MATH 2740 – 03 Matrix methods # Julien Arino University of Manitoba julien.arino@umanitoba.ca #### Fall 2024 The University of Manitoba campuses are located on original lands of Anishinaabeg, Ininew, Anisininew, Dakota and Dene peoples, and on the National Homeland of the Red River Métis. We respect the Treaties that were made on these territories, we acknowledge the harms and mistakes of the past, and we dedicate ourselves to move forward in partnership with Indigenous communities in a spirit of Reconciliation and collaboration. # **Outline** Least squares problems **QR** factorisation Singular values decomposition (SVD) Principal component analysis (PCA) **Support vector machines** Getting the Canadian census data Least squares problem – Initial considerations Least squares problem Fitting something more complicated ## Grabing the Canadian census data We want to consider the evolution of the population of Canada through time For this, we grab the Canadian census data Search for (Google) "Canada historical census data csv", since csv (comma separated values) is a very easy format to use with ${\sf R}$ Here, we find a csv for 1851 to 1976 We follow the link to Table A2-14, where we find another link, this time to a csv file. This is what we use in R ## Grabing the Canadian census data ## 1 The function read.csv reads in a file (potentially directly from the web) Assign the result to the variable data. We then use the function head to show the first few lines in the result. ``` data_old = read.csv("https://www150.statcan.gc.ca/n1/en/pub/11-516-x/secti head(data_old) ## X Series.A2.14. ``` ## 1 NA Year ## 2 NA ## 3 NA ## 4 NA ## 5 NA ## ## 6 NA Population.of.Canada..by.province..census.dates..1851.to.1976 X.1 NA Canada NA New - __Least-squares problems Obviously, this does not make a lot of sense. This is normal: take a look at the first ``` few lines in the file. They take the form head(data_old) X Series. A2.14. ## ## 1 NA ## 2 NA Year ## 3 NA ## 4 NA ``` ## 6 NA Population.of.Canada..by.province..census.dates..1851.to.1976 X.1 ## 5 NA NA New NA NA NA NA NA Canada ## 2 ## 3 ## 4 ## 5 ## 6 - Least squares problems ## ## 1 The first line here does this; it is easy to deal with this: the function read.csv takes the optional argument skip=, which indicates how many lines to skip at the beginning The second line is also empty, so let us skip it too data_old = read.csv("https://www150.statcan.gc.ca/n1/en/pub/11-516-x/secti skip = 2) NA NΑ ## 5 NA 1976 22,992,604 ## 3 - Least squares problems ``` head(data_old) Que ## X Year Canada X.1 Newfound. Prince X.2 Nova New ## 1 NA NA land Edward NA Scotia Brunswick Island ## 2 NA NA NA NA ## 3 NA NΑ 5 6 ## 4 NA NA NA ``` ## 6 NA NANA Manitoba X.3 Saskat. X.4 Alberta X.5 British X.6 Y. ## Ontario Columbia NA Terri ## 1 NA chewan NA NA ## 2 NA NA NA NA 10 557,725 118,229 NΑ NA 828,571 NA 11 677,250 6,234, NΑ 12 Here, there is the further issue that to make things legible, the table authors used 3 rows (from 2 to 4) to encode for long names (e.g., Prince Edward Island is written over 3 rows). Note, however, that 'read.csv' has rightly picked up on the first row being the column names. (You could also use the function 'read_csv' from the package 'readr' to read in the file. This function is a bit more flexible than 'read.csv' and can handle such cases more easily. However, it is not part of the base R package, so you would need to install it first.) Because we are only interested in the total population of the country and the year, let us simply get rid of the first 4 rows and of all columns except the second (Year) and third (Canada) ``` data_old = data_old[5:dim(data_old)[1], 2:3] head(data_old, n=4) ## Year Canada ## 5 1976 22,992,604 ## 6 p. 5 - Least squares problems ## 7 1971 21,568,311 ``` #### Still not perfect: - there are some empty rows; - the last few rows need to be removed too, they contain remarks about the data; - the population counts contain commas; - it would be better if years were increasing. Let us fix these issues. For 1 and 2, this is easy: remark that the Canada column is empty for both issues. Now remark as well that below Canada (and Year, for that matter), it is written <chr>. This means that entries in the column are characters. Looking for empty content therefore means looking for empty character chains. So to fix 1 and 2, we keep the rows where Canada does not equal the empty chain. To get rid of commas, we just need to substitute an empty chain for ",". To sort, we find the order for the years and apply it to the entire table. Finally, as remarked above, for now, both the year and the population are considered as character chains. This means that in order to plot anything, we will have to indicate that these are numbers. not characters. ``` data_old = data_old[which(data_old$Canada != ""),] data_old$Canada = gsub(",", "", data_old$Canada) order_data = order(data_old$Year) data old = data old[order data.] data_old$Year = as.numeric(data_old$Year) data_old$Canada = as.numeric(data_old$Canada) data old ## Year Canada ## 23 1851 2436297 ## 22 1861 3229633 ## 21 1871 3689257 ## 20 1881 4324810 4833239 ## 19 1891 ## 17 1901 5371315 7206643 ## 16 1911 ## 15 1921 8787949 1931 10376786 ``` Row numbers are a little weird, so let us fix this. ``` row.names(data old) = 1:dim(data old)[1] data_old ## Year Canada ## 1 1851 2436297 ## 2 1861 3229633 ## 3 1871 3689257 ## 4 1881 4324810 ## 5 1891 4833239 5371315 ## 6 1901 ## 7 1911 7206643 1921 8787949 ## 8 1931 10376786 ## 9 10 1941 11506655 11 1951 14009429 ## 12 1956 16080791 ``` ``` plot(data_old$Year, data_old$Canada, type = "b", lwd = 2, xlab = "Year", ylab = "Population") ``` download csv link in there, let us see where this leads us. The table is 720KB, so surely there must be more to this than just the population. To get a sense of that, we dump the whole data.frame, not just its head. But wait, this is only to 1976..! Looking around, we find another table here. There's a ``` data_new = read.csv("https://www12.statcan.gc.ca/census-recensement/2011/d head(data_new, 10) GEOGRAPHY.NAME CHARACTERISTIC YEAR.S. TOTAL FLAG TOTAL ## ``` 1956 16081 Canada Population (in thousands) 1961 18238 ## 2 ## 3 Canada Population (in thousands) 1966 20015 Canada Population (in thousands) ## 4 1971 21568 Canada Population (in thousands) Canada Population (in thousands) ## 5 1976 22993 ## 6 Canada Population (in thousands) 1981 24343 ## 7 1986 25309 Canada Population (in thousands) ## 8 1991 27297 Canada Population (in thousands) ## 9 Canada Population (in thousands) 1996 28847 Canada Population (in thousands) 2001 30007 ## 1 Haha, this looks quite nice but has way more information than we need: we just want the population of Canada and here we get 9960 rows. Also, the population of Canada is expressed in thousands, so once we selected what we want, we will need to multiply by 1,000. There are many ways to select rows. Let us proceed as follows: we want the rows where the geography is "Canada" and the characteristic is "Population (in thousands)". Let us find those indices of rows that satisfy the first criterion, those that satisfy the second; if we then intersect these two sets of indices, we will have selected the rows we want. ``` idx_CAN = which(data_new$GEOGRAPHY.NAME == "Canada") idx_char = which(data_new$CHARACTERISTIC == "Population (in thousands)") idx_keep = intersect(idx_CAN, idx_char) head(idx_keep, n = 8) ## [1] 1 2 3 4 5 6 7 8 ``` #### Yes, this looks okay, so let us keep only these ``` data_new = data_new[idx_keep,] head(data new. n = 8) ## GEOGRAPHY NAME CHARACTERISTIC YEAR.S. TOTAL FLAG TOTAL ## 1 Canada Population (in thousands) 1956 16081 ## 2 Canada Population (in thousands) 1961 18238 ## 3 Canada Population (in thousands) 1966 20015 ## 4 Canada Population (in thousands) 1971 21568 ## 5 Canada Population (in thousands) 1976 22993 ## 6 Canada Population (in thousands) 1981 24343 ## 7 Canada Population (in thousands) 1986 25309 Canada Population (in thousands) 1991 27297 ## 8 ``` We want to concatenate this data.frame with the one from earlier To do this, we need the two data frames to have the same number of columns and, actually, the same column names and entry types (notice that YEAR.S. in data_new is a column of characters) #### What remains to do - ▶ Rename the columns in the pruned old data (data_pruned) to year and population. Personally, I prefer lowercase column names.. and population is more informative than Canada - ► Keep only the relevant columns in data_new, rename them accordingly and multiply population by 1,000 there - Transform year in data_new to numbers - ▶ We already have data up to and including 1976 in data_old, so get rid of that in data_new - Append the rows of data_new to those of data_pruned ``` colnames(data_old) = c("year", "population") data_new = data_new[,c("YEAR.S.","TOTAL")] colnames(data_new) = c("year", "population") data_new$year = as.numeric(data_new$year) data_new = data_new[which(data_new$year>1976),] data_new$population = data_new$population*1000 ``` data = rbind(data old.data new) ### Let us plot the result ``` plot(data$year, data$population, type = "b", lwd = 2, xlab = "Year", ylab = "Population") ``` ## Save the processed data In case we need the data elsewhere, we save the data to a csv file ``` write.csv(data, file = "../CODE/Canada_census.csv") ``` Using readr saves the data without row numbers (by default), so we can do this instead ``` readr::write_csv(data, file = "../CODE/Canada_census.csv") ``` ## **Least squares problems** Getting the Canadian census data Least squares problem - Initial considerations Least squares problem Fitting something more complicated We just collected the census data for Canada Suppose we want to predict the population of Canada in 20 years given the historical population growth seen in the previous plot. What can we do? If there were just two points, we could easily "drive" a line through these two points. However, we have
