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Grabing the Canadian census data

We want to consider the evolution of the population of Canada through time

For this, we grab the Canadian census data

Search for (Google) “Canada historical census data csv”, since csv (comma separated
values) is a very easy format to use with R

Here, we find a csv for 1851 to 1976

We follow the link to Table A2-14, where we find another link, this time to a csv file.
This is what we use in R
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Grabing the Canadian census data
The function read.csv reads in a file (potentially directly from the web)
Assign the result to the variable data. We then use the function head to show the first
few lines in the result.

data_old = read.csv("https://www150.statcan.gc.ca/n1/en/pub/11-516-x/sectiona/A2_14-eng.csv?st=L7vSnqio")

head(data_old)

## X Series.A2.14.

## 1 NA

## 2 NA Year

## 3 NA

## 4 NA

## 5 NA

## 6 NA

## Population.of.Canada..by.province..census.dates..1851.to.1976 X.1 X.2

## 1 NA

## 2 Canada NA Newfound-

## 3 NA land

## 4 NA

## 5 2 NA 3

## 6 NA

## X.3 X.4 X.5 X.6 X.7 X.8 X.9 X.10 X.11 X.12

## 1 NA NA NA

## 2 Prince NA Nova New Quebec Ontario Manitoba NA Saskat- NA

## 3 Edward NA Scotia Brunswick NA chewan NA

## 4 Island NA NA NA

## 5 4 NA 5 6 7 8 9 NA 10 NA

## 6 NA NA NA

## X.13 X.14 X.15 X.16 X.17 X.18 X.19 X.20

## 1 NA NA NA NA

## 2 Alberta NA British NA Yukon Northwest NA NA

## 3 NA Columbia NA Territory Territories NA NA

## 4 NA NA NA NA

## 5 11 NA 12 NA 13 14 NA NA

## 6 NA NA NA NA
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Obviously, this does not make a lot of sense. This is normal: take a look at the first
few lines in the file. They take the form

head(data_old)

## X Series.A2.14.

## 1 NA

## 2 NA Year

## 3 NA

## 4 NA

## 5 NA

## 6 NA

## Population.of.Canada..by.province..census.dates..1851.to.1976 X.1 X.2

## 1 NA

## 2 Canada NA Newfound-

## 3 NA land

## 4 NA

## 5 2 NA 3

## 6 NA

## X.3 X.4 X.5 X.6 X.7 X.8 X.9 X.10 X.11 X.12

## 1 NA NA NA

## 2 Prince NA Nova New Quebec Ontario Manitoba NA Saskat- NA

## 3 Edward NA Scotia Brunswick NA chewan NA

## 4 Island NA NA NA

## 5 4 NA 5 6 7 8 9 NA 10 NA

## 6 NA NA NA

## X.13 X.14 X.15 X.16 X.17 X.18 X.19 X.20

## 1 NA NA NA NA

## 2 Alberta NA British NA Yukon Northwest NA NA

## 3 NA Columbia NA Territory Territories NA NA

## 4 NA NA NA NA

## 5 11 NA 12 NA 13 14 NA NA

## 6 NA NA NA NA

This happens often: the first few lines are here to set the information, they lay out a
simple version of the so-called metadata
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The first line here does this; it is easy to deal with this: the function read.csv takes the
optional argument skip=, which indicates how many lines to skip at the beginning The
second line is also empty, so let us skip it too

data_old = read.csv("https://www150.statcan.gc.ca/n1/en/pub/11-516-x/sectiona/A2_14-eng.csv?st=L7vSnqio",

skip = 2)

head(data_old)

## X Year Canada X.1 Newfound. Prince X.2 Nova New Quebec

## 1 NA NA land Edward NA Scotia Brunswick

## 2 NA NA Island NA

## 3 NA 2 NA 3 4 NA 5 6 7

## 4 NA NA NA

## 5 NA 1976 22,992,604 NA 557,725 118,229 NA 828,571 677,250 6,234,445

## 6 NA NA NA

## Ontario Manitoba X.3 Saskat. X.4 Alberta X.5 British X.6 Yukon

## 1 NA chewan NA NA Columbia NA Territory

## 2 NA NA NA NA

## 3 8 9 NA 10 NA 11 NA 12 NA 13

## 4 NA NA NA NA

## 5 8,264,465 1,021,506 NA 921,323 NA 1,838,037 NA 2,466,608 NA 21,836

## 6 NA NA NA NA

## Northwest X.7 X.8

## 1 Territories NA NA

## 2 NA NA

## 3 14 NA NA

## 4 NA NA

## 5 42,609 NA NA

## 6 NA NA
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Here, there is the further issue that to make things legible, the table authors used 3
rows (from 2 to 4) to encode for long names (e.g., Prince Edward Island is written over
3 rows). Note, however, that ‘read.csv‘ has rightly picked up on the first row being the
column names.
(You could also use the function ‘read csv‘ from the package ‘readr‘ to read in the file.
This function is a bit more flexible than ‘read.csv‘ and can handle such cases more
easily. However, it is not part of the base R package, so you would need to install it
first.)
Because we are only interested in the total population of the country and the year, let
us simply get rid of the first 4 rows and of all columns except the second (Year) and
third (Canada)

data_old = data_old[5:dim(data_old)[1], 2:3]

head(data_old, n=4)

## Year Canada

## 5 1976 22,992,604

## 6

## 7 1971 21,568,311

## 8 1966 20,014,880
p. 5 – Least squares problems



Still not perfect:
- there are some empty rows; - the last few rows need to be removed too, they contain
remarks about the data; - the population counts contain commas; - it would be better
if years were increasing.
Let us fix these issues.
For 1 and 2, this is easy: remark that the Canada column is empty for both issues.
Now remark as well that below Canada (and Year, for that matter), it is written
<chr>. This means that entries in the column are characters. Looking for empty
content therefore means looking for empty character chains.
So to fix 1 and 2, we keep the rows where Canada does not equal the empty chain.
To get rid of commas, we just need to substitute an empty chain for ”,”.
To sort, we find the order for the years and apply it to the entire table.
Finally, as remarked above, for now, both the year and the population are considered
as character chains. This means that in order to plot anything, we will have to indicate
that these are numbers, not characters.
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data_old = data_old[which(data_old$Canada != ""),]

data_old$Canada = gsub(",", "", data_old$Canada)

order_data = order(data_old$Year)

data_old = data_old[order_data,]

data_old$Year = as.numeric(data_old$Year)

data_old$Canada = as.numeric(data_old$Canada)

data_old

## Year Canada

## 23 1851 2436297

## 22 1861 3229633

## 21 1871 3689257

## 20 1881 4324810

## 19 1891 4833239

## 17 1901 5371315

## 16 1911 7206643

## 15 1921 8787949

## 14 1931 10376786

## 13 1941 11506655

## 11 1951 14009429

## 10 1956 16080791

## 9 1961 18238247

## 8 1966 20014880

## 7 1971 21568311

## 5 1976 22992604
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Row numbers are a little weird, so let us fix this.

row.names(data_old) = 1:dim(data_old)[1]

data_old

## Year Canada

## 1 1851 2436297

## 2 1861 3229633

## 3 1871 3689257

## 4 1881 4324810

## 5 1891 4833239

## 6 1901 5371315

## 7 1911 7206643

## 8 1921 8787949

## 9 1931 10376786

## 10 1941 11506655

## 11 1951 14009429

## 12 1956 16080791

## 13 1961 18238247

## 14 1966 20014880

## 15 1971 21568311

## 16 1976 22992604

Well, that looks about right! Let’s see what this looks like in a graph.
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plot(data_old$Year, data_old$Canada,

type = "b", lwd = 2,

xlab = "Year", ylab = "Population")
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But wait, this is only to 1976..! Looking around, we find another table here. There’s a
download csv link in there, let us see where this leads us. The table is 720KB, so
surely there must be more to this than just the population. To get a sense of that, we
dump the whole data.frame, not just its head.

data_new = read.csv("https://www12.statcan.gc.ca/census-recensement/2011/dp-pd/vc-rv/download-telecharger/download-telecharger.cfm?Lang=eng&CTLG=98-315-XWE2011001&FMT=csv")

head(data_new, 10)

## GEOGRAPHY.NAME CHARACTERISTIC YEAR.S. TOTAL FLAG_TOTAL

## 1 Canada Population (in thousands) 1956 16081

## 2 Canada Population (in thousands) 1961 18238

## 3 Canada Population (in thousands) 1966 20015

## 4 Canada Population (in thousands) 1971 21568

## 5 Canada Population (in thousands) 1976 22993

## 6 Canada Population (in thousands) 1981 24343

## 7 Canada Population (in thousands) 1986 25309

## 8 Canada Population (in thousands) 1991 27297

## 9 Canada Population (in thousands) 1996 28847

## 10 Canada Population (in thousands) 2001 30007
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Haha, this looks quite nice but has way more information than we need: we just want
the population of Canada and here we get 9960 rows. Also, the population of Canada
is expressed in thousands, so once we selected what we want, we will need to multiply
by 1,000.
There are many ways to select rows. Let us proceed as follows: we want the rows
where the geography is ”Canada” and the characteristic is ”Population (in
thousands)”. Let us find those indices of rows that satisfy the first criterion, those that
satisfy the second; if we then intersect these two sets of indices, we will have selected
the rows we want.

idx_CAN = which(data_new$GEOGRAPHY.NAME == "Canada")

idx_char = which(data_new$CHARACTERISTIC == "Population (in thousands)")

idx_keep = intersect(idx_CAN, idx_char)

head(idx_keep, n = 8)

## [1] 1 2 3 4 5 6 7 8
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Yes, this looks okay, so let us keep only these

data_new = data_new[idx_keep,]

head(data_new, n = 8)

## GEOGRAPHY.NAME CHARACTERISTIC YEAR.S. TOTAL FLAG_TOTAL

## 1 Canada Population (in thousands) 1956 16081

## 2 Canada Population (in thousands) 1961 18238

## 3 Canada Population (in thousands) 1966 20015

## 4 Canada Population (in thousands) 1971 21568

## 5 Canada Population (in thousands) 1976 22993

## 6 Canada Population (in thousands) 1981 24343

## 7 Canada Population (in thousands) 1986 25309

## 8 Canada Population (in thousands) 1991 27297
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We want to concatenate this data.frame with the one from earlier

