning set of vectors

E.g., in R3, a set with 4 or more vectors is automatically linearly dependent

p. 54 — Linear independence/Bases/Dimension



Basis

Definition 42 (Basis)

Let V be a vector space. A basis of V is a set of vectors in V that is both linearly
independent and spanning

Theorem 43 (Criterion for a basis)

A set {vi,...,vi} of vectors in a vector space V is a basis of V <= Yv € V, v can
be written uniquely in the form

V=oacvy+ -+ Vi,

where ¢1,...,cx € F

p. 55 — Linear independence/Bases/Dimension



Plus/Minus Theorem

Theorem 44 (Plus/Minus Theorem)

S a nonempty set of vectors in vector space V

» If S is linearly independent and V' > v ¢& span(S), then S U {v} is linearly
independent

» Ifv € S is linear combination of other vectors in S, then span(S) = span(S — {v})

p. 56 — Linear independence/Bases/Dimension



More on bases

Theorem 45 (Basis of finite-dimensional vector space)

Every finite-dimensional vector space has a basis

Theorem 46

Any two bases of a finite-dimensional vector space have the same number of vectors

Definition 47 (Dimension)

The dimension dim V of a finite-dimensional vector space V is the number of vectors
in any basis of the vector space

Theorem 48 (Dimension of a subspace)

Let V be a finite-dimensional vector space and U C V be a subspace of V. Then
dim U < dimV

p. 57 — Linear independence/Bases/Dimension



Constructing bases

Let V be a finite-dimensional vector space. Then every linearly independent set of
vectors in V with dim V elements is a basis of V

Let V be a finite-dimensional vector space. Then every spanning set of vectors in V
with dim V' elements is a basis of V

p. 58 — Linear independence/Bases/Dimension



To finish: the “famous” “growing result”

Theorem 51
Let A € M. The following statements are equivalent (TFAE)

1. The matrix A is invertible

2. Yb € F", Ax = b has a unique solution (x = A™1b)

3. The only solution to Ax = 0 is the trivial solution x =0
4. RREF(A) =1,

5. The matrix A is equal to a product of elementary matrices
6. Vb € F", Ax = b has a solution

7. There is a matrix B € M, such that AB =1,

8. There is an invertible matrix B € M, such that AB =1,
9. det(A) #0
10. 0 is not an eigenvalue of A

p. 59 — Linear independence/Bases/Dimension
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