much more than two points, so we will use *fitting*, *i.e.*, try to make a curve come as close to possible to the points We start with a line, giving rise to linear least squares ## Least squares approximation – A trivial case We want to find the equation of a line y = a + bx that goes through these two points, i.e., we seek a and b such that $$3 = a + b$$ $$5 = a + 2b$$ i.e., they satisfy y = a + bx for (x, y) = (1, 3) and (x, y) = (2, 5) This is a linear system with 2 equations and 2 unknowns a and b $$\begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 3 \\ 5 \end{pmatrix}$$ We know from the "famous" linear algebra in a nutshell theorem that this system has a unique solution if the matrix $$M = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$$ is invertible det(M) = 1, so we are good, we'll find a and b easily.. #### Now let's add another point These points are clearly not colinear, so there is not one line going through the 3 We end up with an *overdetermined* system $$3 = a + b$$ $$5 = a + 2b$$ $$4 = a + 3b$$ i.e., $$\begin{pmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 3 \\ 5 \\ 4 \end{pmatrix}$$ We have verified visually that the points are not colinear, so this system has no solution. (If you had to do it for good, you consider two vectors stemming from these 3 points and compute the angle between them or check that one is a multiple of the other). So let us instead try to find the line that comes "closest" to the 3 points. Obviously, not sensational.. How do we find "how far away"? - We could use projections onto the line (which we know minimises the distance) - However, this will be a problem if we later decide that rather than a straight line, we want to use something more "funky" like a quadratic or an exponential So instead, we compare, for a given value x, the distance between the true value y and the value of y obtained using the curve (line, here) that we use to fit the data Let (x_i, y_i) be the data points, i.e., here, $(x_1, y_1) = (1, 3)$, $(x_2, y_2) = (2, 5)$ and $(x_3, y_3) = (3, 4)$ Now suppose we use a line with equation y = a + bx and that we pick a value for a and b. Then at x_1 , $$\tilde{y}_1 = a + bx_1 = a + b$$ at x2 $$\tilde{y}_2 = a + bx_2 = a + 2b$$ and at x_3 , $$\tilde{y}_3 = a + bx_3 = a + 3b$$ Consider x_1 , for instance. The error we made by using the line with coefficients (a, b) is $(x_1, y_1)(x_1, \tilde{y}_1)$. For future use, let us create a function for $y = a_0 + a_1 x$. ``` my_line = function(x, a_0, a_1){ return(a_0 + a_1*x) } ``` Functions are super useful when programming ``` mv_line(1,2,3) ## [1] 5 mv_line(a_0 = 2, a_1 = 3, x = 1) ## [1] 5 my_line(x = c(1,2,3), a_0 = 2, a_1 = 3) ## [1] 5 8 11 ``` ``` a = 3 b = 0.5 # The line has equation y=a+bx plot(points$x, points$y, pch = 19, cex = 2, bty = "n", xlim = c(0, 3.5), ylim = c(0,6), xlab = "x", ylab = "y") abline(a = a, b = b, lwd = 2) abline(v = c(1,2,3)) # If we used abline(h=c(0,1)), we would get horizont p = mv line(c(1,2,3), a, b) points(c(1,2,3), p, pch = 19, cex = 2, col = "red") ``` Let us return to the error $$\overrightarrow{(x_1,y_1)(x_1,\tilde{y}_1)}$$ We have $$\overrightarrow{(x_1,y_1)(x_1,\tilde{y}_1)} = (x_1 - x_1, y_1 - \tilde{y}_1) = (0, y_1 - \tilde{y}_1)$$ Let us call $$\varepsilon_1 = y_1 - \tilde{y}_1$$ We can compute ε_2 and ε_3 too. And we can then form the **error vector** $$\mathbf{e} = (\varepsilon_1, \varepsilon_2, \varepsilon_3)^T$$ The norm of \mathbf{e} , $\|\mathbf{e}\|$, then tells us how much error we are making for the choice of (a,b) we are using The norm of \mathbf{e} , $\|\mathbf{e}\|$, tells us how much error we are making for the choice of (a,b) we are using So our objective is to find (a, b) such that $\|\mathbf{e}\|$ is minimal We could use various norms, but the Euclidean norm has some very interesting properties, so we use $$\|\mathbf{e}\| = \sqrt{\varepsilon_1^2 + \varepsilon_2^2 + \varepsilon_3^2}$$ # The linear least squares problem Given a collection of data points $(x_1, y_1), \ldots, (x_n, y_n)$, find the coefficients a, b of the line y = a + bx such that $$\|\mathbf{e}\| = \sqrt{\varepsilon_1^2 + \dots + \varepsilon_n^2} = \sqrt{(y_1 - \tilde{y}_1)^2 + \dots + (y_n - \tilde{y}_n)^2}$$ is minimal, where $\tilde{y}_i = a + bx_i$, for $i = 1, \dots, n$ p. 32 – Least squares proble Let us first hack a brute force solution! (For the example we have been using this far) We have our three points in the list 'points', the function my_line that computes the value \tilde{y} given x and a, b, so let us make a new function that, given a, b, computes e We'll also pass the points 'points' ``` error = function(a_0, a_1, points) { y_tilde = my_line(points$x, a_0 = a_0, a_1 = a_1) e = points$y - y_tilde return(sqrt(sum(e^2))) } error(a_0 = 2, a_1 = 3, points) ## [1] 7.874008 ``` ## [1] 1.224745 error(a_0 = 3.1, a_1 = 0.48, points) $error(a \ 0 = 3, a \ 1 = 0.5, points)$ p. 33 -##east squares problems_171 # Genetic algorithms Let's use something cool: a genetic algorithm - Genetic algorithms are a stochastic *optimisation* method. There are other types, e.g., gradient descent (deterministic) - The idea is to use a mechanism mimicking evolution's drive towards higher fitness - The function value is its fitness - We try different genes (here, different values of a, b) and evaluate their fitness.. keep the good ones - We mutate or crossover genes, throw in new ones, etc. - We keep doing this until we reach a stopping criterion - We then return the best gene we found ``` install.packages("GA") library(GA) GA = ga(type = "real-valued", fitness = function(x) -error(a_0 = x[1], a_1 = x[2], points), suggestions = c(a_0 = 2, a_1 = 3), lower = c(-10, -10), upper = c(10, 10), popSize = 200, maxiter = 150) # plot(GA) GA ## An object of class "ga" ## ## Call: ## ga(type = "real-valued", fitness = function(x) -error(a_0 = x[1], ## ``` if (!require("GA", quietly = TRUE)) { le slots: # The least squares problem (simplest version) #### Definition 1 Given a collection of points $(x_1, y_1), \ldots, (x_n, y_n)$, find the coefficients a, b of the line y = a + bx such that $$\|\mathbf{e}\| = \sqrt{\varepsilon_1^2 + \dots + \varepsilon_n^2} = \sqrt{(y_1 - \tilde{y}_1)^2 + \dots + (y_n - \tilde{y}_n)^2}$$ is minimal, where $\tilde{y}_i = a + bx_i$ for $i = 1, \dots, n$ We just saw how to solve this by brute force using a genetic algorith to minimise ||e||, let us now see how to solve this problem "properly" For a data point $i = 1, \ldots, n$ $$\varepsilon_i = y_i - \tilde{y}_i = y_i - (a + bx_i)$$ So if we write this for all data points, $$arepsilon_1 = y_1 - (a + bx_1)$$ $dots$ $arepsilon_n = y_n - (a + bx_n)$ In matrix form $$oldsymbol{e} = oldsymbol{b} - Aoldsymbol{x}$$ with $$m{e} = \begin{pmatrix} arepsilon_1 \\ \vdots \\ arepsilon_n \end{pmatrix}, A = \begin{pmatrix} 1 & x_1 \\ \vdots & \vdots \\ 1 & x_n \end{pmatrix}, m{x} = \begin{pmatrix} a \\ b \end{pmatrix} \text{ and } m{b} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$ # The least squares problem (reformulated) ## Definition 2 (Least squares solutions) Consider a collection of points $(x_1, y_1), \ldots, (x_n, y_n)$, a matrix $A \in \mathcal{M}_{mn}$, $\mathbf{b} \in \mathbb{R}^m$. A **least squares solution** of $A\mathbf{x} = \mathbf{b}$ is a vector $\tilde{\mathbf{x}} \in \mathbb{R}^n$ s.t. $$\forall \mathbf{x} \in \mathbb{R}^n, \quad \|\mathbf{b} - A\tilde{\mathbf{x}}\| \leq \|\mathbf{b} - A\mathbf{x}\|$$ # Needed to solve the problem ### Definition 3 (Best approximation) Let V be a vector space, $W \subset V$ and $\mathbf{v} \in V$. The **best approximation** to \mathbf{v} in W is $\tilde{\mathbf{v}} \in W$ s.t. $$\forall \mathbf{w} \in W, \mathbf{w} \neq \tilde{\mathbf{v}}, \quad \|\mathbf{v} - \tilde{\mathbf{v}}\| < \|\mathbf{v} - \mathbf{w}\|$$ ## Theorem 4 (Best approximation theorem) Let V be a vector space with an inner product, $W \subset V$ and $\mathbf{v} \in V$. Then $\operatorname{proj}_W(\mathbf{v})$ is the best approximation to \mathbf{v} in W # Let us find the least squares solution $\forall x \mathbb{R}^n$, Ax is a vector in the **column space** of A (the space spanned by the vectors making up the columns of A) Since $$\mathbf{x} \in \mathbb{R}^n$$, $A\mathbf{x} \in \text{col}(A)$ \implies least squares solution of Ax = b is a vector $\tilde{y} \in col(A)$ s.t. $$\forall \mathbf{y} \in \mathsf{col}(A), \quad \|\mathbf{b} - \tilde{\mathbf{y}}\| \leq \|\mathbf{b} - \mathbf{y}\|$$ This looks very much like Best approximation and Best approximation theorem # Putting things together We just stated: The least squares solution of Ax = b is a vector $\tilde{y} \in col(A)$ s.t. $$\forall \mathbf{y} \in \operatorname{col}(A), \quad \|\mathbf{b} - \tilde{\mathbf{y}}\| \leq \|\mathbf{b} - \mathbf{y}\|$$ We know (reformulating a tad): # Theorem 5 (Best approximation theorem) Let V be a vector space with an inner product, $W \subset V$ and $\mathbf{v} \in V$. Then $\operatorname{proj}_W(\mathbf{v}) \in W$ is the best approximation to \mathbf{v} in W, i.e., $$\forall \mathbf{w} \in W, \mathbf{w} \neq \operatorname{proj}_{W}(\mathbf{v}), \quad \|\mathbf{v} - \operatorname{proj}_{W}(\mathbf{v})\| < \|\mathbf{v} - \mathbf{w}\|$$ $$\implies W = \operatorname{col}(A), \ \boldsymbol{v} = \boldsymbol{b} \text{ and } \tilde{\boldsymbol{y}} = \operatorname{proj}_{\operatorname{col}(A)}(\mathbf{b})$$ So if \tilde{x} is a least squares solution of Ax = b, then $$\tilde{\pmb{y}} = A\tilde{\pmb{x}} = \mathsf{proj}_{\mathsf{col}(A)}(\mathbf{b})$$ We have $$\mathbf{b} - A\tilde{\mathbf{x}} = \mathbf{b} - \operatorname{proj}_{\operatorname{col}(A)}(\mathbf{b}) = \operatorname{perp}_{\operatorname{col}(A)}(\mathbf{b})$$ and it is easy to show that $$\mathsf{perp}_{\mathsf{col}(A)}(\mathbf{b}) \perp \mathsf{col}(A)$$ So for all columns a_i of A $$\mathbf{a}_i \cdot (\mathbf{b}
- A\tilde{\mathbf{x}}) = 0$$ which we can also write as $\mathbf{a}_{i}^{T}(\mathbf{b} - A\tilde{\mathbf{x}}) = 0$ For all columns a_i of A, $$\boldsymbol{a}_{i}^{T}(\boldsymbol{b}-A\tilde{\boldsymbol{x}})=0$$ This is equivalent to saying that $$A^{T}(\boldsymbol{b}-A\tilde{\boldsymbol{x}})=\mathbf{0}$$ We have $$A^{T}(\boldsymbol{b} - A\tilde{\boldsymbol{x}}) = \boldsymbol{0} \iff A^{T}\boldsymbol{b} - A^{T}A\tilde{\boldsymbol{x}} = \boldsymbol{0}$$ $$\iff A^{T}\boldsymbol{b} = A^{T}A\tilde{\boldsymbol{x}}$$ $$\iff A^{T}A\tilde{\boldsymbol{x}} = A^{T}\boldsymbol{b}$$ The latter system constitutes the **normal equations** for \tilde{x} ## Least squares theorem ## Theorem 6 (Least squares theorem) $$A \in \mathcal{M}_{mn}$$, $\boldsymbol{b} \in \mathbb{R}^m$. Then - 1. Ax = b always has at least one least squares solution \tilde{x} - 2. $\tilde{\mathbf{x}}$ least squares solution to $A\mathbf{x} = \mathbf{b} \iff \tilde{\mathbf{x}}$ is a solution to the normal equations $A^T A \tilde{\mathbf{x}} = A^T \mathbf{b}$ - 3. A has linearly independent columns \iff A^TA invertible. In this case, the least squares solution is unique and $$\tilde{\mathbf{x}} = \left(A^T A\right)^{-1} A^T \mathbf{b}$$ We have seen 1 and 2, we will not show 3 (it is not hard) # Least squares problems Getting the Canadian census data Least squares problem – Initial considerations Least squares problem Fitting something more complicated # Suppose we want to fit something a bit more complicated.. For instance, instead of the affine function $$y = a + bx$$ suppose we want to do the quadratic $$y = a_0 + a_1 x + a_2 x^2$$ or even $$y = k_0 e^{k_1 x}$$ How do we proceed? # Fitting the quadratic We have the data points $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ and want to fit $$y = a_0 + a_1 x + a_2 x^2$$ At (x_1, y_1) , $$\tilde{y}_1 = a_0 + a_1 x_1 + a_2 x_1^2$$: At (x_n, y_n) , $$\tilde{y}_n = a_0 + a_1 x_n + a_2 x_n^2$$ In terms of the error $$\varepsilon_1 = y_1 - \tilde{y}_1 = y_1 - (a_0 + a_1 x_1 + a_2 x_1^2)$$ \vdots $\varepsilon_n = y_n - \tilde{y}_n = y_n - (a_0 + a_1 x_n + a_2 x_n^2)$ i.e., $$e = b - Ax$$ where $$\boldsymbol{e} = \begin{pmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_n \end{pmatrix}, A = \begin{pmatrix} 1 & x_1 & x_1^2 \\ \vdots & \vdots & \vdots \\ 1 & x_n & x_n^2 \end{pmatrix}, \boldsymbol{x} = \begin{pmatrix} a_0 \\ a_1 \\ a_2 \end{pmatrix} \text{ and } \boldsymbol{b} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$ Theorem 6 applies, with here $A \in \mathcal{M}_{n3}$ and $\boldsymbol{b} \in \mathbb{R}^n$ # Fitting the exponential Things are a bit more complicated here If we proceed as before, we get the system $$y_1 = k_0 e^{k_1 x_1}$$ $$\vdots$$ $$y_n = k_0 e^{k_1 x_n}$$ $e^{k_1x_i}$ is a nonlinear term, it cannot be put in a matrix However: take the In of both sides of the equation $$\ln(y_i) = \ln(k_0 e^{k_1 x_i}) = \ln(k_0) + \ln(e^{k_1 x_i}) = \ln(k_0) + k_1 