To do this, we need the two data frames to have the same number of columns and,
actually, the same column names and entry types (notice that YEAR.S. in data new is
a column of characters)
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What remains to do

▶ Rename the columns in the pruned old data (data pruned) to year and
population. Personally, I prefer lowercase column names.. and population is
more informative than Canada

▶ Keep only the relevant columns in data new, rename them accordingly and
multiply population by 1,000 there

▶ Transform year in data new to numbers

▶ We already have data up to and including 1976 in data old, so get rid of that in
data new

▶ Append the rows of data new to those of data pruned
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colnames(data_old) = c("year", "population")

data_new = data_new[,c("YEAR.S.","TOTAL")]

colnames(data_new) = c("year", "population")

data_new$year = as.numeric(data_new$year)

data_new = data_new[which(data_new$year>1976),]

data_new$population = data_new$population*1000

data = rbind(data_old,data_new)
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Let us plot the result

plot(data$year, data$population,

type = "b", lwd = 2,

xlab = "Year", ylab = "Population")
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Save the processed data

In case we need the data elsewhere, we save the data to a csv file

write.csv(data, file = "../CODE/Canada_census.csv")

Using readr saves the data without row numbers (by default), so we can do this
instead

readr::write_csv(data, file = "../CODE/Canada_census.csv")
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We just collected the census data for Canada

Suppose we want to predict the population of Canada in 20 years given the historical
population growth seen in the previous plot. What can we do?

If there were just two points, we could easily ”drive” a line through these two points.
However, we have much more than two points, so we will use fitting, i.e., try to make
a curve come as close to possible to the points

We start with a line, giving rise to linear least squares
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Least squares approximation – A trivial case
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We want to find the equation of a line y = a+ bx that goes through these two points,
i.e., we seek a and b such that

3 = a+ b

5 = a+ 2b

i.e., they satisfy y = a+ bx for (x , y) = (1, 3) and (x , y) = (2, 5)
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This is a linear system with 2 equations and 2 unknowns a and b(
1 1
1 2

)(
a
b

)
=

(
3
5

)
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We know from the “famous” linear algebra in a nutshell theorem that this system has
a unique solution if the matrix

M =

(
1 1
1 2

)
is invertible

det(M) = 1, so we are good, we’ll find a and b easily..

p. 22 – Least squares problems



Now let’s add another point

points = list()

points$x = c(1,2,3)

points$y = c(3,5,4) # So the points are (1,3), (2,5) and (3,4)

plot(points$x, points$y,

pch = 19, cex = 2, bty = "n",

xlim = c(0, 3.5), ylim = c(0,6), xlab = "x", ylab = "y")

These points are clearly not colinear, so there is not one line going through the 3
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We end up with an *overdetermined* system

3 = a+ b

5 = a+ 2b

4 = a+ 3b

i.e., 1 1
1 2
1 3

(
a
b

)
=

3
5
4


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We have verified visually that the points are not colinear, so this system has no
solution.
(If you had to do it for good, you consider two vectors stemming from these 3 points
and compute the angle between them or check that one is a multiple of the other).
So let us instead try to find the line that comes ”closest” to the 3 points.

A = matrix(c(1,1,1,2), nr = 2, nc = 2, byrow = TRUE)

rhs = matrix(c(3,5), nr = 2, nc =1)

coefs = solve(A,rhs) # To invert A, in R, you use solve(A), to solve Ax=b, you use solve(A,b)

plot(points$x, points$y,

pch = 19, cex = 2, bty = "n",

xlim = c(0, 3.5), ylim = c(0,6), xlab = "x", ylab = "y")

abline(coef = coefs, lwd = 2)

Obviously, not sensational..
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plot(points$x, points$y,

pch = 19, cex = 2, bty = "n",

xlim = c(0, 3.5), ylim = c(0,6), xlab = "x", ylab = "y")

abline(coef = coefs, lwd = 2)

abline(a = 3, b = 0.5, lwd = 2, col = "red")

How do we find ”how far away”?
- We could use projections onto the line (which we know minimises the distance) -
However, this will be a problem if we later decide that rather than a straight line, we
want to use something more ”funky” like a quadratic or an exponential

p. 26 – Least squares problems



So instead, we compare, for a given value x , the distance between the true value y and
the value of y obtained using the curve (line, here) that we use to fit the data
Let (xi , yi ) be the data points, i.e., here, (x1, y1) = (1, 3), (x2, y2) = (2, 5) and
(x3, y3) = (3, 4)
Now suppose we use a line with equation y = a+ bx and that we pick a value for a
and b. Then at x1,

ỹ1 = a+ bx1 = a+ b

at x2
ỹ2 = a+ bx2 = a+ 2b

and at x3,
ỹ3 = a+ bx3 = a+ 3b

Consider x1, for instance. The error we made by using the line with coefficients (a, b)

is
−−−−−−−−−−→
(x1, y1)(x1, ỹ1).
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For future use, let us create a function for y = a0 + a1x .

my_line = function(x, a_0, a_1){
return(a_0 + a_1*x)

}

Functions are super useful when programming

my_line(1,2,3)

## [1] 5

my_line(a_0 = 2, a_1 = 3, x = 1)

## [1] 5

my_line(x = c(1,2,3), a_0 = 2, a_1 = 3)

## [1] 5 8 11
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a = 3

b = 0.5 # The line has equation y=a+bx

plot(points$x, points$y,

pch = 19, cex = 2, bty = "n",

xlim = c(0, 3.5), ylim = c(0,6), xlab = "x", ylab = "y")

abline(a = a, b = b, lwd = 2)

abline(v = c(1,2,3)) # If we used abline(h=c(0,1)), we would get horizontal lines at y=0 and y=1

p = my_line(c(1,2,3), a, b)

points(c(1,2,3), p, pch = 19, cex = 2, col = "red")
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Let us return to the error −−−−−−−−−−→
(x1, y1)(x1, ỹ1)

We have −−−−−−−−−−→
(x1, y1)(x1, ỹ1) = (x1 − x1, y1 − ỹ1) = (0, y1 − ỹ1)

Let us call
ε1 = y1 − ỹ1

We can compute ε2 and ε3 too. And we can then form the **error vector**

e = (ε1, ε2, ε3)
T

The norm of e, ∥e∥, then tells us how much error we are making for the choice of
(a, b) we are using
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The norm of e, ∥e∥, tells us how much error we are making for the choice of (a, b) we
are using
So our objective is to find (a, b) such that ∥e∥ is minimal
We could use various norms, but the Euclidean norm has some very interesting
properties, so we use

∥e∥ =
√

ε21 + ε22 + ε23
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The linear least squares problem

Given a collection of data points (x1, y1), . . . , (xn, yn), find the coefficients a, b of the
line y = a+ bx such that

∥e∥ =
√

ε21 + · · ·+ ε2n =
√
(y1 − ỹ1)2 + · · ·+ (yn − ỹn)2

is minimal, where ỹi = a+ bxi , for i = 1, . . . , n
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Let us first hack a brute force solution! (For the example we have been using this far)
We have our three points in the list ‘points‘, the function my line that computes the
value ỹ given x and a, b, so let us make a new function that, given a, b, computes e
We’ll also pass the points ‘points‘

error = function(a_0, a_1, points) {
y_tilde = my_line(points$x, a_0 = a_0, a_1 = a_1)

e = points$y - y_tilde

return(sqrt(sum(e^2)))

}
error(a_0 = 2, a_1 = 3, points)

## [1] 7.874008

error(a_0 = 3, a_1 = 0.5, points)

## [1] 1.224745

error(a_0 = 3.1, a_1 = 0.48, points)

## [1] 1.229471

We can’t be doing this by hand..
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Genetic algorithms

Let’s use something cool: a genetic algorithm
- Genetic algorithms are a stochastic *optimisation* method. There are other types,
e.g., gradient descent (deterministic) - The idea is to use a mechanism mimicking
evolution’s drive towards higher fitness - The function value is its fitness - We try
different genes (here, different values of a, b) and evaluate their fitness.. keep the good
ones - We mutate or crossover genes, throw in new ones, etc. - We keep doing this
until we reach a stopping criterion - We then return the best gene we found
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if (!require("GA", quietly = TRUE)) {
install.packages("GA")

library(GA)

}
GA = ga(type = "real-valued",

fitness = function(x) -error(a_0 = x[1], a_1 = x[2], points),

suggestions = c(a_0 = 2, a_1 = 3),

lower = c(-10, -10), upper = c(10, 10),

popSize = 200, maxiter = 150)

# plot(GA)

GA

## An object of class "ga"

##

## Call:

## ga(type = "real-valued", fitness = function(x) -error(a_0 = x[1], a_1 = x[2], points), lower = c(-10, -10), upper = c(10, 10), popSize = 200, maxiter = 150, suggestions = c(a_0 = 2, a_1 = 3))

##

## Available slots:

## [1] "call" "type" "lower" "upper" "nBits"

## [6] "names" "popSize" "iter" "run" "maxiter"

## [11] "suggestions" "population" "elitism" "pcrossover" "pmutation"

## [16] "optim" "fitness" "summary" "bestSol" "fitnessValue"

## [21] "solution"

GA@solution

## x1 x2

## [1,] 3.000573 0.4997367

-GA@fitnessValue

## [1] 1.224745

- Here, however, we do not have to go brute force: we can reason using mathematics -
We now take a little detour on the math side of things, we will come back to code in a
while..
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The least squares problem (simplest version)

Definition 1

Given a collection of points (x1, y1), . . . , (xn, yn), find the coefficients a, b of the line
y = a+ bx such that

∥e∥ =
√
ε21 + · · ·+ ε2n =

√
(y1 − ỹ1)2 + · · ·+ (yn − ỹn)2

is minimal, where ỹi = a+ bxi for i = 1, . . . , n

We just saw how to solve this by brute force using a genetic algorith to minimise ∥e∥,
let us now see how to solve this problem “properly”
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For a data point i = 1, . . . , n

εi = yi − ỹi = yi − (a+ bxi )

So if we write this for all data points,

ε1 = y1 − (a+ bx1)

...