x_i$$ If $y_i, k_0 > 0$, then their In are defined and we're in business... $$ln(y_i) = ln(k_0) + k_1x_i$$ So the system is $$\mathbf{v} = A\mathbf{x} + \mathbf{b}$$ with $$A = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, \boldsymbol{x} = (k_1), \boldsymbol{b} = (\ln(k_0)) \text{ and } \boldsymbol{y} = \begin{pmatrix} \ln(y_1) \\ \vdots \\ \ln(y_n) \end{pmatrix}$$ Least squares problems #### Matrix factorisations Matrix factorisations are popular because they allow to perform some computations more easily There are several different types of factorisations. Here, we study just the QR factorisation, which is useful for many least squares problems ## Definition 7 (Orthogonal set of vectors) The set of vectors $\{\mathbf{v}_1,\ldots,\mathbf{v}_k\}\in\mathbb{R}^n$ is an **orthogonal set** if $$\forall i, j = 1, \dots, k, \quad i \neq j \implies \mathbf{v}_i \bullet \mathbf{v}_j = 0$$ #### Theorem 8 $\{\mathbf{v}_1,\ldots,\mathbf{v}_k\}\in\mathbb{R}^n$ with $\forall i,\ \mathbf{v}_i\neq\mathbf{0}$, orthogonal set $\implies \{\mathbf{v}_1,\ldots,\mathbf{v}_k\}\in\mathbb{R}^n$ linearly independent ### Definition 9 (Orthogonal basis) Let S be a basis of the subspace $W \subset \mathbb{R}^n$ composed of an orthogonal set of vectors. We say S is an **orthogonal basis** of W ### Proof of Theorem 8 Assume $\{v_1,\ldots,v_k\}$ orthogonal set with $v_i\neq \mathbf{0}$ for all $i=1,\ldots,k$. Recall $\{v_1,\ldots,v_k\}$ is LI if $$c_1 \mathbf{v}_1 + \cdots + c_k \mathbf{v}_k = \mathbf{0} \iff c_1 = \cdots = c_k = \mathbf{0}$$ So assume $c_1, \ldots, c_k \in \mathbb{R}$ are s.t. $c_1 \mathbf{v}_1 + \cdots + c_k \mathbf{v}_k = \mathbf{0}$. Recall that $\forall \mathbf{x} \in \mathbb{R}^k$, $\mathbf{0}_k \bullet \mathbf{x} = \mathbf{0}$. So for some $\mathbf{v}_i \in \{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$ $$0 = \mathbf{0} \bullet \mathbf{v}_{i}$$ $$= (c_{1}\mathbf{v}_{1} + \dots + c_{k}\mathbf{v}_{k}) \bullet \mathbf{v}_{i}$$ $$= c_{1}\mathbf{v}_{1} \bullet \mathbf{v}_{i} + \dots + c_{k}\mathbf{v}_{k} \bullet \mathbf{v}_{i}$$ $$(1)$$ As $\{\mathbf{v}_1,\ldots,\mathbf{v}_k\}$ orthogonal, $\mathbf{v}_i\bullet\mathbf{v}_i=0$ when $i\neq j$, (1) reduces to $$c_i \mathbf{v}_i \bullet \mathbf{v}_i = 0 \iff c_i ||\mathbf{v}_i||^2 = 0$$ As $\mathbf{v}_i \neq 0$ for all i, $\|\mathbf{v}_i\| \neq 0$ and so $c_i = 0$. This is true for all i, hence the result # Example – Vectors of the standard basis of \mathbb{R}^3 For \mathbb{R}^3 , we denote $$m{i} = egin{pmatrix} 1 \ 0 \ 0 \end{pmatrix}, \quad m{j} = egin{pmatrix} 0 \ 1 \ 0 \end{pmatrix} \ ext{and} \ m{k} = egin{pmatrix} 0 \ 0 \ 1 \end{pmatrix}$$ $(\mathbb{R}^k \text{ for } k > 3, \text{ we denote them } \boldsymbol{e}_i)$ Clearly, $\{i,j\}$, $\{i,k\}$, $\{j,k\}$ and $\{i,j,k\}$ orthogonal sets. The standard basis vectors are also $\neq \mathbf{0}$, so the sets are LI. And $$\{i,j,k\}$$ is an orthogonal basis of \mathbb{R}^3 since it spans \mathbb{R}^3 and is LI $$c_1 \boldsymbol{i} + c_2 \boldsymbol{j} + c_3 \boldsymbol{k} = c_1 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + c_2 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + c_3 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix}$$ # Orthonormal version of things ## Definition 10 (Orthonormal set) The set of vectors $\{v_1, \dots, v_k\} \in \mathbb{R}^n$ is an **orthonormal set** if it is an orthogonal set and furthermore $$\forall i=1,\ldots,k, \quad \|\mathbf{v}_i\|=1$$ ### Definition 11 (Orthonormal basis) A basis of the subspace $W\subset\mathbb{R}^n$ is an **orthonormal basis** if the vectors composing it are an orthonormal set $\{\mathbf{v}_1,\ldots,\mathbf{v}_k\}\in\mathbb{R}^n$ is orthonormal if $$\mathbf{v}_i \bullet \mathbf{v}_j = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$$ # **Projections** ## Definition 12 (Orthogonal projection onto a subspace) $W \subset \mathbb{R}^n$ a subspace and $\{u_1, \dots, u_k\}$ an orthogonal basis of W. $\forall v \in \mathbb{R}^n$, the **orthogonal projection** of v **onto** W is $$\operatorname{proj}_{\mathcal{W}}(\mathbf{v}) = rac{\mathbf{u}_1 ullet \mathbf{v}}{\|\mathbf{u}_1\|^2} \mathbf{u}_1 + \dots + rac{\mathbf{u}_k ullet \mathbf{v}}{\|\mathbf{u}_k\|^2} \mathbf{u}_k$$ ## Definition 13 (Component orthogonal to a subspace) $W \subset \mathbb{R}^n$ a subspace and $\{u_1, \dots, u_k\}$ an orthogonal basis of W. $\forall v \in \mathbb{R}^n$, the component of v orthogonal to W is $$\mathsf{perp}_W(\mathbf{v}) = \mathbf{v} - \mathsf{proj}_W(\mathbf{v})$$ What this aims to do is to construct an orthogonal basis for a subspace $W\subset \mathbb{R}^n$ To do this, we use the Gram-Schmidt orthogonalisation process, which turn s a basis of W into an orthogonal basis of W # **Gram-Schmidt process** #### Theorem 14 $$W \subset \mathbb{R}^n$$ a subset and $\{x_1, \ldots, x_k\}$ a basis of W . Let $$v_1 = x_1$$ $v_2 = x_2 - \frac{v_1 \cdot x_2}{\|v_1\|^2} v_1$ $v_3 = x_3 - \frac{v_1 \cdot x_3}{\|v_1\|^2} v_1 - \frac{v_2 \cdot x_3}{\|v_2\|^2} v_2$ \vdots $$W_1 = \mathsf{span}(\pmb{x}_1), W_2 = \mathsf{span}(\pmb{x}_1, \pmb{x}_2), \ldots, W_k = \mathsf{span}(\pmb{x}_1, \ldots, \pmb{x}_k)$$ $\mathbf{v}_k = \mathbf{x}_k - \frac{\mathbf{v}_1 \bullet \mathbf{x}_k}{\|\mathbf{v}_k\|^2} \mathbf{v}_1 - \dots - \frac{\mathbf{v}_{k-1} \bullet \mathbf{x}_k}{\|\mathbf{v}_k\|^2} \mathbf{v}_{k-1}$ Then $\forall i = 1, ..., k$, $\{\mathbf{v}_1, ..., \mathbf{v}_i\}$ orthogonal basis for W_i #### Theorem 15 Let $Q \in \mathcal{M}_{mn}$. The columns of Q form an orthonormal set if and only if $$Q^TQ=\mathbb{I}_n$$ ### Definition 16 (Orthogonal matrix) $Q \in \mathcal{M}_n$ is an **orthogonal matrix** if its columns form an orthonormal set So $$Q \in \mathcal{M}_n$$ orthogonal if $Q^TQ = \mathbb{I}$, i.e., $Q^T = Q^{-1}$ ### Theorem 17 (NSC for orthogonality) $$Q \in \mathcal{M}_n$$ orthogonal $\iff Q^{-1} = Q^T$ # Theorem 18 (Orthogonal matrices "encode" isometries) Let $Q \in \mathcal{M}_n$. TFAE - 1. Q orthogonal - 2. $\forall \mathbf{x} \in \mathbb{R}^n$, $||Q\mathbf{x}|| = ||\mathbf{x}||$ - 3. $\forall x, y \in \mathbb{R}^n$, $Qx \bullet Qy = x \bullet y$ #### Theorem 19 Let $Q \in \mathcal{M}_n$ be orthogonal. Then - 1. The rows of Q form an orthonormal set - 2. Q^{-1} orthogonal - 3. $\det Q = \pm 1$ - 4. $\forall \lambda \in \sigma(Q), |\lambda| = 1$ - 5. If $Q_2 \in \mathcal{M}_n$ also orthogonal, then QQ_2 orthogonal ### Proof of 4 in Theorem 19 All statements in Theorem 19 are easy, but let's focus on 4 Let λ be an eigenvalue of $Q \in \mathcal{M}_n$ orthogonal, i.e., $\exists \mathbb{R}^n \ni \mathbf{x} \neq \mathbf{0}$ s.t. $$Q\mathbf{x} = \lambda \mathbf{x}$$ Take the norm on both sides $$\|Q\mathbf{x}\| = \|\lambda\mathbf{x}\|$$ From 2 in Theorem 18, $\|Qx\| = \|x\|$ and from the properties of norms, $\|\lambda x\| = |\lambda| \|x\|$, so we have $$\|Q\mathbf{x}\| = \|\lambda\mathbf{x}\| \iff \|\mathbf{x}\| = |\lambda| \|\mathbf{x}\| \iff 1 = |\lambda|$$ (we can divide by ||x|| since $x \neq 0$ as an eigenvector)
The QR factorisation #### Theorem 20 Let $A \in \mathcal{M}_{mn}$ with LI columns. Then A can be factored as $$A = QR$$ where $Q \in \mathcal{M}_{mn}$ has orthonormal columns and $R \in \mathcal{M}_n$ is nonsingular upper triangular p. 61 - QR factorisation ### Back to least squares So what was the point of all that..? #### Theorem 21 (Least squares with QR factorisation) $A \in \mathcal{M}_{mn}$ with LI columns, $\mathbf{b} \in \mathbb{R}^m$. If A = QR is a QR factorisation of A, then the unique least squares solution $\tilde{\mathbf{x}}$ of $A\mathbf{x} = \mathbf{b}$ is $$\tilde{\mathbf{x}} = R^{-1}Q^T\mathbf{b}$$ #### Proof of Theorem 21 A has LI columns so - least squares $A\mathbf{x} = \mathbf{b}$ has unique solution $\tilde{\mathbf{x}} = (A^T A)^{-1} A^T \mathbf{b}$ - by Theorem 20, A can be written as A = QR with $Q \in \mathcal{M}_{mn}$ with orthonormal columns and $R \in \mathcal{M}_n$ nonsingular and upper triangular So $$A^{T}A\tilde{\mathbf{x}} = A^{T}\mathbf{b} \implies (QR)^{T}QR\tilde{\mathbf{x}} = (QR)^{T}\mathbf{b}$$ $$\implies R^{T}Q^{T}QR\tilde{\mathbf{x}} = R^{T}Q^{T}\mathbf{b}$$ $$\implies R^{T}\mathbb{I}_{n}R\tilde{\mathbf{x}} = R^{T}Q^{T}\mathbf{b}$$ $$\implies R^{T}R\tilde{\mathbf{x}} = R^{T}Q^{T}\mathbf{b}$$ $$\implies (R^{T})^{-1}R\tilde{\mathbf{x}} = (R^{T})^{-1}R^{T}Q^{T}\mathbf{b}$$ $$\implies R\tilde{\mathbf{x}} = Q^{T}\mathbf{b}$$ $$\implies \tilde{\mathbf{x}} = R^{-1}Q^{T}\mathbf{b} \quad \Box$$ Least squares problems **QR** factorisation Singular values decomposition (SVD) Principal component analysis (PCA) Support vector machines ## Matrix factorisations (continued) The singular value decomposition (known mostly by its acronym, SVD) is yet another type of factorisation/decomposition.. The SVD Applications of the SVD - Least squares Applications of the SVD - Compressing images ### Singular values #### Definition 22 (Singular value) Let $A \in \mathcal{M}_{mn}(\mathbb{R})$. The **singular values** of A are the real numbers $$\sigma_1 \geq \sigma_2 \geq \cdots \sigma_n \geq 0$$ that are the square roots of the eigenvalues of A^TA ## Singular values are real and nonnegative? Recall that $\forall A \in \mathcal{M}_{mn}$, $A^T A$ is symmetric Claim 1. Real symmetric matrices have real eigenvalues **Proof.** $A \in \mathcal{M}_n(\mathbb{R})$ symmetric and (λ, \mathbf{v}) eigenpair of A, i.e, $A\mathbf{v} = \lambda \mathbf{v}$. Taking the complex conjugate, $\overline{A\mathbf{v}} = \overline{\lambda} \overline{\mathbf{v}}$ Since $$A \in \mathcal{M}_n(\mathbb{R})$$, $\overline{A} = A$ $(z = \overline{z} \iff z \in \mathbb{R})$ So $$A\bar{\mathbf{v}} = \overline{A}\bar{\mathbf{v}} = \overline{A\mathbf{v}} = \overline{\lambda}\bar{\mathbf{v}} = \overline{\lambda}\bar{\mathbf{v}}$$ i.e., if (λ, \mathbf{v}) eigenpair, $(\bar{\lambda}, \bar{\mathbf{v}})$ also eigenpair Still assuming $A \in \mathcal{M}_n(\mathbb{R})$ symmetric and (λ, \mathbf{v}) eigenpair of A and using what we just proved (that $(\bar{\lambda}, \bar{\mathbf{v}})$ also eigenpair), take transposes $$A\bar{\mathbf{v}} = \bar{\lambda}\bar{\mathbf{v}} \iff (A\bar{\mathbf{v}})^T = (\bar{\lambda}\bar{\mathbf{v}})^T$$ $$\iff \bar{\mathbf{v}}^T A^T = \bar{\lambda}\bar{\mathbf{v}}^T$$ $$\iff \bar{\mathbf{v}}^T A = \bar{\lambda}\bar{\mathbf{v}}^T \qquad [A \text{ symmetric}]$$ Let us now compute $\lambda(\bar{\mathbf{v}} \bullet \mathbf{v})$. We have $$\lambda(\bar{\mathbf{v}} \bullet \mathbf{v}) = \lambda \bar{\mathbf{v}}^T \mathbf{v} = \bar{\mathbf{v}}^T (\lambda \mathbf{v})$$ $$= \bar{\mathbf{v}}^T (A \mathbf{v}) = (\bar{\mathbf{v}}^T A) \mathbf{v}$$ $$= (\bar{\lambda} \bar{\mathbf{v}}^T) \mathbf{v} = \bar{\lambda} (\bar{\mathbf{v}} \bullet \mathbf{v})$$ $$\iff (\lambda - \bar{\lambda}) (\bar{\mathbf{v}} \bullet \mathbf{v}) = 0$$ We have shown $$(\lambda - \bar{\lambda})(\bar{\mathbf{v}} \bullet \mathbf{v}) = 0$$ Let $$\mathbf{v} = \begin{pmatrix} a_1 + ib_1 \\ \vdots \\ a_n + ib_n \end{pmatrix}$$ Then $$\vec{\mathbf{v}} = \begin{pmatrix} a_1 - ib_1 \\ \vdots \\ a_n - ib_n \end{pmatrix}$$ So $$\bar{\mathbf{v}} \bullet \mathbf{v} = (a_1^2 + b_1^2) + \cdots + (a_n^2 + b_n^2)$$ But \mathbf{v} eigenvector is $\neq \mathbf{0}$, so $\mathbf{\bar{v}} \bullet \mathbf{v} \neq \mathbf{0}$, so $$(\lambda - \bar{\lambda})(\bar{\mathbf{v}} \bullet \mathbf{v}) = 0 \iff \lambda - \bar{\lambda} = 0 \iff \lambda = \bar{\lambda} \iff \lambda \in \mathbb{R}$$ **Claim 2.** For $A \in \mathcal{M}_{mn}(\mathbb{R})$, the eigenvalues of A^TA are real and nonnegative **Proof.** We know that for $A \in \mathcal{M}_{mn}$, A^TA symmetric and from previous claim, if $A \in \mathcal{M}_{mn}(\mathbb{R})$, then A^TA is symmetric and real and with real eigenvalues Let (λ, \mathbf{v}) be an eigenpair of $A^T A$, with \mathbf{v} chosen so that $\|\mathbf{v}\| = 1$ Norms are functions $V \to \mathbb{R}_+$, so $||A\mathbf{v}||$ and $||A\mathbf{v}||^2$ are ≥ 0 and thus $$0 \le ||A\mathbf{v}||^2 = (A\mathbf{v}) \bullet (A\mathbf{v}) = (A\mathbf{v})^T (A\mathbf{v})$$ $$= \mathbf{v}^T A^T A \mathbf{v} = \mathbf{v}^T (A^T A \mathbf{v}) = \mathbf{v}^T (\lambda \mathbf{v})$$ $$= \lambda (\mathbf{v}^T \mathbf{v}) = \lambda (\mathbf{v} \bullet \mathbf{v}) = \lambda ||\mathbf{v}||^2$$ $$= \lambda \quad \Box$$ **Claim 3.** For $A \in \mathcal{M}_{mn}(\mathbb{R})$, the nonzero eigenvalues of A^TA and AA^T are the same **Proof.** Let (λ, \mathbf{v}) be an eigenpair of $A^T A$ with $\lambda \neq 0$. Then $\mathbf{v} \neq \mathbf{0}$ and $$A^T A \mathbf{v} = \lambda \mathbf{v} \neq \mathbf{0}$$ Left multiply by A $$AA^TA\mathbf{v} = \lambda A\mathbf{v}$$ Let $\mathbf{w} = A\mathbf{v}$, we thus have $AA^T\mathbf{w} = \lambda\mathbf{w}$; in other words, $A\mathbf{v}$ is an eigenvector of AA^T corresponding to the (nonzero) eigenvalue λ The reverse works the same way.. # Singular values decomposition (SVD) Singular values #### The SVD Applications of the SVD – Least squares Applications of the SVD - Compressing images ## The singular value decomposition (SVD) #### Theorem 23 (SVD) $$A \in \mathcal{M}_{mn}$$ with singular values $\sigma_1 \geq \cdots \geq \sigma_r > 0$ and $\sigma_{r+1} = \cdots = \sigma_n = 0$ Then there exists $U \in \mathcal{M}_m$ orthogonal, $V \in \mathcal{M}_n$ orthogonal and a block matrix $\Sigma \in \mathcal{M}_{mn}$ taking the form $$\Sigma = \begin{pmatrix} D & 0_{r,n-r} \\ 0_{m-r,r} & 0_{m-r,n-r} \end{pmatrix}$$ where $$D = \mathsf{diag}(\sigma_1, \ldots, \sigma_r) \in \mathcal{M}_r$$ such that $$A = U\Sigma V^T$$ #### Definition 24 We call a factorisation as in Theorem 23 the singular value decomposition of A. The columns of U and V are, respectively, the **left** and **right singular vectors** of A U and V^T are rotation or reflection matrices, Σ is a scaling matrix $U \in \mathcal{M}_m$ orthogonal matrix with columns the eigenvectors of AA^T $V \in \mathcal{M}_n$ orthogonal matrix with columns the eigenvectors of $A^T A$ ### Outer product form of the SVD #### Theorem 25 (Outer product form of the SVD) $A \in \mathcal{M}_{mn}$ with singular values $\sigma_1 \ge \cdots \ge \sigma_r > 0$ and $\sigma_{r+1} = \cdots = \sigma_n = 0$, u_1, \ldots, u_r and $\mathbf{v}_1, \ldots, \mathbf{v}_r$, respectively, left and right singular vectors of A corresponding to these singular values Then $$A = \sigma_1 \boldsymbol{u}_1 \boldsymbol{v}_1^T + \dots + \sigma_r \boldsymbol{u}_r \boldsymbol{v}_r^T$$ (2) ## Computing the SVD (case of \neq eigenvalues) To compute the SVD, we use the following result #### Theorem 26 Let $A \in \mathcal{M}_n$ symmetric, $(\lambda_1, \mathbf{u}_1)$ and $(\lambda_2, \mathbf{u}_2)$ be eigenpairs, $\lambda_1 \neq \lambda_2$. Then $\mathbf{u}_1 \bullet \mathbf{u}_2 = 0$ - Singular values decomposition (SVD) #### Proof of Theorem 26 $$A \in \mathcal{M}_n$$ symmetric, $(\lambda_1, \boldsymbol{u}_1)$ and $(\lambda_2, \boldsymbol{u}_2)$ eigenpairs with $\lambda_1 \neq \lambda_2$ $$\lambda_{1}(\mathbf{v}_{1} \bullet \mathbf{v}_{2}) = (\lambda_{1}\mathbf{v}_{1}) \bullet \mathbf{v}_{2}$$ $$= A\mathbf{v}_{1} \bullet \mathbf{v}_{2}$$ $$= (A\mathbf{v}_{1})^{T}\mathbf{v}_{2}$$ $$= \mathbf{v}_{1}^{T}A^{T}\mathbf{v}_{2}$$ $$= \mathbf{v}_{1}^{T}(A\mathbf{v}_{2}) \qquad [A \text{ symmetric so } A^{T} = A]$$ $$= \mathbf{v}_{1}^{T}(\lambda_{2}\mathbf{v}_{2})$$ $$= \lambda_{2}(\mathbf{v}_{1}^{T}\mathbf{v}_{2})$$ $$= \lambda_{2}(\mathbf{v}_{1} \bullet \mathbf{v}_{2})$$ So $$(\lambda_1 - \lambda_2)(\mathbf{v}_1 \bullet \mathbf{v}_2) = 0$$. But $\lambda_1 \neq \lambda_2$, so $\mathbf{v}_1 \bullet \mathbf{v}_2 = 0$ # Computing the SVD (case of \neq eigenvalues) If all eigenvalues of A^TA (or AA^T) are distinct, we can use Theorem 26 - 1. Compute $A^TA \in \mathcal{M}_n$ - 2. Compute eigenvalues $\lambda_1, \ldots, \lambda_n$ of $A^T A$; order them as $\lambda_1 > \cdots > \lambda_n \geq 0$ (> not > since \neq) - 3. Compute singular values $\sigma_1 = \sqrt{\lambda_1}, \dots, \sigma_n = \sqrt{\lambda_n}$ - 4. Diagonal matrix D in Σ is either in \mathcal{M}_n (if $\sigma_n > 0$) or in \mathcal{M}_{n-1} (if $\sigma_n = 0$) - 5. Since eigenvalues are distinct, Theorem 26 \implies eigenvectors are orthogonal set. Compute these eigenvectors in the same order as the eigenvalues - 6. Normalise them and use them to make the matrix V, i.e., $V = [\mathbf{v}_1 \cdots \mathbf{v}_n]$ - 7. To find the u_i , compute, for $i = 1, \ldots, r$, $$oldsymbol{u}_i = rac{1}{\sigma_i} A oldsymbol{v}_i$$ and ensure that $\|\boldsymbol{u}_i\|=1$ # Computing the SVD (case where some eigenvalues are =) - 1. Compute $A^TA \in \mathcal{M}_n$ - 2. Compute eigenvalues $\lambda_1, \ldots, \lambda_n$ of $A^T A$; order them as $\lambda_1 \geq \cdots \geq \lambda_n \geq 0$ - 3. Compute singular values $\sigma_1 = \sqrt{\lambda_1}, \dots, \sigma_n = \sqrt{\lambda_n}$, with $r \leq n$ the index of the last positive singular value - 4. For eigenvalues that are
distinct, proceed as before - 5. For eigenvalues with multiplicity > 1, we need to ensure that the resulting eigenvectors are LI and orthogonal ### Dealing with eigenvalues with multiplicity > 1 When an eigenvalue has (algebraic) multiplicity > 1, e.g., characteristic polynomial contains a factor like $(\lambda - 2)^2$, things can become a little bit more complicated The proper way to deal with this involves the so-called Jordan Normal Form (another matrix decomposition) In short: not all square matrices are diagonalisable, but all square matrices admit a JNF Sometimes, we can find several LI eigenvectors associated to the same eigenvalue. Check this. If not, need to use the following #### Definition 27 (Generalised eigenvectors) $extbf{ extit{x}} eq extbf{ extit{0}}$ generalized eigenvector of rank m of $A \in \mathcal{M}_n$ corresponding to eigenvalue λ if $$(A - \lambda \mathbb{I})^m \mathbf{x} = \mathbf{0}$$ but $$(A-\lambda \mathbb{I})^{m-1} \mathbf{x} \neq \mathbf{0}$$ ## Procedure for generalised eigenvectors $A \in \mathcal{M}_n$ and assume λ eigenvalue with algebraic multiplicity k Find \mathbf{v}_1 , "classic" eigenvector, i.e., $\mathbf{v}_1 \neq \mathbf{0}$ s.t. $(A - \lambda \mathbb{I})\mathbf{v}_1 = \mathbf{0}$ Find generalised eigenvector $\emph{\textbf{v}}_2$ of rank 2 by solving for $\emph{\textbf{v}}_2 \neq \emph{\textbf{0}}$, $$(A-\lambda \mathbb{I})\mathbf{v}_2=\mathbf{v}_1$$. . . Find generalised eigenvector \mathbf{v}_k of rank k by solving for $\mathbf{v}_k \neq \mathbf{0}$, $$(A-\lambda \mathbb{I})\mathbf{v}_k = \mathbf{v}_{k-1}$$ Then $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ LI ### Back to the normal procedure With the LI eigenvectors $\{v_1, \ldots, v_k\}$ corresponding to λ Apply Gram-Schmidt to get orthogonal set For all eigenvalues with multiplicity > 1, check that you either have LI eigenvectors or do what we just did When you are done, be back on your merry way to step 6 in the case where eigenvalues are all \neq I am caricaturing a little here: there can be cases that do not work exactly like this, but this is general enough.. # Singular values decomposition (SVD) Singular values The SVD Applications of the SVD – Least squares Applications of the SVD - Compressing images ### Applications of the SVD Many applications of the SVD, both theoretical and practical.. - 1. Obtaining a unique solutions to least squares when A^TA singular - 2. Image compression #### Least squares revisited #### Theorem 28 Let $A \in \mathcal{M}_{mn}$, $\mathbf{x} \in \mathbb{R}^n$ and $\mathbf{b} \in \mathbb{R}^m$. The least squares problem $A\mathbf{x} = \mathbf{b}$ has a unique least squares solution $\tilde{\mathbf{x}}$ of minimal length (closest to the origin) given by $$\tilde{\mathbf{x}} = A^+ \mathbf{b}$$ where A^+ is the pseudoinverse of A #### Definition 29 (Pseudoinverse) $A = U\Sigma V^T$ an SVD for $A \in \mathcal{M}_{mn}$, where $$\Sigma = \begin{pmatrix} D & 0 \\ 0 & 0 \end{pmatrix}$$, with $D = \mathsf{diag}(\sigma_1, \ldots, \sigma_r)$ (D contains the nonzero singular values of A ordered as usual) The **pseudoinverse** (or **Moore-Penrose inverse**) of A is $A^+ \in \mathcal{M}_{nm}$ given by $$A^+ = V \Sigma^+ U^T$$ with $$\Sigma^+ = egin{pmatrix} D^{-1} & 0 \ 0 & 0 \end{pmatrix} \in \mathcal{M}_{\it nm}$$ # Singular values decomposition (SVD) Singular values The SVD Applications of the SVD - Least squares Applications of the SVD - Compressing images ### Compressing images Consider an image (for simplicity, assume in shades of grey). This can be stored in a matrix $A \in \mathcal{M}_{mn}$ Take the SVD of A. Then the small singular values carry information about the regions with little variation and can perhaps be omitted, whereas the large singular values carry information about more "dynamic" regions of the image Suppose A has r nonzero singular values. For $k \le r$, let $$A_k = \sigma_1 \mathbf{u}_1 \mathbf{v}_1^T + \dots + \sigma_k \mathbf{u}_k \mathbf{v}_k^T$$ For k = r we get the usual outer product form (2) #### Load the image using bmp::read.bmp ``` my_image = bmp::read.bmp("../CODE/Julien_and_friend_1000x800.bmp") my_image_g = pixmap::pixmapGrey(my_image) my_image_g ## Pixmap image ## Type : pixmapGrey ## Size : 800x1000 ## Resolution : 1x1 ## Bounding box : 0 0 1000 800 ``` ## Doing the computations "by hand" ``` M = my_image_g@grey MTM = t(M) %*% M # Ensure matrix is symmetric MTM = (MTM+t(MTM))/2 ev = eigen(MTM) ``` Given the size and nature of the entries, the matrix M^TM is symmetric only to 1e-5 precision, so we use a little trick to make it symmetric no matter what: take the average of M^TM and its transpose MM^T ## Which version of the algorithm to use? Make zero the eigenvalues that are close to zero (200 out of 1000) ``` ev$values = ev$values*(ev$values>1e-10) ``` Can we use the algorithm for all eigenvalues being distinct or do we have repeated ones? ``` any(duplicated(ev$values[ev$values>1e-10])) ## [1] FALSE ``` So we can use the standard algorithm ### Computing the SVD ``` idx_positive_ev = which(ev$values>1e-10) sv = sqrt(ev$values[idx_positive_ev]) ``` #### Computing the SVD Then $D = \text{diag}(\sigma_1, \dots, \sigma_r)$, V is the matrix of normalised eigenvectors in the same order as the σ_i and for $i = 1, \dots, r$ $$\mathbf{u}_i = \frac{1}{\sigma_i} A \mathbf{v}_i$$ ensuring that $\|\mathbf{u}_i\| = 1$ ``` D = diag(sv) V = ev$vectors[idx_positive_ev, idx_positive_ev] c1 = colSums(V) for (i in 1:dim(V)[2]) { V[,i] = V[,i]/c1[i] } ``` # Computing the SVD Finally, we compute the u_i 's ``` U = M %*% V %*% diag(1/sv) ## Error in M %*% V: non-conformable arguments r = length(sv) im = list(u=U, d=sv, v=V) ## Error: object 'U' not found ``` # Using built-in functions We can also use the built-in function svd to compute the SVD of M $$M.svd = svd(M)$$ The results are stored in a list with components u, d and v # Make function to recreate