εn = yn − (a+ bxn)

In matrix form
e = b − Ax

with

e =

ε1
...
εn

 ,A =

1 x1
...

...
1 xn

 , x =

(
a
b

)
and b =

y1
...
yn


p. 37 – Least squares problems



The least squares problem (reformulated)

Definition 2 (Least squares solutions)

Consider a collection of points (x1, y1), . . . , (xn, yn), a matrix A ∈ Mmn, b ∈ Rm. A
least squares solution of Ax = b is a vector x̃ ∈ Rn s.t.

∀x ∈ Rn, ∥b − Ax̃∥ ≤ ∥b − Ax∥
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Needed to solve the problem

Definition 3 (Best approximation)

Let V be a vector space, W ⊂ V and v ∈ V . The best approximation to v in W is
ṽ ∈ W s.t.

∀w ∈ W ,w ̸= ṽ, ∥v − ṽ∥ < ∥v −w∥

Theorem 4 (Best approximation theorem)

Let V be a vector space with an inner product, W ⊂ V and v ∈ V . Then projW (v) is
the best approximation to v in W
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Let us find the least squares solution

∀xRn, Ax is a vector in the column space of A (the space spanned by the vectors
making up the columns of A)

Since x ∈ Rn, Ax ∈ col(A)

=⇒ least squares solution of Ax = b is a vector ỹ ∈ col(A) s.t.

∀y ∈ col(A), ∥b − ỹ∥ ≤ ∥b − y∥

This looks very much like Best approximation and Best approximation theorem
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Putting things together

We just stated: The least squares solution of Ax = b is a vector ỹ ∈ col(A) s.t.

∀y ∈ col(A), ∥b − ỹ∥ ≤ ∥b − y∥

We know (reformulating a tad):

Theorem 5 (Best approximation theorem)

Let V be a vector space with an inner product, W ⊂ V and v ∈ V . Then
projW (v) ∈ W is the best approximation to v in W, i.e.,

∀w ∈ W ,w ̸= projW (v), ∥v − projW (v)∥ < ∥v −w∥

=⇒ W = col(A), v = b and ỹ = projcol(A)(b)

p. 41 – Least squares problems



So if x̃ is a least squares solution of Ax = b, then

ỹ = Ax̃ = projcol(A)(b)

We have
b − Ax̃ = b − projcol(A)(b) = perpcol(A)(b)

and it is easy to show that
perpcol(A)(b) ⊥ col(A)

So for all columns ai of A
ai · (b − Ax̃) = 0

which we can also write as aT
i (b − Ax̃) = 0
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For all columns ai of A,
aT
i (b − Ax̃) = 0

This is equivalent to saying that

AT (b − Ax̃) = 0

We have

AT (b − Ax̃) = 0 ⇐⇒ ATb − ATAx̃ = 0

⇐⇒ ATb = ATAx̃

⇐⇒ ATAx̃ = ATb

The latter system constitutes the normal equations for x̃
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Least squares theorem

Theorem 6 (Least squares theorem)

A ∈ Mmn, b ∈ Rm. Then

1. Ax = b always has at least one least squares solution x̃
2. x̃ least squares solution to Ax = b ⇐⇒ x̃ is a solution to the normal equations

ATAx̃ = ATb
3. A has linearly independent columns ⇐⇒ ATA invertible.

In this case, the least squares solution is unique and

x̃ =
(
ATA

)−1
ATb

We have seen 1 and 2, we will not show 3 (it is not hard)
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Suppose we want to fit something a bit more complicated..

For instance, instead of the affine function

y = a+ bx

suppose we want to do the quadratic

y = a0 + a1x + a2x
2

or even
y = k0e

k1x

How do we proceed?
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Fitting the quadratic

We have the data points (x1, y1), (x2, y2), . . . , (xn, yn) and want to fit

y = a0 + a1x + a2x
2

At (x1, y1),
ỹ1 = a0 + a1x1 + a2x

2
1

...
At (xn, yn),

ỹn = a0 + a1xn + a2x
2
n

p. 46 – Least squares problems



In terms of the error

ε1 = y1 − ỹ1 = y1 − (a0 + a1x1 + a2x
2
1 )

...

εn = yn − ỹn = yn − (a0 + a1xn + a2x
2
n )

i.e.,
e = b − Ax

where

e =

ε1
...
εn

 ,A =

1 x1 x21
...

...
...

1 xn x2n

 , x =

a0
a1
a2

 and b =

y1
...
yn


Theorem 6 applies, with here A ∈ Mn3 and b ∈ Rn
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Fitting the exponential

Things are a bit more complicated here

If we proceed as before, we get the system

y1 = k0e
k1x1

...

yn = k0e
k1xn

ek1xi is a nonlinear term, it cannot be put in a matrix

However: take the ln of both sides of the equation

ln(yi ) = ln(k0e
k1xi ) = ln(k0) + ln(ek1xi ) = ln(k0) + k1xi

If yi , k0 > 0, then their ln are defined and we’re in business..
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ln(yi ) = ln(k0) + k1xi

So the system is

y = Ax + b

with

A =

x1
...
xn

 , x =
(
k1
)
,b =

(
ln(k0)

)
and y =

ln(y1)
...

ln(yn)


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Matrix factorisations

Matrix factorisations are popular because they allow to perform some computations
more easily

There are several different types of factorisations. Here, we study just the QR
factorisation, which is useful for many least squares problems
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Definition 7 (Orthogonal set of vectors)

The set of vectors {v1, . . . , vk} ∈ Rn is an orthogonal set if

∀i , j = 1, . . . , k , i ̸= j =⇒ vi • vj = 0

Theorem 8

{v1, . . . , vk} ∈ Rn with ∀i , vi ̸= 0, orthogonal set =⇒ {v1, . . . , vk} ∈ Rn linearly
independent

Definition 9 (Orthogonal basis)

Let S be a basis of the subspace W ⊂ Rn composed of an orthogonal set of vectors.
We say S is an orthogonal basis of W
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Proof of Theorem 8
Assume {v1, . . . , vk} orthogonal set with vi ̸= 0 for all i = 1, . . . , k . Recall
{v1, . . . , vk} is LI if

c1v1 + · · ·+ ckvk = 0 ⇐⇒ c1 = · · · = ck = 0

So assume c1, . . . , ck ∈ R are s.t. c1v1 + · · ·+ ckvk = 0. Recall that ∀x ∈ Rk ,
0k • x = 0. So for some vi ∈ {v1, . . . , vk}

0 = 0 • vi
= (c1v1 + · · ·+ ckvk) • vi
= c1v1 • vi + · · ·+ ckvk • vi (1)

As {v1, . . . , vk} orthogonal, vj • vi = 0 when i ̸= j , (1) reduces to

civi • vi = 0 ⇐⇒ ci∥vi∥2 = 0

As vi ̸= 0 for all i , ∥vi∥ ≠ 0 and so ci = 0. This is true for all i , hence the result
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Example – Vectors of the standard basis of R3

For R3, we denote

i =

1
0
0

 , j =

0
1
0

 and k =

0
0
1


(Rk for k > 3, we denote them ei )
Clearly, {i , j}, {i , k}, {j , k} and {i , j , k} orthogonal sets. The standard basis vectors
are also ̸= 0, so the sets are LI. And

{i , j , k}

is an orthogonal basis of R3 since it spans R3 and is LI

c1i + c2j + c3k = c1

1
0
0

+ c2

0
1
0

+ c3

0
0
1

 =

c1
c2
c3


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Orthonormal version of things

Definition 10 (Orthonormal set)

The set of vectors {v1, . . . , vk} ∈ Rn is an orthonormal set if it is an orthogonal set
and furthermore

∀i = 1, . . . , k , ∥vi∥ = 1

Definition 11 (Orthonormal basis)

A basis of the subspace W ⊂ Rn is an orthonormal basis if the vectors composing it
are an orthonormal set

{v1, . . . , vk} ∈ Rn is orthonormal if

vi • vj =

{
1 if i = j

0 otherwise
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Projections

Definition 12 (Orthogonal projection onto a subspace)

W ⊂ Rn a subspace and {u1, . . . ,uk} an orthogonal basis of W . ∀v ∈ Rn, the
orthogonal projection of v onto W is

projW (v) =
u1 • v
∥u1∥2

u1 + · · ·+ uk • v
∥uk∥2

uk

Definition 13 (Component orthogonal to a subspace)

W ⊂ Rn a subspace and {u1, . . . ,uk} an orthogonal basis of W . ∀v ∈ Rn, the
component of v orthogonal to W is

perpW (v) = v − projW (v)
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What this aims to do is to construct an orthogonal basis for a subspace W ⊂ Rn

To do this, we use the Gram-Schmidt orthogonalisation process, which turn s a basis of
W into an orthogonal basis of W
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Gram-Schmidt process

Theorem 14

W ⊂ Rn a subset and {x1, . . . , xk} a basis of W . Let

v1 = x1

v2 = x2 −
v1 • x2
∥v1∥2

v1

v3 = x3 −
v1 • x3
∥v1∥2

v1 −
v2 • x3
∥v2∥2

v2

...

vk = xk −
v1 • xk
∥v1∥2

v1 − · · · − vk−1 • xk
∥vk−1∥2

vk−1

and
W1 = span(x1),W2 = span(x1, x2), . . . ,Wk = span(x1, . . . , xk)

Then ∀i = 1, . . . , k, {v1, . . . , vi} orthogonal basis for Wi
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Theorem 15

Let Q ∈ Mmn. The columns of Q form an orthonormal set if and only if

QTQ = In

Definition 16 (Orthogonal matrix)

Q ∈ Mn is an orthogonal matrix if its columns form an orthonormal set

So Q ∈ Mn orthogonal if QTQ = I, i.e., QT = Q−1

Theorem 17 (NSC for orthogonality)

Q ∈ Mn orthogonal ⇐⇒ Q−1 = QT
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Theorem 18 (Orthogonal matrices “encode” isometries)

Let Q ∈ Mn. TFAE

1. Q orthogonal

2. ∀x ∈ Rn, ∥Qx∥ = ∥x∥
3. ∀x , y ∈ Rn, Qx • Qy = x • y

Theorem 19

Let Q ∈ Mn be orthogonal. Then

1. The rows of Q form an orthonormal set

2. Q−1 orthogonal

3. detQ = ±1

4. ∀λ ∈ σ(Q), |λ| = 1

5. If Q2 ∈ Mn also orthogonal, then QQ2 orthogonal
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Proof of 4 in Theorem 19

All statements in Theorem 19 are easy, but let’s focus on 4

Let λ be an eigenvalue of Q ∈ Mn orthogonal, i.e., ∃Rn ∋ x ̸= 0 s.t.