an image from the SVD Given the SVD im of an image and a number of singular values to keep n, we can recreate the image using the function compress_image We output the new image, but also, the amount of information required to encode this new image, as a percentage of the original image size p. 95 - Singular values decomposition (SVD) ``` compress_image = function(im, n) { if (n > length(im$d)) { # Check that we gave a value of n within range, otherwise # just set to the max n = length(im$d) d_{tmp} = im d[1:n] u_{tmp} = im u[,1:n] v_{tmp} = im v_{1:n} # We store the results in a list (so we can return other information) out = list() # First, compute the resulting image outsimg = mat.or.vec(nr = dim(imsu)[1], nc = dim(imsv)[1]) for (i in 1:n) { outsimg = outsimg + d_tmp[i] * u_tmp[,i] %*% t(v_tmp[,i]) ``` ``` # Values of the "colours" must be between 0 and 1, so we shift and res if (min(min(out$img)) < 0) {</pre> out$img = out$img - min(min(out$img)) out$img = out$img / max(max(out$img)) # Store some information: number of points needed and percentage of th out$nb_pixels_original = dim(im$u)[1] * dim(im$v)[2] out$nb_pixels_compressed = length(d_tmp) + dim(u_tmp)[1]*dim(u_tmp)[2] out$pct_of_original = out$nb_pixels_compressed / out$nb_pixels_origina # Return the result return(out) ``` # Recreating the image We can now recreate the image using the function compress_image ``` new_image = my_image_g M.svd = svd(M) M_tmp = compress_image(M.svd, 2) new_image@grey = M_tmp$img plot(new_image) ``` # Using n = 2 singular values Uses 0.56% of the original information # Using n = 5 singular values Uses 1.41% of the original information # Using n = 10 singular values Uses 2.81% of the original information # Using n = 20 singular values Uses 5.63% of the original information # Using n = 50 singular values Uses 14.07% of the original information Least squares problems **QR** factorisation Singular values decomposition (SVD) Principal component analysis (PCA) Support vector machines ### Dimensionality reduction One of the reasons the SVD is used is for dimensionality reduction. However, SVD has many many other uses Now we look at another dimensionality reduction technique. PCA PCA is often used as a blackbox technique, here we take a look at the math behind it ### What is PCA? Linear algebraic technique Helps reduce a complex dataset to a lower dimensional one Non-parametric method: does not assume anything about data distribution (distribution from the statistical point of view) p. 105 - Principal component analysis (PCA) # Principal component analysis (PCA) A crash course on probability A running example: fingerprints Change of basis Back to PCA A 2D example to begin: hockey players Back to fingerprints # Brief "review" of some probability concepts Proper definition of probability requires to use measure theory.. will not get into details here A random variable X is a measurable function $X: \Omega \to E$, where Ω is a set of outcomes (sample space) and E is a measurable space $$\mathbb{P}(X \in S \subseteq E) = \mathbb{P}(\omega \in \Omega | X(\omega) \in S)$$ **Distribution function** of a r.v., $F(x) = \mathbb{P}(X \le x)$, describes the distribution of a r.v. R.v. can be discrete or continuous or .. other things. ### Definition 30 (Variance) Let X be a random variable. The **variance** of X is given by $$Var X = E \left[(X - E(X))^2 \right]$$ where E is the expected value ### Definition 31 (Covariance) Let X, Y be jointly distributed random variables. The **covariance** of X and Y is given by $$cov(X, Y) = E[(X - E(X))(Y - E(Y))]$$ Note that $cov(X, X) = E\left[(X - E(X))^2\right] = Var X$ In practice: "true law" versus "observation" In statistics: we reason on the true law of distributions, but we usually have only access to a sample We then use **estimators** to .. estimate the value of a parameter, e.g., the mean, variance and covariance ### Definition 32 (Unbiased estimators of the mean and variance) Let x_1, \ldots, x_n be data points (the *sample*) and $$\bar{x} =
\frac{1}{n} \sum_{i=1}^{n} x_i$$ be the mean of the data. An unbiased estimator of the variance of the sample is $$\sigma^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2$$ ### Definition 33 (Unbiased estimator of the covariance) Let $(x_1, y_1), \ldots, (x_n, y_n)$ be data points, $$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \text{ and } \bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$ be the means of the data. An estimator of the covariance of the sample is $$cov(x,y) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$ ### What does covariance do? Variance explains how data disperses around the mean, in a 1-D case Covariance measures the relationship between two dimensions. E.g., height and weight More than the exact value, the sign is important: - \triangleright cov(X,Y) > 0: both dimensions change in the same "direction"; e.g., larger height usually means higher weight - \triangleright cov(X, Y) < 0: both dimensions change in reverse directions; e.g., time spent on social media and performance in this class - \triangleright cov(X,Y)=0: the dimensions are independent from one another; e.g., sex/gender and "intelligence" #### The covariance matrix Typically, we consider more than 2 variables.. #### Definition 34 Suppose p random variables X_1, \ldots, X_p . Then the covariance matrix is the symmetric matrix $$\begin{pmatrix} \operatorname{cov}(X_1, X_1) & \operatorname{cov}(X_1, X_2) & \cdots & \operatorname{cov}(X_1, X_p) \\ \operatorname{cov}(X_2, X_1) & \operatorname{cov}(X_2, X_2) & \cdots & \operatorname{cov}(X_2, X_p) \\ \vdots & & \vdots & & \vdots \\ \operatorname{cov}(X_p, X_1) & \operatorname{cov}(X_p, X_2) & \cdots & \operatorname{cov}(X_p, X_p) \end{pmatrix}$$ i.e., using the properties of covariance, $$\begin{pmatrix} \operatorname{Var} X_1 & \operatorname{cov}(X_1, X_2) & \cdots & \operatorname{cov}(X_1, X_p) \\ \operatorname{cov}(X_1, X_2) & \operatorname{Var} X_2 & \cdots & \operatorname{cov}(X_2, X_p) \\ \vdots & \vdots & & \vdots \\ \operatorname{cov}(X_1, X_p) & \operatorname{cov}(X_2, X_p) & \cdots & \operatorname{Var} X_p \end{pmatrix}$$ # Principal component analysis (PCA) A crash course on probability A running example: fingerprints Change of basis Back to PCA A 2D example to begin: hockey players Back to fingerprints ### Example of a PCA problem We collect a bunch of information about a bunch of people.. for instance this data from Loughborough University This dataset contains the height, weight and 4 fingerprint measurements (length, width, area and circumference), collected from 200 participants. What best describes a participant? #### The variables ### Each participant is associated to 11 variables - "Participant Number" - "Gender" - ➤ "Age" - "Dominant Hand" - "Height (cm) (average of 3 measurements)" - "Weight (kg) (average of 3 measurements)" - "Fingertip Temperature (°C)" - "Fingerprint Height (mm)" - "Fingerprint Width (mm)" - "Fingerprint Area (mm2)" - "Fingerprint Circumference (mm)" ### Nature of variables #### Variables have different natures - ightharpoonup "Participant Number": $\in \mathbb{N}$ (not interesting) - "Gender": categorical - ightharpoonup "Age": $\in \mathbb{N}$ - "Dominant Hand": categorical - ▶ "Height (cm) (average of 3 measurements)": $\in \mathbb{R}$ - ▶ "Weight (kg) (average of 3 measurements)": $\in \mathbb{R}$ - ▶ "Fingertip Temperature (°C)": $\in \mathbb{R}$ - ightharpoonup "Fingerprint Height (mm)": $\in \mathbb{R}$ - ightharpoonup "Fingerprint Width (mm)": $\in \mathbb{R}$ - ▶ "Fingerprint Area (mm2)": $\in \mathbb{R}$ - ▶ "Fingerprint Circumference (mm)": $\in \mathbb{R}$ ### Setting things up Each participant is a row in the matrix (an observation) Each variable is a column So we have an 200×10 matrix (we discard the "Participant number" column) We want to find what carries the most information For this, we are going to project the information in a new basis in which the first "dimension" will carry most variance, the second dimension will carry a little less, etc. In order to do so, we need to learn how to change bases # Principal component analysis (PCA) A crash course on probability A running example: fingerprints Change of basis Back to PCA A 2D example to begin: hockey players Back to fingerprints In the following slide, $[x]_{\mathcal{B}}$ denotes the coordinates of \boldsymbol{x} in the basis \mathcal{B} The aim of a change of basis is to express vectors in another coordinate system (another basis) We do so by finding a matrix allowing to move from one basis to another ### Change of basis ### Definition 35 (Change of basis matrix) $$\mathcal{B} = \{ \emph{\textbf{u}}_1, \dots, \emph{\textbf{u}}_n \}$$ and $\mathcal{C} = \{ \emph{\textbf{v}}_1, \dots, \emph{\textbf{v}}_n \}$ bases of vector space V The change of basis matrix $P_{C \leftarrow B} \in \mathcal{M}_n$. $$P_{\mathcal{C}\leftarrow\mathcal{B}}=[[\boldsymbol{u}_1]_{\mathcal{C}}\cdots[\boldsymbol{u}_n]_{\mathcal{C}}]$$ has columns the coordinate vectors $[\mathbf{u}_1]_{\mathcal{C}}, \dots, [\mathbf{u}_n]_{\mathcal{C}}$ of vectors in \mathcal{B} with respect to \mathcal{C} #### Theorem 36 $\mathcal{B} = \{ \mathbf{u}_1, \dots, \mathbf{u}_n \}$ and $\mathcal{C} = \{ \mathbf{v}_1, \dots, \mathbf{v}_n \}$ bases of vector space V and $P_{\mathcal{C} \leftarrow \mathcal{B}}$ a change of basis matrix from B to C - 1. $\forall \mathbf{x} \in V, P_{\mathcal{C} \leftarrow \mathcal{B}}[\mathbf{x}]_{\mathcal{B}} = [\mathbf{x}]_{\mathcal{C}}$ - 2. $P_{C \leftarrow B}$ s.t. $\forall x \in V$, $P_{C \leftarrow B}[x]_B = [x]_C$ is unique - 3. $P_{C \leftarrow B}$ invertible and $P_{C \leftarrow B}^{-1} = P_{B \leftarrow C}$ # Row-reduction method for changing bases #### Theorem 37 $\mathcal{B} = \{ \mathbf{u}_1, \dots, \mathbf{u}_n \}$ and $\mathcal{C} = \{ \mathbf{v}_1, \dots, \mathbf{v}_n \}$ bases of vector space V. Let \mathcal{E} be any basis for V, $$B = [[\mathbf{u}_1]_{\mathcal{E}}, \dots, [\mathbf{u}_n]_{\mathcal{E}}] \text{ and } C = [[\mathbf{v}_1]_{\mathcal{E}}, \dots, [\mathbf{v}_n]_{\mathcal{E}}]$$ and let [C|B] be the augmented matrix constructed using C and B. Then $$RREF([C|B]) = [I|P_{C \leftarrow B}]$$ If working in \mathbb{R}^n , this is quite useful with \mathcal{E} the standard basis of \mathbb{R}^n (it does not matter if $\mathcal{B} = \mathcal{E}$) So the question now becomes How do we find what new basis to look at our data in? (Changing the basis does not change the data, just the view you have of it) (Think of what happens when you do a headstand.. your up becomes down, your right and left switch, but the world does not change, just your view of it) (Changes of bases are fundamental operations in Science) # Principal component analysis (PCA) A crash course on probability A running example: fingerprints Change of basis ### Back to PCA A 2D example to begin: hockey players Back to fingerprints ### Setting things up I will use notation (mostly) as in Joliffe's Principal Component Analysis (PDF of older version available for free from UofM Libraries) $$\mathbf{x} = (x_1, \dots, x_p)$$ vector of p random variables We seek a linear function $\alpha_1^T \mathbf{x}$ with maximum variance, where $\alpha_1 = (\alpha_{11}, \dots, \alpha_{1p})$, i.e., $$\boldsymbol{\alpha}_1^T \boldsymbol{x} = \sum_{j=1}^p \alpha_{1j} x_j$$ Then we seek a linear function $\alpha_2^T \mathbf{x}$ with maximum variance, uncorrelated to $\alpha_1^T \mathbf{x}$ And we continue... At kth stage, we find a linear function $\alpha_k^T \mathbf{x}$ with maximum variance, uncorrelated to $\alpha_1^T \mathbf{x}, \dots, \alpha_{k-1}^T \mathbf{x}$ $\alpha_i^T \mathbf{x}$ is the *i*th **principal component** (PC) ### Case of known covariance matrix Suppose we know Σ , covariance matrix of x (i.e., typically: we know x) Then the kth PC is $$z_k = \alpha_k^T \mathbf{x}$$ where α_k is an eigenvector of Σ corresponding to the kth largest eigenvalue λ_k If, additionally, $\|\alpha_k\| = \alpha_k^T \alpha = 1$, then $\lambda_k = \text{Var } z_k$ # Why is that? Let us start with $$lpha_1^T x$$ We want maximum variance, where $\alpha_1 = (\alpha_{11}, \dots, \alpha_{1p})$, i.e., $$oldsymbol{lpha}_1^T oldsymbol{x} = \sum_{j=1}^p lpha_{1j} x_j$$ with the constraint that $\| oldsymbol{lpha}_1 \| = 1$ We have Var $$\alpha_1^T \mathbf{x} = \alpha_1^T \Sigma \alpha_1$$ # Objective We want to maximise Var $\alpha_1^T x$, i.e., $$lpha_1^T \Sigma lpha_1$$ under the constraint that $\|lpha_1\|=1$ **⇒** use **Lagrange multipliers** # Maximisation using Lagrange multipliers (A.k.a. super-brief intro to multivariable calculus) We want the max of $f(x_1, \ldots, x_n)$ under the constraint $g(x_1, \ldots, x_n) = k$ 1. Solve $$\nabla f(x_1,\ldots,x_n) = \lambda \nabla g(x_1,\ldots,x_n)$$ $$g(x_1,\ldots,x_n) = k$$ where $\nabla = (\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n})$ is the **gradient operator** 2. Plug all solutions into $f(x_1, \ldots, x_n)$ and find maximum values (provided values exist and $\nabla g \neq \mathbf{0}$ there) λ is the **Lagrange multiplier** ### The gradient (Continuing our super-brief intro to multivariable calculus) $f: \mathbb{R}^n \to \mathbb{R}$ function of several variables, $\nabla = \left(\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n}\right)$ the gradient operator Then $$\nabla f = \left(\frac{\partial}{\partial x_1} f, \dots, \frac{\partial}{\partial x_n} f\right)$$ So ∇f is a *vector-valued* function, $\nabla f: \mathbb{R}^n \to \mathbb{R}^n$; also written as $$\nabla f = f_{x_1}(x_1,\ldots,x_n)\boldsymbol{e}_1 + \cdots f_{x_n}(x_1,\ldots,x_n)\boldsymbol{e}_n$$ where f_{x_i} is the partial derivative of f with respect to x_i and $\{e_1, \dots, e_n\}$ is the standard basis of \mathbb{R}^n #### Bear with me... (You may experience a brief period of discomfort) $$\alpha_1^T \Sigma \alpha_1$$ and $\|\alpha_1\|^2 = \alpha_1^T \alpha_1$ are functions of $\alpha_1 =
(\alpha_{11}, \dots, \alpha_{1p})$ In the notation of the previous slide, we want the max of $$f(\alpha_{11},\ldots,\alpha_{1p}):=\boldsymbol{\alpha}_1^T\boldsymbol{\Sigma}\boldsymbol{\alpha}_1$$ under the constraint that $$g(\alpha_{11},\ldots,\alpha_{1p}):=\boldsymbol{\alpha}_1^T\boldsymbol{\alpha}_1=1$$ and with gradient operator $$\nabla = \left(\frac{\partial}{\partial \alpha_{11}}, \dots, \frac{\partial}{\partial \alpha_{1p}}\right)$$ # Effect of ∇ on g g is easiest to see: $$\nabla g(\alpha_{11}, \dots, \alpha_{1p}) = \left(\frac{\partial}{\partial \alpha_{11}}, \dots, \frac{\partial}{\partial \alpha_{1p}}\right) (\alpha_{11}, \dots, \alpha_{1p}) \begin{pmatrix} \alpha_{11} \\ \vdots \\ \alpha_{1p} \end{pmatrix}$$ $$= \left(\frac{\partial}{\partial \alpha_{11}}, \dots, \frac{\partial}{\partial \alpha_{1p}}\right) (\alpha_{11}^2 + \dots + \alpha_{1p}^2)$$ $$= (2\alpha_{11}, \dots, 2\alpha_{1p})$$ $$= 2\alpha_1$$ (And that's a general result: $\nabla \|\mathbf{x}\|_2^2 = 2\mathbf{x}$ with $\|\cdot\|_2$ the Euclidean norm) #### Effect of ∇ on f Expand (write $\Sigma = [s_{ii}]$ and do not exploit symmetry) $$\alpha_{1}^{T} \Sigma \alpha_{1} = (\alpha_{11}, \dots, \alpha_{1p}) \begin{pmatrix} s_{11} & s_{12} & \dots & s_{1p} \\ s_{21} & s_{22} & \dots & s_{2p} \\ \vdots & \vdots & & \vdots \\ s_{p1} & s_{p2} & s_{pp} \end{pmatrix} \begin{pmatrix} \alpha_{11} \\ \alpha_{12} \\ \vdots \\ \alpha_{1p} \end{pmatrix}$$ $$= (\alpha_{11}, \dots, \alpha_{1p}) \begin{pmatrix} s_{11}\alpha_{11} + s_{12}\alpha_{12} + \dots + s_{1p}\alpha_{1p} \\ s_{21}\alpha_{11} + s_{22}\alpha_{12} + \dots + s_{2p}\alpha_{1p} \\ \vdots \\ s_{p1}\alpha_{11} + s_{p2}\alpha_{12} + \dots + s_{pp}\alpha_{1p} \end{pmatrix}$$ $$= (s_{11}\alpha_{11} + s_{12}\alpha_{12} + \dots + s_{1p}\alpha_{1p})\alpha_{11} + (s_{21}\alpha_{11} + s_{22}\alpha_{12} + \dots + s_{2p}\alpha_{1p})\alpha_{12}$$ $$\vdots \\ + (s_{p1}\alpha_{11} + s_{p2}\alpha_{12} + \dots + s_{pp}\alpha_{1p})\alpha_{1p}$$ p. 130 - Principal component analysis (PCA) We have $$\alpha_{1}^{T} \Sigma \alpha_{1} = (s_{11}\alpha_{11} + s_{12}\alpha_{12} + \dots + s_{1p}\alpha_{1p})\alpha_{11} + (s_{21}\alpha_{11} + s_{22}\alpha_{12} + \dots + s_{2p}\alpha_{1p})\alpha_{12}$$ $$\vdots$$ $$+ (s_{p1}\alpha_{11} + s_{p2}\alpha_{12} + \dots + s_{pp}\alpha_{1p})\alpha_{1p}$$ $$\implies \frac{\partial}{\partial \alpha_{11}} \alpha_{1}^{T} \Sigma \alpha_{1} = (s_{11}\alpha_{11} + s_{12}\alpha_{12} + \dots + s_{1p}\alpha_{1p}) + s_{11}\alpha_{11} + s_{21}\alpha_{12} + \dots + s_{p1}\alpha_{1p}$$ $$= s_{11}\alpha_{11} + s_{12}\alpha_{12} + \dots + s_{p1}\alpha_{1p} + s_{11}\alpha_{11} + s_{21}\alpha_{12} + \dots + s_{p1}\alpha_{1p}$$ $= 2(s_{11}\alpha_{11} + s_{12}\alpha_{12} + \cdots + s_{1n}\alpha_{1n})$ (last equality stems from symmetry of Σ) p. 131 - Principal component analysis (PCA) In general, for $i = 1, \ldots, p$, $$\frac{\partial}{\partial \alpha_{1i}} \boldsymbol{\alpha}_{1}^{T} \boldsymbol{\Sigma} \boldsymbol{\alpha}_{1} = s_{i1} \alpha_{11} + s_{i2} \alpha_{12} + \dots + s_{ip} \alpha_{1p}$$ $$+ s_{i1} \alpha_{11} + s_{2i} \alpha_{12} + \dots + s_{pi} \alpha_{1p}$$ $$= 2(s_{i1} \alpha_{11} + s_{i2} \alpha_{12} + \dots + s_{ip} \alpha_{1p})$$ (because of symmetry of Σ) As a consequence, $$\nabla \alpha_1^T \Sigma \alpha_1 = 2 \Sigma \alpha_1$$ So solving $$\nabla f(x_1,\ldots,x_n) = \lambda \nabla g(x_1,\ldots,x_n)$$ means solving $$2\Sigma\alpha_1 = \lambda 2\alpha_1$$ i.e., $$\Sigma \alpha_1 = \lambda \alpha_1$$ \implies (λ, α_1) eigenpair of Σ , with α_1 having unit length # Picking the right eigenvalue (λ, α_1) eigenpair of Σ , with α_1 having unit length But which λ to choose? Recall that we want Var $\alpha_1^T \mathbf{x} = \alpha_1^T \Sigma \alpha_1$ maximal We have $$\text{Var } \alpha_1^T \textbf{x} = \alpha_1^T \Sigma \alpha_1 = \alpha_1^T (\Sigma \alpha_1) = \alpha_1^T (\lambda \alpha_1) = \lambda (\alpha_1^T \alpha_1) = \lambda$$ \implies we pick $\lambda = \lambda_1$, the largest eigenvalue (covariance matrix symmetric so eigenvalues real) ### What we have this far.. The first principal component is $\alpha_1^T \mathbf{x}$ and has variance λ_1 , where λ_1 the largest eigenvalue of Σ and α_1 an associated eigenvector with $\|\alpha_1\| = 1$ We want the second principal component to be *uncorrelated* with $\alpha_1^T \mathbf{x}$ and to have maximum variance $\text{Var } \alpha_2^T \mathbf{x} = \alpha_2^T \Sigma \alpha_2$, under the constraint that $\|\alpha_2\| = 1$ $\alpha_2^T \mathbf{x}$ uncorrelated to $\alpha_1^T \mathbf{x}$ if $cov(\alpha_1^T \mathbf{x}, \alpha_2^T \mathbf{x}) = 0$ We have $$cov(\alpha_1^T \mathbf{x}, \alpha_2^T \mathbf{x}) = \alpha_1^T \Sigma \alpha_2$$ $$= \alpha_2^T \Sigma^T \alpha_1$$ $$= \alpha_2^T \Sigma \alpha_1 \quad [\Sigma \text{ symmetric}]$$ $$= \alpha_2^T (\lambda_1 \alpha_1)$$ $$= \lambda \alpha_2^T \alpha_1$$ So $\alpha_2^T x$ uncorrelated to $\alpha_1^T x$ if $\alpha_1 \perp \alpha_2$ This is beginning to sound a lot like Gram-Schmidt, no? #### In short Take whatever covariance matrix is available to you (known Σ or sample S_X) – assume sample from now on for simplicity For i = 1, ..., p, the *i*th principal component is $$z_i = \mathbf{v}_i^T \mathbf{x}$$ where v_i eigenvector of S_X associated to the *i*th largest eigenvalue λ_i If \mathbf{v}_i is normalised, then $\lambda_i = \text{Var } z_k$ #### Covariance matrix Σ the covariance matrix of the random variable, S_X the sample covariance matrix $X \in \mathcal{M}_{mp}$ the data, then the (sample) covariance matrix S_X takes the form $$S_X = \frac{1}{n-1} X^T X$$ where the data is centred! Sometimes you will see $S_X = 1/(n-1)XX^T$. This is for matrices with observations in columns and variables in rows. Just remember that you want the covariance matrix to have size the number of variables, not observations, this will give you the order in which to take the product # Principal component analysis (PCA) A crash course on probability A running example: fingerprints Change of basis Back to PCA A 2D example to begin: hockey players **Back to fingerprints** #### A 2D example See a dataset on this page for a dataset of height and weight of some hockey players ``` data = read.csv("https://figshare.com/ndownloader/files/5303173") head(data, n=3) name position side height weight ## year country no RUS 10 tverdovsky oleg ## 1 2001 185 84 1976- ## 2 2001 RUS 2 vichnevsky vitali 188 86 1980- ## 3 2001 RUS 26 petrochinin evgeni 182 95 1976- ## club age cohort bmi anaheim mighty ducks 24.95277 1976 24.54346 ## 1 ## 2 anaheim mighty ducks 21.11978 1980 24.33228 ## 3 severstal cherepovetal 25.22930 1976 28.68011 dim(data) ## [1] 6292 13 ``` p. 139 - Principal component analysis (PCA) In case you are wondering, this is a database of ice hockey players at IIHF world championships, 2001-2016, assembled by the dataset's author See some comments here As usual, it is a good idea to plot this to get a sense of the lay of the land ### IIHF players 2001–2016 (unprocessed) The author of the study is interested in the evolution of weights, so it is likely that the same person will be in the dataset several times Let us check this: first check will be FALSE if the number of unique names does not match the number of rows in the dataset ``` length(unique(data$name)) == dim(data)[1] ## [1] FALSE length(unique(data$name)) ## [1] 3278 ``` Not interested in the evolution of weights, so simplify: if more than one record for someone, take average of recorded weights and heights To be extra careful, could check as well that there are no major variations on player height (homonymies?) ``` data_simplified = data.frame(name = unique(data$name)) W = C() h = c() for (n in data_simplified$name) { tmp = data[which(data$name == n),] h = c(h, mean(tmp\$height)) w = c(w, mean(tmp\$weight)) data_simplified$weight = w data_simplified$height = h ``` ``` data = data_simplified head(data_simplified, n = 6) ## name weight height ## 1 tverdovsky oleg 84.0 185.0 vichnevsky vitali 86.0 188.0 3 petrochinin evgeni 95.0 182.0 zhdan alexander 85.5 178.5 ## 5 orekhovsky oleg 88.0 175.0 zhukov sergei 92.5 193.0 ## 6 ``` ### IIHF players 2001–2016 (uniqued) #### Centre the data ``` mean(data$weight) ## [1] 87.71555 mean(data$height) ## [1] 183.8596 data$weight.c = data$weight-mean(data$weight) data$height.c = data$height-mean(data$height) ``` ### IIHF players 2001–2016 (centred) #### Covariance The function cov returns the covariance of two samples Note that the functions deals equally well with data that is not centred as with data that is centred ``` cov(data$height, data$weight) ## [1] 26.63506 cov(data$height.c, data$weight.c) ## [1] 26.63506 ``` #### Covariance matrix As we could see from plotting the data, there is a positive linear relationship between the two variables Let us compute the sample covariance matrix ``` X = as.matrix(data[,c("height.c", "weight.c")]) S = 1/(dim(X)[1]-1)*t(X) %*% X S ## height.c weight.c ## height.c 29.66176 26.63506 ## weight.c 26.63506 47.81112 ``` #### Covariance matrix The off-diagonal entries do match the computed covariance. Let us check that the variances are indeed a match too. ``` var(X[,1]) ## [1] 29.66176 var(X[,2]) ## [1] 47.81112 ``` Hey, that works. Is math not cool? ;) ## Principal components Now compute the principal components. We need eigenvalues and eigenvectors ``` ev = eigen(S) ev ## eigen() decomposition ## $values ## [1] 66.87496 10.59793 ## ## $vectors [,1] \qquad [,2] ## ## [1,] 0.5820222 -0.8131729 ## [2.] 0.8131729 0.5820222 ``` (eigen returns eigenvalues sorted in decreasing order and normalised eigenvectors) # First principal component Let us plot this first eigenvector (well, the line carrying this first eigenvector) To use the function abline, we need to give the coefficients of the line in the form of (intercept,