Qx = λx

Take the norm on both sides
∥Qx∥ = ∥λx∥

From 2 in Theorem 18, ∥Qx∥ = ∥x∥ and from the properties of norms,
∥λx∥ = |λ| ∥x∥, so we have

∥Qx∥ = ∥λx∥ ⇐⇒ ∥x∥ = |λ| ∥x∥ ⇐⇒ 1 = |λ|

(we can divide by ∥x∥ since x ̸= 0 as an eigenvector)
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The QR factorisation

Theorem 20

Let A ∈ Mmn with LI columns. Then A can be factored as

A = QR

where Q ∈ Mmn has orthonormal columns and R ∈ Mn is nonsingular upper triangular
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Back to least squares

So what was the point of all that..?

Theorem 21 (Least squares with QR factorisation)

A ∈ Mmn with LI columns, b ∈ Rm. If A = QR is a QR factorisation of A, then the
unique least squares solution x̃ of Ax = b is

x̃ = R−1QTb

p. 62 – QR factorisation



Proof of Theorem 21
A has LI columns so

▶ least squares Ax = b has unique solution x̃ = (ATA)−1ATb
▶ by Theorem 20, A can be written as A = QR with Q ∈ Mmn with orthonormal

columns and R ∈ Mn nonsingular and upper triangular

So

ATAx̃ = ATb =⇒ (QR)TQR x̃ = (QR)Tb

=⇒ RTQTQR x̃ = RTQTb

=⇒ RT InR x̃ = RTQTb

=⇒ RTR x̃ = RTQTb

=⇒ (RT )−1R x̃ = (RT )−1RTQTb

=⇒ R x̃ = QTb

=⇒ x̃ = R−1QTb
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Matrix factorisations (continued)

The singular value decomposition (known mostly by its acronym, SVD) is yet another
type of factorisation/decomposition..
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Singular values

Definition 22 (Singular value)

Let A ∈ Mmn(R). The singular values of A are the real numbers

σ1 ≥ σ2 ≥ · · ·σn ≥ 0

that are the square roots of the eigenvalues of ATA
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Singular values are real and nonnegative?

Recall that ∀A ∈ Mmn, A
TA is symmetric

Claim 1. Real symmetric matrices have real eigenvalues

Proof. A ∈ Mn(R) symmetric and (λ, v) eigenpair of A, i.e, Av = λv . Taking the
complex conjugate, Av = λv

Since A ∈ Mn(R), A = A (z = z̄ ⇐⇒ z ∈ R)

So
Av̄ = Av̄ = Av = λv = λv̄

i.e., if (λ, v) eigenpair, (λ̄, v̄) also eigenpair
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Still assuming A ∈ Mn(R) symmetric and (λ, v) eigenpair of A and using what we just
proved (that (λ̄, v̄) also eigenpair), take transposes

Av̄ = λ̄v̄ ⇐⇒ (Av̄)T = (λ̄v̄)T

⇐⇒ v̄TAT = λ̄v̄T

⇐⇒ v̄TA = λ̄v̄T [A symmetric]

Let us now compute λ(v̄ • v). We have

λ(v̄ • v) = λv̄Tv = v̄T (λv)

= v̄T (Av) = (v̄TA)v

= (λ̄v̄T )v = λ̄(v̄ • v)
⇐⇒ (λ− λ̄)(v̄ • v) = 0
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We have shown
(λ− λ̄)(v̄ • v) = 0

Let

v =

a1 + ib1
...

an + ibn


Then

v̄ =

a1 − ib1
...

an − ibn


So

v̄ • v = (a21 + b21) + · · ·+ (a2n + b2n)

But v eigenvector is ̸= 0, so v̄ • v ̸= 0, so

(λ− λ̄)(v̄ • v) = 0 ⇐⇒ λ− λ̄ = 0 ⇐⇒ λ = λ̄ ⇐⇒ λ ∈ R
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Claim 2. For A ∈ Mmn(R), the eigenvalues of ATA are real and nonnegative

Proof. We know that for A ∈ Mmn, A
TA symmetric and from previous claim, if

A ∈ Mmn(R), then ATA is symmetric and real and with real eigenvalues

Let (λ, v) be an eigenpair of ATA, with v chosen so that ∥v∥ = 1

Norms are functions V → R+, so ∥Av∥ and ∥Av∥2 are ≥ 0 and thus

0 ≤ ∥Av∥2 = (Av) • (Av) = (Av)T (Av)

= vTATAv = vT (ATAv) = vT (λv)

= λ(vTv) = λ(v • v) = λ∥v∥2

= λ
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Claim 3. For A ∈ Mmn(R), the nonzero eigenvalues of ATA and AAT are the same

Proof. Let (λ, v) be an eigenpair of ATA with λ ̸= 0. Then v ̸= 0 and

ATAv = λv ̸= 0

Left multiply by A
AATAv = λAv

Let w = Av , we thus have AATw = λw ; in other words, Av is an eigenvector of AAT

corresponding to the (nonzero) eigenvalue λ

The reverse works the same way..
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The singular value decomposition (SVD)

Theorem 23 (SVD)

A ∈ Mmn with singular values σ1 ≥ · · · ≥ σr > 0 and σr+1 = · · · = σn = 0

Then there exists U ∈ Mm orthogonal, V ∈ Mn orthogonal and a block matrix
Σ ∈ Mmn taking the form

Σ =

(
D 0r ,n−r

0m−r ,r 0m−r ,n−r

)
where

D = diag(σ1, . . . , σr ) ∈ Mr

such that
A = UΣV T
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Definition 24

We call a factorisation as in Theorem 23 the singular value decomposition of A. The
columns of U and V are, respectively, the left and right singular vectors of A

U and V T are rotation or reflection matrices, Σ is a scaling matrix

U ∈ Mm orthogonal matrix with columns the eigenvectors of AAT

V ∈ Mn orthogonal matrix with columns the eigenvectors of ATA
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Outer product form of the SVD

Theorem 25 (Outer product form of the SVD)

A ∈ Mmn with singular values σ1 ≥ · · · ≥ σr > 0 and σr+1 = · · · = σn = 0, u1, . . . ,ur

and v1, . . . , vr , respectively, left and right singular vectors of A corresponding to these
singular values

Then
A = σ1u1vT

1 + · · ·+ σrurvT
r (2)
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Computing the SVD (case of ̸= eigenvalues)

To compute the SVD, we use the following result

Theorem 26

Let A ∈ Mn symmetric, (λ1,u1) and (λ2,u2) be eigenpairs, λ1 ̸= λ2. Then u1 •u2 = 0

p. 74 – Singular values decomposition (SVD)



Proof of Theorem 26

A ∈ Mn symmetric, (λ1,u1) and (λ2,u2) eigenpairs with λ1 ̸= λ2

λ1(v1 • v2) = (λ1v1) • v2
= Av1 • v2
= (Av1)Tv2
= vT

1 ATv2
= vT

1 (Av2) [A symmetric so AT = A]

= vT
1 (λ2v2)

= λ2(vT
1 v2)

= λ2(v1 • v2)

So (λ1 − λ2)(v1 • v2) = 0. But λ1 ̸= λ2, so v1 • v2 = 0
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Computing the SVD (case of ̸= eigenvalues)

If all eigenvalues of ATA (or AAT ) are distinct, we can use Theorem 26

1. Compute ATA ∈ Mn

2. Compute eigenvalues λ1, . . . , λn of ATA; order them as λ1 > · · · > λn ≥ 0 (> not
≥ since ̸=)

3. Compute singular values σ1 =
√
λ1, . . . , σn =

√
λn

4. Diagonal matrix D in Σ is either in Mn (if σn > 0) or in Mn−1 (if σn = 0)

p. 76 – Singular values decomposition (SVD)



5. Since eigenvalues are distinct, Theorem 26 =⇒ eigenvectors are orthogonal set.
Compute these eigenvectors in the same order as the eigenvalues

6. Normalise them and use them to make the matrix V , i.e., V = [v1 · · · vn]
7. To find the ui , compute, for i = 1, . . . , r ,

ui =
1

σi
Avi

and ensure that ∥ui∥ = 1
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Computing the SVD (case where some eigenvalues are =)

1. Compute ATA ∈ Mn

2. Compute eigenvalues λ1, . . . , λn of ATA; order them as λ1 ≥ · · · ≥ λn ≥ 0

3. Compute singular values σ1 =
√
λ1, . . . , σn =

√
λn, with r ≤ n the index of the

last positive singular value

4. For eigenvalues that are distinct, proceed as before

5. For eigenvalues with multiplicity > 1, we need to ensure that the resulting
eigenvectors are LI and orthogonal
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Dealing with eigenvalues with multiplicity > 1

When an eigenvalue has (algebraic) multiplicity > 1, e.g., characteristic polynomial
contains a factor like (λ− 2)2, things can become a little bit more complicated

The proper way to deal with this involves the so-called Jordan Normal Form (another
matrix decomposition)

In short: not all square matrices are diagonalisable, but all square matrices admit a JNF
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Sometimes, we can find several LI eigenvectors associated to the same eigenvalue.
Check this. If not, need to use the following

Definition 27 (Generalised eigenvectors)

x ̸= 0 generalized eigenvector of rank m of A ∈ Mn corresponding to eigenvalue λ if

(A− λI)mx = 0

but
(A− λI)m−1x ̸= 0
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Procedure for generalised eigenvectors

A ∈ Mn and assume λ eigenvalue with algebraic multiplicity k

Find v1, “classic” eigenvector, i.e., v1 ̸= 0 s.t. (A− λI)v1 = 0

Find generalised eigenvector v2 of rank 2 by solving for v2 ̸= 0,

(A− λI)v2 = v1

. . .