slope). Intercept is easy, as the line goes through the origin (by construction and because we have centred the data). The slope is also quite simple.. ``` plot(data$height.c, data$weight.c, pch = 19, col = "dodgerblue4", main = "IIHF players 2001-2016 (with first component)", xlab = "Height (cm)", ylab = "Weight (kg)") abline(a = 0, b = ev$vectors[2,1]/ev$vectors[1,1], col = "red", lwd = 3) ``` ### **IIHF players 2001–2016 (with first component)** ## Rotating the data Let us rotate the data so that the red line becomes the x-axis To do that, we use a rotation matrix $$R_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$ To find the angle θ , recall that $\tan\theta$ is equal to opposite length over adjacent length, i.e., $$\tan \theta = rac{ ext{ev$vectors}[2,1]}{ ext{ev$vectors}[1,1]}$$ So we just use the arctan of this Note that angles are in radians # Rotating the data ``` theta = atan(ev$vectors[2,1]/ev$vectors[1,1]) theta ## [1] 0.949583 R_theta = matrix(c(cos(theta), -sin(theta), sin(theta), cos(theta)), nr = 2, byrow = TRUE) R_theta [.1] [.2] ## ## [1,] 0.5820222 -0.8131729 ## [2,] 0.8131729 0.5820222 ``` ## Rotating the data And now we rotate the points (In this case, we think of the points as vectors, of course) ### IIHF players 2001–2016 (rotated to first component) ### Principal components Note that the axes have changed quite a lot, hence the very different aspect Let us plot with the same range as for the non-rotated data for the y-axis # IIHF players 2001–2016 (rotated to first component) # First and second principal components Plot the first and second eigenvectors ``` plot(data$height.c, data$weight.c, pch = 19, col = "dodgerblue4", main = "IIHF players 2001-2016 (with first and second components)", xlab = "Height (cm)", ylab = "Weight (kg)") abline(a = 0, b = ev$vectors[2,1]/ev$vectors[1,1], col = "red", lwd = 3) abline(a = 0, b = ev$vectors[2,2]/ev$vectors[1,2], col = "darkgreen", lwd = 3) ``` ### IIHF players 2001–2016 (with first and second components) # Proper change of basis Let us change the basis so that, in the new basis, the first component is the x-axis and the second component is the v-axis We want to use Theorem 37 We need the coordinates of the new basis in the canonical basis of \mathbb{R}^2 Since both axes go through the origin, we can just use y = ax, with a the slope of the lines and, say, x = 1, i.e., (x, y) = (1, a) We then normalise the resulting vectors # Proper change of basis ``` red line = c(1, ev\$vectors[2,1]/ev\$vectors[1,1]) red_line = red_line/sqrt(sum(red_line^2)) green_line = c(1, ev\$vectors[2,2]/ev\$vectors[1,2]) green_line = green_line/sqrt(sum(green_line^2)) augmented_M = cbind(red_line,green_line, diag(2)) P = rref(augmented M)[.3:4] tmp_in = matrix(c(data$weight.c, data$height.c), nc = 2) tmp_out = c() for (i in 1:dim(tmp_in)[1]) { tmp_out = rbind(tmp_out, t(P %*% tmp_in[i,])) data$weight.c_r2 = tmp_out[,1] data$height.c_r2 = tmp_out[,2] ``` # IIHF players 2001–2016 (rotated to first component) # PCA using built-in functions Now do things "properly" ``` GS = pracma::gramSchmidt(A = ev$vectors, tol = 1e-10) GS ## $Q [,1] \qquad [,2] ## ## [1.] 0.5820222 -0.8131729 ## [2,] 0.8131729 0.5820222 ## ## $R ## [,1] [,2] ## [1,] 1 0 ## [2,] 0 1 ``` # PCA using built-in functions Now recall we saw a theorem that told us how to construct a new basis.. ``` A=matrix(c(GS\$0.1.0.0.1), nr = 2) Α [,1] [,2] [,3] [,4] ## ## [1,] 0.5820222 -0.8131729 1 0 ## [2,] 0.8131729 0.5820222 0 1 pracma::rref(A) ## [,1] [,2] [,3] [,4] ## [1,] 1 0 0.5820222 0.8131729 ## [2.] 0 1 -0.8131729 0.5820222 ``` # PCA using built-in functions ``` P = pracma::rref(A)[,c(3,4)] ## [,1] [,2] ## [1,] 0.5820222 0.8131729 ## [2,] -0.8131729 0.5820222 X.new = X %*% t(P) ``` #### IIHF players 2001–2016 (rotated to first component) # Principal component analysis (PCA) A crash course on probability A running example: fingerprints Change of basis Back to PCA A 2D example to begin: hockey players **Back to fingerprints** We get the data from here This time, we first download the data, then open the file The file is an excel table, so we need to use a library for doing that # Loading the excel fingerprint data ``` download.file(url = "https://repository.lboro.ac.uk/ndownloader/files/1401 destfile = "../CODE/fingerprint_data.xlsx") data = openxlsx::read.xlsx("../CODE/fingerprint_data.xlsx") head(data, n=3) ## Participant. Number Gender Age Dominant. Hand ## 1 101 Male NA Right ## 2 102 Male NA Right ## 3 103 Male NA Right Height.(cm).(average.of.3.measurments) ## ## 1 174.0000 ## 2 202.0000 ## 3 182.3333 Weight.(kg).(average.of.3.measurements) Fingertip.Temperature.(°C) ## ``` 70 99 34 30 20 ## 1 p. 170 ##Principal component analysis (PCA) #### Some wrangling Let us rework the names of columns a bit, for convenience. Let us also get rid of a few columns we are not using ``` data = data[,2:dim(data)[2]] colnames(data) = c("gender", "age", "handedness", "height", "weight", "fing_temp", "fing_height", "fing_width", "fing_area", "fing_circ") head(data, n=3) gender age handedness height weight fing_temp fing_height fing_widt ## Right 174.0000 34 13. ## 1 Male NA 70 19.8 ## 2 Male NA Right 202.0000 99 30 24.0 14. 13. ## 3 Male NA Right 182.3333 82 29 20.0 ## fing_area fing_circ ## 1 240.6 57.7 ## 2 278.8 62.7 ## 3 223.8 55.5 p. 171 - Principal component analysis (PCA) ``` # Some wrangling – Centering Plotting all these variables is complicated, so we forgo this for the time being Let us centre the data. That there are some NA values, so we remove them using the function complete.cases, which identifies rows where at least one of the variables is NA (We could also use na.rm = TRUE when taking the average to remove these values.) We make new columns with the prefix .c, just to still have the initial data handy if need be. # Some wrangling – Centering ## ## 5 ## 6 ## 23 p. 173 ##Principal component analysis (PCA) ``` data = data[complete.cases(data),] to_centre = c("age", "height", "weight", "fing_temp", "fing height", "fing width", "fing_area", "fing_circ") for (c in to_centre) { new_c = sprintf("%s.c", c) data[[new_c]] = data[[c]] - mean(data[[c]], na.rm = TRUE) head(data) ``` gender age handedness height weight fing_temp fing_height fing_w Right 180.6667 80.33333 Right 180.0000 59.00000 Right 180.6667 68.00000 Right 188.6667 73.00000 Pight 166 0000 65 00000 29 32 27 29 27 22.7 24.3 21.1 23.0 10 / Male 18 Male 20 ## 12 Male 18 Male 18 #### Covariance matrix ## fing_circ ##Principal component analysis (PCA) / 7/5 ## ## age ## height 1210.8221 fing area ``` X = as.matrix(data[, to_centre]) S = 1/(dim(X)[1]-1)*t(X) %*% X S ## height weight fing_temp fing_height fing_wid age 435,6270 ## age 478,9939 3692.562 1579.172 614.2393 290.1 ## height 3692.5624 30183.706 12766.541 4994.7669 3553.3620 2364.9 1505.3519 ## weight 1579.1718 12766.541 5598.505 2118.0613 1006.2 614.2393 4994.767 2118.061 840.9141 588.5436 392.2 ## fing_temp ``` 435.6270 3553.362 1505.352 588.5436 420.9758 279.4 ## fing_height ## fing_width 290.1264 2364.938 1006.262 392.2006 279.4357 186.8 9882.954 4190.940 1636.9264 1169.4310 778.0 ## fing_area 5013.1387 41006.579 17504.745 6781.8000 4875.6983 3249.2 fing_circ 1100 0105 5013.139 1210.8221 41006.579 9882.9540 # Eigenvalues ``` ev = eigen(S) ev$values ## [1] 9.730867e+04 4.982986e+02 1.669174e+02 2.565635e+01 1.349931e+01 ## [6] 2.008242e+00 6.457803e-01 1.559819e-01 ``` Let us add the singular values to ev ``` ev$sing_values = sqrt(ev$values) ``` #### Use built-in functions ``` GS = pracma::gramSchmidt(A = ev$vectors) GS$Q ## [.1] [.2] [.3] [.4] [.5] ## [1,] -0.06785926 -0.10703810 -0.074771554 0.959199870 -0.21608682 0.1 [2,] -0.55435636 -0.72869902 0.290626700 -0.152379696 -0.15804372 0.1 [3,] -0.23625691 -0.18581742 -0.946363825 -0.106759855 -0.00455192 -0.0 [4.] -0.09173610 -0.13238200 0.016673068 0.178396675 0.95749120 0.1 [5,] -0.06566056 -0.02693052 0.041586794 0.053196632 0.02950635 -0.4 [6.] -0.04374434 -0.01430565 0.004070984 0.027623399 0.04800455 0.1 [7.] -0.76437249 0.63185800 0.060301062 0.007078515 -0.00675132 0.1 [8.] -0.18265026 -0.07289060 0.093169759 0.099246954 0.09109287 -0.8 ## [,7] [.8] [1.] -0.030350587 -0.023178128 [2,] -0.058350355 -0.012688619 0.002219217 0.001694049 ``` ##Principal-component analysis (RCA) = 0 03/1205121 # Some wrangling Now recall we saw a theorem that told us how to construct a new basis.. ``` # Make an identity matrix Id = diag(dim(GS$Q)[1]) # Make the augmented matrix A = cbind(GS$Q, Id) # Compute the RREF and extract the relevant matrix P = pracma::rref(A)[,(dim(GS$Q)[2]+1):dim(A)[2]] X.new = X %*% t(P) ``` #### Use built-in functions Use the built in function prcomp or PCA from the FactoMineR package ``` # data.pca = prcomp(X, center = TRUE, scale = TRUE) data.pca = PCA(X, scale.unit = TRUE, graph = FALSE) ## Error in PCA(X, scale.unit = TRUE, graph = FALSE): could not find function "PCA" summarv(data.pca) ## Error in h(simpleError(msg, call)): error in evaluating the argument 'object' in selecting a method for function 'summary': object 'data.pca' not found ``` # Percentage of variance The "proportion of variance" (or "percentage of variance") information is actually the proportion (and then cumulative proportion) represented by the singular value associated to each principal component We check this (approximately) by comparing with the singular values we computed ``` ev$sing_values/(sum(ev$sing_values)) ## [1] 0.870036273 0.062259612 0.036033997 0.014127294 0.010247489 0.003953 ## [7] 0.002241321 0.001101536 cumsum(ev$sing_values)/(sum(ev$sing_values)) ## [1] 0.8700363 0.9322959 0.9683299 0.9824572 0.9927047 0.9966571 0.998893 ## [8] 1.0000000 ``` #### Plot results ``` plot.PCA(data.pca, axes = c(1,2), choix = "ind", habillage = 4) ## Error in plot.PCA(data.pca, axes = c(1, 2), choix = "ind", habillage = 4): could not find function "plot.PCA" ``` # PCA graph of individuals Least squares