Find generalised eigenvector vk of rank k by solving for vk ̸= 0,

(A− λI)vk = vk−1

Then {v1, . . . , vk} LI
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Back to the normal procedure

With the LI eigenvectors {v1, . . . , vk} corresponding to λ

Apply Gram-Schmidt to get orthogonal set

For all eigenvalues with multiplicity > 1, check that you either have LI eigenvectors or
do what we just did

When you are done, be back on your merry way to step 6 in the case where
eigenvalues are all ̸=

I am caricaturing a little here: there can be cases that do not work exactly like this,
but this is general enough..
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Applications of the SVD

Many applications of the SVD, both theoretical and practical..

1. Obtaining a unique solutions to least squares when ATA singular

2. Image compression
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Least squares revisited

Theorem 28

Let A ∈ Mmn, x ∈ Rn and b ∈ Rm. The least squares problem Ax = b has a unique
least squares solution x̃ of minimal length (closest to the origin) given by

x̃ = A+b

where A+ is the pseudoinverse of A
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Definition 29 (Pseudoinverse)

A = UΣV T an SVD for A ∈ Mmn, where

Σ =

(
D 0
0 0

)
, with D = diag(σ1, . . . , σr )

(D contains the nonzero singular values of A ordered as usual)

The pseudoinverse (or Moore-Penrose inverse) of A is A+ ∈ Mnm given by

A+ = VΣ+UT

with

Σ+ =

(
D−1 0
0 0

)
∈ Mnm
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Compressing images

Consider an image (for simplicity, assume in shades of grey). This can be stored in a
matrix A ∈ Mmn

Take the SVD of A. Then the small singular values carry information about the regions
with little variation and can perhaps be omitted, whereas the large singular values
carry information about more “dynamic” regions of the image

Suppose A has r nonzero singular values. For k ≤ r , let

Ak = σ1u1vT
1 + · · ·+ σkukvT

k

For k = r we get the usual outer product form (2)
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Load the image using bmp::read.bmp

my_image = bmp::read.bmp("../CODE/Julien_and_friend_1000x800.bmp")

my_image_g = pixmap::pixmapGrey(my_image)

my_image_g

## Pixmap image

## Type : pixmapGrey

## Size : 800x1000

## Resolution : 1x1

## Bounding box : 0 0 1000 800
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Doing the computations “by hand”

M = my_image_g@grey

MTM = t(M) %*% M

# Ensure matrix is symmetric

MTM = (MTM+t(MTM))/2

ev = eigen(MTM)

Given the size and nature of the entries, the matrix MTM is symmetric only to 1e-5

precision, so we use a little trick to make it symmetric no matter what: take the
average of MTM and its transpose MMT
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Which version of the algorithm to use?

Make zero the eigenvalues that are close to zero (200 out of 1000)

ev$values = ev$values*(ev$values>1e-10)

Can we use the algorithm for all eigenvalues being distinct or do we have repeated
ones?

any(duplicated(ev$values[ev$values>1e-10]))

## [1] FALSE

So we can use the standard algorithm

p. 90 – Singular values decomposition (SVD)



Computing the SVD

idx_positive_ev = which(ev$values>1e-10)

sv = sqrt(ev$values[idx_positive_ev])
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Computing the SVD

Then D = diag(σ1, . . . , σr ), V is the matrix of normalised eigenvectors in the same
order as the σi and for i = 1, . . . , r

ui =
1

σi
Avi

ensuring that ∥ui∥ = 1

D = diag(sv)

V = ev$vectors[idx_positive_ev, idx_positive_ev]

c1 = colSums(V)

for (i in 1:dim(V)[2]) {
V[,i] = V[,i]/c1[i]

}

p. 92 – Singular values decomposition (SVD)



Computing the SVD

Finally, we compute the ui ’s

U = M %*% V %*% diag(1/sv)

## Error in M %*% V: non-conformable arguments

r = length(sv)

im = list(u=U, d=sv, v=V)

## Error: object ’U’ not found
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Using built-in functions

We can also use the built-in function svd to compute the SVD of M

M.svd = svd(M)

The results are stored in a list with components u, d and v
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Make function to recreate an image from the SVD

Given the SVD im of an image and a number of singular values to keep n, we can
recreate the image using the function compress image

We output the new image, but also, the amount of information required to encode this
new image, as a percentage of the original image size
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compress_image = function(im, n) {
if (n > length(im$d)) {
# Check that we gave a value of n within range, otherwise

# just set to the max

n = length(im$d)

}
d_tmp = im$d[1:n]

u_tmp = im$u[,1:n]

v_tmp = im$v[,1:n]

# We store the results in a list (so we can return other information)

out = list()

# First, compute the resulting image

out$img = mat.or.vec(nr = dim(im$u)[1], nc = dim(im$v)[1])

for (i in 1:n) {
out$img = out$img + d_tmp[i] * u_tmp[,i] %*% t(v_tmp[,i])

}
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# Values of the "colours" must be between 0 and 1, so we shift and rescale

if (min(min(out$img)) < 0 ) {
out$img = out$img - min(min(out$img))

}
out$img = out$img / max(max(out$img))

# Store some information: number of points needed and percentage of the original required

out$nb_pixels_original = dim(im$u)[1] * dim(im$v)[2]

out$nb_pixels_compressed = length(d_tmp) + dim(u_tmp)[1]*dim(u_tmp)[2] + dim(v_tmp)[1]*dim(v_tmp)[2]

out$pct_of_original = out$nb_pixels_compressed / out$nb_pixels_original * 100

# Return the result

return(out)

}
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Recreating the image

We can now recreate the image using the function compress image

new_image = my_image_g

M.svd = svd(M)

M_tmp = compress_image(M.svd, 2)

new_image@grey = M_tmp$img

plot(new_image)
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Using n = 2 singular values

Uses 0.56% of the original information
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Using n = 5 singular values

Uses 1.41% of the original information
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Using n = 10 singular values

Uses 2.81% of the original information
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Using n = 20 singular values

Uses 5.63% of the original information
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Using n = 50 singular values

Uses 14.07% of the original information
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Least squares problems

QR factorisation

Singular values decomposition (SVD)

Principal component analysis (PCA)

Support vector machines



Dimensionality reduction

One of the reasons the SVD is used is for dimensionality reduction. However, SVD has
many many other uses

Now we look at another dimensionality reduction technique, PCA

PCA is often used as a blackbox technique, here we take a look at the math behind it
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What is PCA?

Linear algebraic technique

Helps reduce a complex dataset to a lower dimensional one

Non-parametric method: does not assume anything about data distribution
(distribution from the statistical point of view)
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Brief “review” of some probability concepts

Proper definition of probability requires to use measure theory.. will not get into
details here

A random variable X is a measurable function X : Ω → E , where Ω is a set of
outcomes (sample space) and E is a measurable space

P(X ∈ S ⊆ E ) = P(ω ∈ Ω|X (ω) ∈ S)

Distribution function of a r.v., F (x) = P(X ≤ x), describes the distribution of a r.v.

R.v. can be discrete or continuous or .. other things.
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Definition 30 (Variance)

Let X be a random variable. The variance of X is given by

Var X = E
[
(X − E (X ))2

]
where E is the expected value

Definition 31 (Covariance)

Let X ,Y be jointly distributed random variables. The covariance of X and Y is given
by

cov(X ,Y ) = E [(X − E (X )) (Y − E (Y ))]

Note that cov(X ,X ) = E
[
(X − E (X ))2

]
= Var X
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In practice: “true law” versus “observation”

In statistics: we reason on the true law of distributions, but we usually have only
access to a sample

We then use estimators to .. estimate the value of a parameter, e.g., the mean,
variance and covariance
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Definition 32 (Unbiased estimators of the mean and variance)

Let x1, . . . , xn be data points (the sample) and

x̄ =
1

n

n∑
i=1

xi

be the mean of the data. An unbiased estimator of the variance of the sample is

σ2 =
1

n − 1

n∑
i=1

(xi − x̄)2
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Definition 33 (Unbiased estimator of the covariance)

Let (x1, y1), . . . , (xn, yn) be data points,

x̄ =
1

n

n∑
i=1

xi and ȳ =
1

n

n∑
i=1

yi

be the means of the data. An estimator of the covariance of the sample is

cov(x , y) =
1

n

n∑
i=1

(xi − x̄)(yi − ȳ)
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What does covariance do?

Variance explains how data disperses around the mean, in a 1-D case

Covariance measures the relationship between two dimensions. E.g., height and weight

More than the exact value, the sign is important:

▶ cov(X ,Y ) > 0: both dimensions change in the same “direction”; e.g., larger
height usually means higher weight

▶ cov(X ,Y ) < 0: both dimensions change in reverse directions; e.g., time spent on
social media and performance in this class

▶ cov(X ,Y ) = 0: the dimensions are independent from one another; e.g.,
sex/gender and “intelligence”
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The covariance matrix
Typically, we consider more than 2 variables..

Definition 34

Suppose p random variables X1, . . . ,Xp. Then the covariance matrix is the symmetric
matrix 

cov(X1,X1) cov(X1,X2) · · · cov(X1,Xp)
cov(X2,X1) cov(X2,X2) · · · cov(X2,Xp)

...
...

...
cov(Xp,X1) cov(Xp,X2) · · · cov(Xp,Xp)


i.e., using the properties of covariance,

Var X1 cov(X1,X2) · · · cov(X1,Xp)
cov(X1,X2) Var X2 · · · cov(X2,Xp)

...
...

...
cov(X1,Xp) cov(X2,Xp) · · · Var Xp


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Example of a PCA problem

We collect a bunch of information about a bunch of people.. for instance this data
from Loughborough University

This dataset contains the height, weight and 4 fingerprint measurements
(length, width, area and circumference), collected from 200 participants.