problems **QR** factorisation Singular values decomposition (SVD) Principal component analysis (PCA) Support vector machines # Clustering vs classification Clustering is partitioning an unlabelled dataset into groups of similar objects Classification sorts data into specific categories using a labelled dataset # Clustering From Wikipedia Cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group (called a cluster) are more similar (in some sense) to each other than to those in other groups (clusters). There are a myriad of ways to do clustering, this is an extremely active field of research and application. See the Wikipedia page for leads o. 183 - Support vector machines #### Classification #### From Wikipedia In statistics, **classification** is the problem of identifying which of a set of categories (sub-populations) an observation (or observations) belongs to. Examples are assigning a given email to the "spam" or "non-spam" class, and assigning a diagnosis to a given patient based on observed characteristics of the patient (sex, blood pressure, presence or absence of certain symptoms, etc.). # Support vector machines (SVM) We are given a training dataset of n points of the form $$(\mathbf{x}_1, y_1), \ldots, (\mathbf{x}_n, y_n)$$ where $\mathbf{x}_i \in \mathbb{R}^p$ and $y_i = \{-1, 1\}$. The value of y_i indicates the class to which the point \mathbf{x}_i belongs We want to find a surface S in \mathbb{R}^p that divides the group of points into two subgroups Once we have this surface \mathcal{S} , any additional point that is added to the set can then be classified as belonging to either one of the sets depending on where it is with respect to the surface \mathcal{S} #### Linear SVM We are given a training dataset of n points of the form $$(\mathbf{x}_1, y_1), \ldots, (\mathbf{x}_n, y_n)$$ where $\mathbf{x}_i \in \mathbb{R}^p$ and $y_i = \{-1, 1\}$. The value of y_i indicates the class to which the point \mathbf{x}_i belongs **Linear SVM** – Find the "maximum-margin hyperplane" that divides the group of points \mathbf{x}_i for which $y_i = 1$ from the group of points for which $y_i = -1$, which is such that the distance between the hyperplane and the nearest point \mathbf{x}_i from either group is maximized. p. 186 - Support vector machines Maximum-margin hyperplane and margins for an SVM trained with samples from two classes. Samples on the margin are the **support vectors** Any hyperplane can be written as the set of points x satisfying $$\mathbf{w}^{\mathsf{T}}\mathbf{x} - b = 0$$ where \boldsymbol{w} is the (not necessarily normalized) **normal vector** to the hyperplane (if the hyperplane has equation $a_1z_1+\cdots+a_pz_p=c$, then (a_1,\ldots,a_n) is normal to the hyperplane) The parameter $b/\|\mathbf{w}\|$ determines the offset of the hyperplane from the origin along the normal vector \mathbf{w} Remark: a hyperplane defined thusly is not a subspace of \mathbb{R}^p unless b=0. We can of course transform the data so that it is... # Linearly separable points Let X_1 and X_2 be two sets of points in \mathbb{R}^p Then X_1 and X_2 are **linearly separable** if there exist $w_1, w_2, ..., w_p, k \in \mathbb{R}$ such that - every point $x \in X_1$ satisfies $\sum_{i=1}^p w_i x_i > k$ - every point $x \in X_2$ satisfies $\sum_{i=1}^p w_i x_i < k$ where x_i is the *i*th component of x # Hard-margin SVM If the training data is linearly separable, we can select two parallel hyperplanes that separate the two classes of data, so that the distance between them is as large as possible The region bounded by these two hyperplanes is called the "margin", and the maximum-margin hyperplane is the hyperplane that lies halfway between them With a normalized or standardized dataset, these hyperplanes can be described by the equations - $\mathbf{w}^\mathsf{T}\mathbf{x} b = 1$ (anything on or above this boundary is of one class, with label 1) - $\mathbf{w}^\mathsf{T}\mathbf{x} b = -1$ (anything on or below this boundary is of the other class, with label -1) Distance between these two hyperplanes is $2/\|\boldsymbol{w}\|$ \Rightarrow to maximize the distance between the planes we want to minimize $\|\boldsymbol{w}\|$ The distance is computed using the distance from a point to a plane equation We must also prevent data points from falling into the margin, so we add the following constraint: for each i either $$\mathbf{w}^\mathsf{T}\mathbf{x}_i - b \ge 1$$, if $y_i = 1$ or $$\mathbf{w}^{\mathsf{T}}\mathbf{x}_{i} - b < -1$$, if $y_{i} = -1$ (Each data point must lie on the correct side of the margin) This can be rewritten as $$y_i(\mathbf{w}^\mathsf{T}\mathbf{x}_i - b) \ge 1$$, for all $1 \le i \le n$ or $$y_i(\mathbf{w}^\mathsf{T}\mathbf{x}_i - b) - 1 \ge 0$$, for all $1 \le i \le n$ We get the optimization problem: Minimize $$\|\mathbf{w}\|$$ subject to $y_i(\mathbf{w}^\mathsf{T}\mathbf{x}_i - b) - 1 \ge 0$ for $i = 1, ..., n$ The w and b that solve this problem determine the classifier, $x \mapsto \text{sgn}(w^Tx - b)$ where $sgn(\cdot)$ is the **sign function**. Support vector machines The maximum-margin hyperplane is completely determined by those x_i that lie nearest to it These x_i are the support vectors # Writing the goal in terms of Lagrange multipliers Recall that our goal is to minimize $\|\mathbf{w}\|$ subject to $y_i(\mathbf{w}^T\mathbf{x}_i - b) - 1 \ge 0$ for i = 1, ..., n Using Lagrange multipliers $\lambda_1, \ldots, \lambda_n$, we have the function $$L_P := F(\boldsymbol{w}, b\lambda_1, \dots, \lambda_n) = \frac{1}{2} \|\boldsymbol{w}\|^2 - \sum_{i=1}^n \lambda_i y_i(\boldsymbol{x}_i \boldsymbol{w} + b) + \sum_{i=1}^n \lambda_i$$ Note that we have as many Lagrange multipliers as there are data points. Indeed, there are that many inequalities that must be satisfied The aim is to minimise L_p with respect to \boldsymbol{w} and b while the derivatives of L_p w.r.t. λ_i vanish and the $\lambda_i > 0$, $i = 1, \ldots, n$ ## Lagrange multipliers We have already seen Lagrange multipliers, when we were studying PCA # Maximisation using Lagrange multipliers (V1.0) We want the max of $f(x_1, \ldots, x_n)$ under the constraint $g(x_1, \ldots, x_n) = k$ 1. Solve $$\nabla f(x_1,\ldots,x_n) = \lambda \nabla g(x_1,\ldots,x_n)$$ $$g(x_1,\ldots,x_n) = k$$ where $\nabla = (\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n})$ is the **gradient operator** 2. Plug all solutions into $f(x_1, ..., x_n)$ and find maximum values (provided values exist and $\nabla g \neq \mathbf{0}$ there) λ is the **Lagrange multiplier** ## The gradient $f:\mathbb{R}^n o\mathbb{R}$ function of several variables, $\nabla=\left(rac{\partial}{\partial x_1},\ldots, rac{\partial}{\partial x_n} ight)$ the gradient operator Then $$\nabla f = \left(\frac{\partial}{\partial x_1} f, \dots, \frac{\partial}{\partial x_n} f\right)$$ So ∇f is a *vector-valued* function, $\nabla f: \mathbb{R}^n \to \mathbb{R}^n$; also written as $$\nabla f = f_{x_1}(x_1,\ldots,x_n)\boldsymbol{e}_1 + \cdots + f_{x_n}(x_1,\ldots,x_n)\boldsymbol{e}_n$$ where f_{x_i} is the partial derivative of f with respect to x_i and $\{e_1, \dots, e_n\}$ is the standard basis of \mathbb{R}^n ## Lagrange multipliers (V2.0) However, the problem we were considering then involved a single multiplier λ Here we want $\lambda_1, \ldots, \lambda_n$ ## Lagrange multiplier theorem #### Theorem 38 Let $f: \mathbb{R}^n \to \mathbb{R}$ be the objective function, $g: \mathbb{R}^n \to \mathbb{R}^c$ be the constraints function. both being C^1 . Consider the optimisation problem maximize $$f(x)$$ subject to $g(x) = 0$ Let x^* be an optimal solution to the optimization problem, such that $rank(Dg(x^*)) = c < n$, where $Dg(x^*)$ denotes the matrix of partial derivatives $$[\partial g_j/\partial x_k]$$ Then there exists a unique Lagrange multiplier $\lambda^* \in \mathbb{R}^c$ such that $$Df(x^*) = \lambda^{*T} Dg(x^*)$$ ## Lagrange multipliers (V3.0) Here we want $\lambda_1, \ldots, \lambda_n$ But we also are looking for $\lambda_i \geq 0$ So we need to consider the so-called Karush-Kuhn-Tucker (KKT) conditions ## Karush-Kuhn-Tucker (KKT) conditions Consider the optimisation problem maximize $$f(x)$$ subject to $g_i(x) \le 0$ $h_i(x) = 0$ Form the Lagrangian $$L(\mathbf{x}, \mu, \lambda) = f(\mathbf{x}) + \mu^T \mathbf{g}(\mathbf{x}) + \lambda^T \mathbf{h}(\mathbf{x})$$ #### Theorem 39 If (\mathbf{x}^*, μ^*) is a saddle point of $L(\mathbf{x}, \mu)$ in $\mathbf{x} \in \mathbf{X}$, $\mu \geq \mathbf{0}$, then \mathbf{x}^* is an optimal vector for the above optimization problem. Suppose that $f(\mathbf{x})$ and $g_i(\mathbf{x})$, $i=1,\ldots,m$, are convex in \mathbf{x} and that there exists $\mathbf{x}_0 \in \mathbf{X}$ such that $\mathbf{g}(\mathbf{x}_0) < 0$. Then with an optimal vector \mathbf{x}^* for the above optimization problem there is associated a non-negative vector μ^* such that $L(\mathbf{x}^*, \mu^*)$ is a saddle point of $L(\mathbf{x}, \mu)$ #### KKT conditions $$\frac{\partial}{\partial w_{\nu}} L_{P} = w_{\nu} - \sum_{i}^{n} \lambda_{i} y_{i} x_{i\nu} = 0 \qquad \nu = 1, \dots, p$$ $$\frac{\partial}{\partial b} L_{P} = -\sum_{i=1}^{n} \lambda_{i} y_{i} = 0$$ $$y_{i}(\mathbf{x}_{i}^{T} \mathbf{w} + b) - 1 \ge 0 \qquad i = 1, \dots, n$$ $$\lambda_{i} \ge 0 \qquad i = 1, \dots, n$$ $$\lambda_{i}(y_{i}(\mathbf{x}_{i}^{T} \mathbf{w} + b) - 1) = 0 \qquad i = 1, \dots, n$$ ### Numerical example #### Example from here ``` set.seed(10111) x = matrix(rnorm(40), 20, 2) y = rep(c(-1, 1), c(10, 10)) x[y == 1,] = x[y == 1,] + 1 plot(x, col = y + 3, pch = 19) ``` ``` dat = data.frame(x, y = as.factor(y)) symfit = sym(y ~ ., data = dat, kernel = "linear", cost = 10, scale = FALS print(svmfit) ## ## Call: ## svm(formula = y ~ ., data = dat, kernel = "linear", cost = 10, scale = 1 ## ## ## Parameters: ## SVM-Type:
C-classification ## SVM-Kernel: linear ## cost: 10 ``` plot(svmfit, dat) ## Number of Support Vectors: 6 ## ### **SVM** classification plot ``` make.grid = function(x, n = 75) { grange = apply(x, 2, range) x1 = seq(from = grange[1,1], to = grange[2,1], length = n) x2 = seq(from = grange[1,2], to = grange[2,2], length = n) expand.grid(X1 = x1, X2 = x2) xgrid = make.grid(x) ygrid = predict(svmfit, xgrid) plot(xgrid, col = c("red", "blue") [as.numeric(ygrid)], pch = 20, cex = .2) points(x, col = y + 3, pch = 19) points(x[svmfit$index,], pch = 5, cex = 2) ``` ``` beta = drop(t(svmfit$coefs)%*%x[svmfit$index,]) beta0 = svmfit$rho plot(xgrid, col = c("red", "blue")[as.numeric(ygrid)], pch = 20, cex = .2) points(x, col = y + 3, pch = 19) points(x[svmfit$index,], pch = 5, cex = 2) abline(beta0 / beta[2], -beta[1] / beta[2]) abline((beta0 - 1) / beta[2], -beta[1] / beta[2], lty = 2) abline((beta0 + 1) / beta[2], -beta[1] / beta[2], lty = 2) ``` ## Soft-margin SVM To extend SVM to cases in which the data are not linearly separable, the **hinge loss** function is helpful $$\max\left(0,1-y_i(\mathbf{w}^\mathsf{T}\mathbf{x}_i-b)\right)$$ y_i is the *i*th target (i.e., in this case, 1 or -1), and $\mathbf{w}^\mathsf{T}\mathbf{x}_i - b$ is the *i*-th output This function is zero if the constraint is satisfied, in other words, if x_i lies on the correct side of the margin For data on the wrong side of the margin, the function's value is proportional to the distance from the margin The goal of the optimization then is to minimize $$\lambda \|\mathbf{w}\|^2 + \left[\frac{1}{n} \sum_{i=1}^n \max\left(0, 1 - y_i(\mathbf{w}^\mathsf{T} \mathbf{x}_i - b)\right)\right]$$ where the parameter $\lambda>0$ determines the trade-off between increasing the margin size and ensuring that the \mathbf{x}_i lie on the correct side of the margin Thus, for sufficiently small values of λ , it will behave similar to the hard-margin SVM, if the input data are linearly classifiable, but will still learn if a classification rule is viable or not