What best describes a participant?
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The variables

Each participant is associated to 11 variables

▶ ”Participant Number”

▶ ”Gender”

▶ ”Age”

▶ ”Dominant Hand”

▶ ”Height (cm) (average of 3 measurements)”

▶ ”Weight (kg) (average of 3 measurements)”

▶ ”Fingertip Temperature (°C)”
▶ ”Fingerprint Height (mm)”

▶ ”Fingerprint Width (mm)”

▶ ”Fingerprint Area (mm2)”

▶ ”Fingerprint Circumference (mm)”
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Nature of variables

Variables have different natures

▶ ”Participant Number”: ∈ N (not interesting)

▶ ”Gender”: categorical

▶ ”Age”: ∈ N
▶ ”Dominant Hand”: categorical

▶ ”Height (cm) (average of 3 measurements)”: ∈ R
▶ ”Weight (kg) (average of 3 measurements)”: ∈ R
▶ ”Fingertip Temperature (°C)”: ∈ R
▶ ”Fingerprint Height (mm)”: ∈ R
▶ ”Fingerprint Width (mm)”: ∈ R
▶ ”Fingerprint Area (mm2)”: ∈ R
▶ ”Fingerprint Circumference (mm)”: ∈ R
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Setting things up

Each participant is a row in the matrix (an observation)

Each variable is a column

So we have an 200× 10 matrix (we discard the “Participant number” column)

We want to find what carries the most information

For this, we are going to project the information in a new basis in which the first
“dimension” will carry most variance, the second dimension will carry a little less, etc.

In order to do so, we need to learn how to change bases
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In the following slide,
[x ]B

denotes the coordinates of x in the basis B

The aim of a change of basis is to express vectors in another coordinate system
(another basis)

We do so by finding a matrix allowing to move from one basis to another
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Change of basis

Definition 35 (Change of basis matrix)

B = {u1, . . . ,un} and C = {v1, . . . , vn} bases of vector space V
The change of basis matrix PC←B ∈ Mn,

PC←B = [[u1]C · · · [un]C]

has columns the coordinate vectors [u1]C , . . . , [un]C of vectors in B with respect to C

Theorem 36

B = {u1, . . . ,un} and C = {v1, . . . , vn} bases of vector space V and PC←B a change of
basis matrix from B to C
1. ∀x ∈ V , PC←B[x ]B = [x ]C
2. PC←B s.t. ∀x ∈ V , PC←B[x ]B = [x ]C is unique

3. PC←B invertible and P−1C←B = PB←C
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Row-reduction method for changing bases

Theorem 37

B = {u1, . . . ,un} and C = {v1, . . . , vn} bases of vector space V . Let E be any basis
for V ,

B = [[u1]E , . . . , [un]E ] and C = [[v1]E , . . . , [vn]E ]

and let [C |B] be the augmented matrix constructed using C and B. Then

RREF ([C |B]) = [I|PC←B]

If working in Rn, this is quite useful with E the standard basis of Rn (it does not
matter if B = E)
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So the question now becomes
How do we find what new basis to look at our data in?

(Changing the basis does not change the data, just the view you have of it)

(Think of what happens when you do a headstand.. your up becomes down, your right
and left switch, but the world does not change, just your view of it)

(Changes of bases are fundamental operations in Science)
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Setting things up

I will use notation (mostly) as in Joliffe’s Principal Component Analysis (PDF of older
version available for free from UofM Libraries)

x = (x1, . . . , xp) vector of p random variables
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We seek a linear function αT
1 x with maximum variance, where α1 = (α11, . . . , α1p),

i.e.,

αT
1 x =

p∑
j=1

α1jxj

Then we seek a linear function αT
2 x with maximum variance, uncorrelated to αT

1 x

And we continue...

At kth stage, we find a linear function αT
k x with maximum variance, uncorrelated to

αT
1 x , . . . ,αT

k−1x

αT
i x is the ith principal component (PC)
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Case of known covariance matrix

Suppose we know Σ, covariance matrix of x (i.e., typically: we know x)

Then the kth PC is
zk = αT

k x

where αk is an eigenvector of Σ corresponding to the kth largest eigenvalue λk

If, additionally, ∥αk∥ = αT
k α = 1, then λk = Var zk
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Why is that?

Let us start with
αT

1 x

We want maximum variance, where α1 = (α11, . . . , α1p), i.e.,

αT
1 x =

p∑
j=1

α1jxj

with the constraint that ∥α1∥ = 1

We have
Var αT

1 x = αT
1 Σα1
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Objective

We want to maximise Var αT
1 x , i.e.,

αT
1 Σα1

under the constraint that ∥α1∥ = 1

=⇒ use Lagrange multipliers
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Maximisation using Lagrange multipliers
(A.k.a. super-brief intro to multivariable calculus)

We want the max of f (x1, . . . , xn) under the constraint g(x1, . . . , xn) = k

1. Solve

∇f (x1, . . . , xn) = λ∇g(x1, . . . , xn)

g(x1, . . . , xn) = k

where ∇ = ( ∂
∂x1

, . . . , ∂
∂xn

) is the gradient operator

2. Plug all solutions into f (x1, . . . , xn) and find maximum values (provided values
exist and ∇g ̸= 0 there)

λ is the Lagrange multiplier
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The gradient
(Continuing our super-brief intro to multivariable calculus)

f : Rn → R function of several variables, ∇ =
(

∂
∂x1

, . . . , ∂
∂xn

)
the gradient operator

Then

∇f =

(
∂

∂x1
f , . . . ,

∂

∂xn
f

)

So ∇f is a vector-valued function, ∇f : Rn → Rn; also written as

∇f = fx1(x1, . . . , xn)e1 + · · · fxn(x1, . . . , xn)en

where fxi is the partial derivative of f with respect to xi and {e1, . . . , en} is the
standard basis of Rn
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Bear with me..
(You may experience a brief period of discomfort)

αT
1 Σα1 and ∥α1∥2 = αT

1 α1 are functions of α1 = (α11, . . . , α1p)

In the notation of the previous slide, we want the max of

f (α11, . . . , α1p) := αT
1 Σα1

under the constraint that

g(α11, . . . , α1p) := αT
1 α1 = 1

and with gradient operator

∇ =

(
∂

∂α11
, . . . ,

∂

∂α1p

)
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Effect of ∇ on g

g is easiest to see:

∇g(α11, . . . , α1p) =

(
∂

∂α11
, . . . ,

∂

∂α1p

)
(α11, . . . , α1p)

α11
...

α1p


=

(
∂

∂α11
, . . . ,

∂

∂α1p

)(
α2
11 + · · ·+ α2

1p

)
= (2α11, . . . , 2α1p)

= 2α1

(And that’s a general result: ∇∥x∥22 = 2x with ∥ · ∥2 the Euclidean norm)
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Effect of ∇ on f
Expand (write Σ = [sij ] and do not exploit symmetry)

αT
1 Σα1 = (α11, . . . , α1p)


s11 s12 · · · s1p
s21 s22 · · · s2p
...

...
...

sp1 sp2 spp



α11

α12
...

α1p



= (α11, . . . , α1p)


s11α11 + s12α12 + · · ·+ s1pα1p

s21α11 + s22α12 + · · ·+ s2pα1p
...

sp1α11 + sp2α12 + · · ·+ sppα1p


= (s11α11 + s12α12 + · · ·+ s1pα1p)α11

+ (s21α11 + s22α12 + · · ·+ s2pα1p)α12

...

+ (sp1α11 + sp2α12 + · · ·+ sppα1p)α1p
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We have

αT
1 Σα1 = (s11α11 + s12α12 + · · ·+ s1pα1p)α11

+ (s21α11 + s22α12 + · · ·+ s2pα1p)α12

...

+ (sp1α11 + sp2α12 + · · ·+ sppα1p)α1p

=⇒ ∂

∂α11
αT

1 Σα1 = (s11α11 + s12α12 + · · ·+ s1pα1p) + s11α11

+ s21α12 + · · ·+ sp1α1p

= s11α11 + s12α12 + · · ·+ s1pα1p

+ s11α11 + s21α12 + · · ·+ sp1α1p

= 2(s11α11 + s12α12 + · · ·+ s1pα1p)

(last equality stems from symmetry of Σ)
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In general, for i = 1, . . . , p,

∂

∂α1i
αT

1 Σα1 = si1α11 + si2α12 + · · ·+ sipα1p

+ si1α11 + s2iα12 + · · ·+ spiα1p

= 2(si1α11 + si2α12 + · · ·+ sipα1p)

(because of symmetry of Σ)

As a consequence,
∇αT

1 Σα1 = 2Σα1

p. 132 – Principal component analysis (PCA)



So solving
∇f (x1, . . . , xn) = λ∇g(x1, . . . , xn)

means solving
2Σα1 = λ2α1

i.e.,
Σα1 = λα1

=⇒ (λ,α1) eigenpair of Σ, with α1 having unit length
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Picking the right eigenvalue

(λ,α1) eigenpair of Σ, with α1 having unit length

But which λ to choose?

Recall that we want Var αT
1 x = αT

1 Σα1 maximal

We have

Var αT
1 x = αT

1 Σα1 = αT
1 (Σα1) = αT

1 (λα1) = λ(αT
1 α1) = λ

=⇒ we pick λ = λ1, the largest eigenvalue (covariance matrix symmetric so
eigenvalues real)
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What we have this far..

The first principal component is αT
1 x and has variance λ1, where λ1 the largest

eigenvalue of Σ and α1 an associated eigenvector with ∥α1∥ = 1

We want the second principal component to be uncorrelated with αT
1 x and to have

maximum variance Var αT
2 x = αT

2 Σα2, under the constraint that ∥α2∥ = 1

αT
2 x uncorrelated to αT

1 x if cov(αT
1 x ,αT

2 x) = 0
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We have

cov(αT
1 x ,αT

2 x) = αT
1 Σα2

= αT
2 Σ

Tα1

= αT
2 Σα1 [Σ symmetric]

= αT
2 (λ1α1)

= λαT
2 α1

So αT
2 x uncorrelated to αT

1 x if α1 ⊥ α2

This is beginning to sound a lot like Gram-Schmidt, no?
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In short

Take whatever covariance matrix is available to you (known Σ or sample SX ) – assume
sample from now on for simplicity

For i = 1, . . . , p, the ith principal component is

zi = vT
i x

where vi eigenvector of SX associated to the ith largest eigenvalue λi

If vi is normalised, then λi = Var zk
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Covariance matrix

Σ the covariance matrix of the random variable, SX the sample covariance matrix

X ∈ Mmp the data, then the (sample) covariance matrix SX takes the form

SX =
1

n − 1
XTX

where the data is centred!

Sometimes you will see SX = 1/(n − 1)XXT . This is for matrices with observations in
columns and variables in rows. Just remember that you want the covariance matrix to
have size the number of variables, not observations, this will give you the order in
which to take the product
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A 2D example
See a dataset on this page for a dataset of height and weight of some hockey players

data = read.csv("https://figshare.com/ndownloader/files/5303173")

head(data, n=3)

## year country no name position side height weight birth

## 1 2001 RUS 10 tverdovsky oleg D L 185 84 1976-05-18

## 2 2001 RUS 2 vichnevsky vitali D L 188 86 1980-03-18

## 3 2001 RUS 26 petrochinin evgeni D L 182 95 1976-02-07

## club age cohort bmi

## 1 anaheim mighty ducks 24.95277 1976 24.54346

## 2 anaheim mighty ducks 21.11978 1980 24.33228

## 3 severstal cherepovetal 25.22930 1976 28.68011

dim(data)

## [1] 6292 13
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In case you are wondering, this is a database of ice hockey players at IIHF world
championships, 2001-2016, assembled by the dataset’s author

See some comments here

As usual, it is a good idea to plot this to get a sense of the lay of the land
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The author of the study is interested in the evolution of weights, so it is likely that the
same person will be in the dataset several times

Let us check this: first check will be FALSE if the number of unique names does not
match the number of rows in the dataset

length(unique(data$name)) == dim(data)[1]

## [1] FALSE

length(unique(data$name))

## [1] 3278
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Not interested in the evolution of weights, so simplify: if more than one record for
someone, take average of recorded weights and heights

To be extra careful, could check as well that there are no major variations on player
height (homonymies?)

data_simplified = data.frame(name = unique(data$name))

w = c()

h = c()

for (n in data_simplified$name) {
tmp = data[which(data$name == n),]

h = c(h, mean(tmp$height))

w = c(w, mean(tmp$weight))

}
data_simplified$weight = w

data_simplified$height = h
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data = data_simplified

head(data_simplified, n = 6)

## name weight height

## 1 tverdovsky oleg 84.0 185.0

## 2 vichnevsky vitali 86.0 188.0

## 3 petrochinin evgeni 95.0 182.0

## 4 zhdan alexander 85.5 178.5

## 5 orekhovsky oleg 88.0 175.0

## 6 zhukov sergei 92.5 193.0
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Centre the data

mean(data$weight)

## [1] 87.71555

mean(data$height)

## [1] 183.8596

data$weight.c = data$weight-mean(data$weight)

data$height.c = data$height-mean(data$height)
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Covariance

The function cov returns the covariance of two samples

Note that the functions deals equally well with data that is not centred as with data
that is centred

cov(data$height, data$weight)

## [1] 26.63506

cov(data$height.c, data$weight.c)

## [1] 26.63506
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Covariance matrix

As we could see from plotting the data, there is a positive linear relationship between
the two variables

Let us compute the sample covariance matrix

X = as.matrix(data[,c("height.c", "weight.c")])

S = 1/(dim(X)[1]-1)*t(X) %*% X

S

## height.c weight.c

## height.c 29.66176 26.63506

## weight.c 26.63506 47.81112
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Covariance matrix

The off-diagonal entries do match the computed covariance. Let us check that the
variances are indeed a match too.

var(X[,1])

## [1] 29.66176

var(X[,2])

## [1] 47.81112

Hey, that works. Is math not cool? ;)
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Principal components

Now compute the principal components. We need eigenvalues and eigenvectors

ev = eigen(S)

ev

## eigen() decomposition

## $values

## [1] 66.87496 10.59793

##

## $vectors

## [,1] [,2]

## [1,] 0.5820222 -0.8131729

## [2,] 0.8131729 0.5820222

(eigen returns eigenvalues sorted in decreasing order and normalised eigenvectors)
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First principal component

Let us plot this first eigenvector (well, the line carrying this first eigenvector)

To use the function abline, we need to give the coefficients of the line in the form of
(intercept,slope). Intercept is easy, as the line goes through the origin (by construction
and because we have centred the data). The slope is also quite simple..

plot(data$height.c, data$weight.c,

pch = 19, col = "dodgerblue4",

main = "IIHF players 2001-2016 (with first component)",

xlab = "Height (cm)", ylab = "Weight (kg)")

abline(a = 0, b = ev$vectors[2,1]/ev$vectors[1,1],

col = "red", lwd = 3)
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Rotating the data

Let us rotate the data so that the red line becomes the x-axis

To do that, we use a rotation matrix

Rθ =

(
cos θ − sin θ
sin θ cos θ

)

To find the angle θ, recall that tan θ is equal to opposite length over adjacent length,
i.e.,

tan θ =
ev$vectors[2, 1]

ev$vectors[1, 1]

So we just use the arctan of this

Note that angles are in radians
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Rotating the data

theta = atan(ev$vectors[2,1]/ev$vectors[1,1])

theta

## [1] 0.949583

R_theta = matrix(c(cos(theta), -sin(theta),

sin(theta), cos(theta)),

nr = 2, byrow = TRUE)

R_theta

## [,1] [,2]

## [1,] 0.5820222 -0.8131729

## [2,] 0.8131729 0.5820222
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Rotating the data

And now we rotate the points

(In this case, we think of the points as vectors, of course)

tmp_in = matrix(c(data$weight.c, data$height.c),

nc = 2)

tmp_out = c()

for (i in 1:dim(tmp_in)[1]) {
tmp_out = rbind(tmp_out,

t(R_theta %*% tmp_in[i,]))

}
data$weight.c_r = tmp_out[,1]

data$height.c_r = tmp_out[,2]
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Principal components

Note that the axes have changed quite a lot, hence the very different aspect

Let us plot with the same range as for the non-rotated data for the y-axis

plot(data$height.c_r, data$weight.c_r,

pch = 19, col = "dodgerblue4",

xlab = "x-axis", ylab = "y-axis",

main = "IIHF players 2001-2016 (rotated to first component)",

ylim = range(data$weight.c))

abline(h = 0, col = "red", lwd = 2)
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First and second principal components

Plot the first and second eigenvectors

plot(data$height.c, data$weight.c,

pch = 19, col = "dodgerblue4",

main = "IIHF players 2001-2016 (with first and second components)",

xlab = "Height (cm)", ylab = "Weight (kg)")

abline(a = 0, b = ev$vectors[2,1]/ev$vectors[1,1],

col = "red", lwd = 3)

abline(a = 0, b = ev$vectors[2,2]/ev$vectors[1,2],

col = "darkgreen", lwd = 3)
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Proper change of basis

Let us change the basis so that, in the new basis, the first component is the x-axis and
the second component is the y -axis

We want to use Theorem 37

We need the coordinates of the new basis in the canonical basis of R2

Since both axes go through the origin, we can just use y = ax , with a the slope of the
lines and, say, x = 1, i.e., (x , y) = (1, a)

We then normalise the resulting vectors
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Proper change of basis

red_line = c(1, ev$vectors[2,1]/ev$vectors[1,1])

red_line = red_line/sqrt(sum(red_line^2))

green_line = c(1, ev$vectors[2,2]/ev$vectors[1,2])

green_line = green_line/sqrt(sum(green_line^2))

augmented_M = cbind(red_line,green_line, diag(2))

P = rref(augmented_M)[,3:4]

tmp_in = matrix(c(data$weight.c, data$height.c), nc = 2)

tmp_out = c()

for (i in 1:dim(tmp_in)[1]) {
tmp_out = rbind(tmp_out, t(P %*% tmp_in[i,]))

}
data$weight.c_r2 = tmp_out[,1]

data$height.c_r2 = tmp_out[,2]

p. 163 – Principal component analysis (PCA)
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PCA using built-in functions

Now do things “properly”

GS = pracma::gramSchmidt(A = ev$vectors, tol = 1e-10)

GS

## $Q

## [,1] [,2]

## [1,] 0.5820222 -0.8131729

## [2,] 0.8131729 0.5820222

##

## $R

## [,1] [,2]

## [1,] 1 0

## [2,] 0 1
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PCA using built-in functions

Now recall we saw a theorem that told us how to construct a new basis..

A=matrix(c(GS$Q,1,0,0,1), nr = 2)

A

## [,1] [,2] [,3] [,4]

## [1,] 0.5820222 -0.8131729 1 0

## [2,] 0.8131729 0.5820222 0 1

pracma::rref(A)

## [,1] [,2] [,3] [,4]

## [1,] 1 0 0.5820222 0.8131729

## [2,] 0 1 -0.8131729 0.5820222
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PCA using built-in functions

P = pracma::rref(A)[,c(3,4)]

## [,1] [,2]

## [1,] 0.5820222 0.8131729

## [2,] -0.8131729 0.5820222

X.new = X %*% t(P)
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Principal component analysis (PCA)
A crash course on probability
A running example: fingerprints
Change of basis
Back to PCA
A 2D example to begin: hockey players
Back to fingerprints



We get the data from here

This time, we first download the data, then open the file

The file is an excel table, so we need to use a library for doing that

p. 169 – Principal component analysis (PCA)
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Loading the excel fingerprint data

download.file(url = "https://repository.lboro.ac.uk/ndownloader/files/14015774",

destfile = "../CODE/fingerprint_data.xlsx")

data = openxlsx::read.xlsx("../CODE/fingerprint_data.xlsx")

head(data, n=3)

## Participant.Number Gender Age Dominant.Hand

## 1 101 Male NA Right

## 2 102 Male NA Right

## 3 103 Male NA Right

## Height.(cm).(average.of.3.measurments)

## 1 174.0000

## 2 202.0000

## 3 182.3333

## Weight.(kg).(average.of.3.measurements) Fingertip.Temperature.(°C)
## 1 70 34

## 2 99 30

## 3 82 29

## Fingerprint.Height.(mm) Fingerprint.Width.(mm) Fingerprint.Area.(mm2)

## 1 19.8 13.7 240.6

## 2 24.0 14.1 278.8

## 3 20.0 13.7 223.8

## Fingerprint.Circumference.(mm)

## 1 57.7

## 2 62.7

## 3 55.5
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Some wrangling
Let us rework the names of columns a bit, for convenience. Let us also get rid of a few
columns we are not using

data = data[,2:dim(data)[2]]

colnames(data) = c("gender", "age", "handedness", "height", "weight",

"fing_temp", "fing_height", "fing_width",

"fing_area", "fing_circ")

head(data, n=3)

## gender age handedness height weight fing_temp fing_height fing_width

## 1 Male NA Right 174.0000 70 34 19.8 13.7

## 2 Male NA Right 202.0000 99 30 24.0 14.1

## 3 Male NA Right 182.3333 82 29 20.0 13.7

## fing_area fing_circ

## 1 240.6 57.7

## 2 278.8 62.7

## 3 223.8 55.5
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Some wrangling – Centering

Plotting all these variables is complicated, so we forgo this for the time being

Let us centre the data. That there are some NA values, so we remove them using the
function complete.cases, which identifies rows where at least one of the variables is
NA

(We could also use na.rm = TRUE when taking the average to remove these values.)

We make new columns with the prefix .c, just to still have the initial data handy if
need be.
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Some wrangling – Centering

data = data[complete.cases(data),]

to_centre = c("age", "height",

"weight", "fing_temp",

"fing_height", "fing_width",

"fing_area", "fing_circ")

for (c in to_centre) {
new_c = sprintf("%s.c", c)

data[[new_c]] = data[[c]] - mean(data[[c]], na.rm = TRUE)

}
head(data)

## gender age handedness height weight fing_temp fing_height fing_width

## 5 Male 18 Right 180.6667 80.33333 29 22.7 15.0

## 6 Male 20 Right 180.0000 59.00000 32 24.3 14.0

## 12 Male 18 Right 180.6667 68.00000 27 21.1 15.6

## 23 Male 18 Right 188.6667 73.00000 29 23.0 14.0

## 24 Female 19 Right 166.0000 65.00000 27 18.4 11.1

## 25 Female 18 Right 163.0000 73.00000 31 18.3 11.9

## fing_area fing_circ age.c height.c weight.c fing_temp.c

## 5 286.7 62.7 -3.256098 7.711382 7.38008130 0.2865854

## 6 299.0 65.6 -1.256098 7.044715 -13.95325203 3.2865854

## 12 286.1 62.4 -3.256098 7.711382 -4.95325203 -1.7134146

## 23 264.0 61.0 -3.256098 15.711382 0.04674797 0.2865854

## 24 171.4 49.3 -2.256098 -6.955285 -7.95325203 -1.7134146

## 25 192.8 52.1 -3.256098 -9.955285 0.04674797 2.2865854

## fing_height.c fing_width.c fing_area.c fing_circ.c

## 5 2.3445122 1.4518293 52.50732 6.088415

## 6 3.9445122 0.4518293 64.80732 8.988415

## 12 0.7445122 2.0518293 51.90732 5.788415

## 23 2.6445122 0.4518293 29.80732 4.388415

## 24 -1.9554878 -2.4481707 -62.79268 -7.311585

## 25 -2.0554878 -1.6481707 -41.39268 -4.511585
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Covariance matrix

X = as.matrix(data[, to_centre])

S = 1/(dim(X)[1]-1)*t(X) %*% X

S

## age height weight fing_temp fing_height fing_width

## age 478.9939 3692.562 1579.172 614.2393 435.6270 290.1264

## height 3692.5624 30183.706 12766.541 4994.7669 3553.3620 2364.9380

## weight 1579.1718 12766.541 5598.505 2118.0613 1505.3519 1006.2624

## fing_temp 614.2393 4994.767 2118.061 840.9141 588.5436 392.2006

## fing_height 435.6270 3553.362 1505.352 588.5436 420.9758 279.4357

## fing_width 290.1264 2364.938 1006.262 392.2006 279.4357 186.8359

## fing_area 5013.1387 41006.579 17504.745 6781.8000 4875.6983 3249.2573

## fing_circ 1210.8221 9882.954 4190.940 1636.9264 1169.4310 778.0915

## fing_area fing_circ

## age 5013.139 1210.8221

## height 41006.579 9882.9540

## weight 17504.745 4190.9405

## fing_temp 6781.800 1636.9264

## fing_height 4875.698 1169.4310

## fing_width 3249.257 778.0915

## fing_area 57053.656 13563.3565

## fing_circ 13563.357 3252.2678
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Eigenvalues

ev = eigen(S)

ev$values

## [1] 9.730867e+04 4.982986e+02 1.669174e+02 2.565635e+01 1.349931e+01

## [6] 2.008242e+00 6.457803e-01 1.559819e-01

Let us add the singular values to ev

ev$sing_values = sqrt(ev$values)
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Use built-in functions

GS = pracma::gramSchmidt(A = ev$vectors)

GS$Q

## [,1] [,2] [,3] [,4] [,5] [,6]

## [1,] -0.06785926 -0.10703810 -0.074771554 0.959199870 -0.21608682 0.10065233

## [2,] -0.55435636 -0.72869902 0.290626700 -0.152379696 -0.15804372 0.15956105

## [3,] -0.23625691 -0.18581742 -0.946363825 -0.106759855 -0.00455192 -0.05122393

## [4,] -0.09173610 -0.13238200 0.016673068 0.178396675 0.95749120 0.13389150

## [5,] -0.06566056 -0.02693052 0.041586794 0.053196632 0.02950635 -0.48055924

## [6,] -0.04374434 -0.01430565 0.004070984 0.027623399 0.04800455 0.17002750

## [7,] -0.76437249 0.63185800 0.060301062 0.007078515 -0.00675132 0.10275359

## [8,] -0.18265026 -0.07289060 0.093169759 0.099246954 0.09109287 -0.82064226

## [,7] [,8]

## [1,] -0.030350587 -0.023178128

## [2,] -0.058350355 -0.012688619

## [3,] 0.002219217 0.001694049

## [4,] -0.077869385 -0.034295121

## [5,] -0.517957328 0.700226031

## [6,] 0.735576268 0.651779046

## [7,] -0.044815268 -0.013840031

## [8,] 0.422190555 -0.287747776

# Just to check that Q is indeed with normalised columns

colSums(GS$Q[,1:dim(GS$Q)[2]]^2)

## [1] 1 1 1 1 1 1 1 1

GS$Q[,1] %*% GS$Q[,2]

## [,1]

## [1,] -3.295975e-17

So Q is indeed an orthogonal matrix
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Some wrangling

Now recall we saw a theorem that told us how to construct a new basis..

# Make an identity matrix

Id = diag(dim(GS$Q)[1])

# Make the augmented matrix

A = cbind(GS$Q, Id)

# Compute the RREF and extract the relevant matrix

P = pracma::rref(A)[,(dim(GS$Q)[2]+1):dim(A)[2]]

X.new = X %*% t(P)
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Use built-in functions

Use the built in function prcomp or PCA from the FactoMineR package

# data.pca = prcomp(X, center = TRUE, scale = TRUE)

data.pca = PCA(X, scale.unit = TRUE, graph = FALSE)

## Error in PCA(X, scale.unit = TRUE, graph = FALSE): could not find

function "PCA"

summary(data.pca)

## Error in h(simpleError(msg, call)): error in evaluating the

argument ’object’ in selecting a method for function ’summary’:

object ’data.pca’ not found
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Percentage of variance

The “proportion of variance” (or “percentage of variance”) information is actually the
proportion (and then cumulative proportion) represented by the singular value
associated to each principal component

We check this (approximately) by comparing with the singular values we computed

ev$sing_values/(sum(ev$sing_values))

## [1] 0.870036273 0.062259612 0.036033997 0.014127294 0.010247489 0.003952479

## [7] 0.002241321 0.001101536

cumsum(ev$sing_values)/(sum(ev$sing_values))

## [1] 0.8700363 0.9322959 0.9683299 0.9824572 0.9927047 0.9966571 0.9988985

## [8] 1.0000000
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Plot results

plot.PCA(data.pca, axes = c(1,2), choix = "ind", habillage = 4)

## Error in plot.PCA(data.pca, axes = c(1, 2), choix = "ind",

habillage = 4): could not find function "plot.PCA"

p. 180 – Principal component analysis (PCA)



56
1223

24

25

26 27
28

29
30
31

32
33 34 35

363738
3940 41

42

43

44 4546
47

48
49

50
51

52

5354
55 5657

58

71
72

7374

75

76 77

78

79

80

81

82

83

84

85
8687

88

89
90

91

92

93 94
95

96

9798
99

100101 102

103

104

105

106

107

108

109

110

111

112
113

114115

116

117

118

119
120121

122

123

124

125126

127

128

129 130
131

132

133

134

135

136

137
138139

140

141142

143

144145

146147

148

152

153154155 156
157

158
159

160

161 162

163

164

165

166

167

168

169

170

171

172

173

174

175
176177

179

180
181 182

183

184 185

186
187 188

189

190

191
192

193

194

195

197

198

199
200

−2.5

0.0

2.5

5.0

−4 0 4
Dim 1 (54.99%)

D
im

 2
 (

14
.9

7%
)

fing_temp

22.5

25.0

27.5

30.0

32.5

35.0

PCA graph of individuals



Least squares problems

QR factorisation

Singular values decomposition (SVD)

Principal component analysis (PCA)

Support vector machines



Support vector machines
Clustering and classification
Support vector machines (SVM)



Clustering vs classification

Clustering is partitioning an unlabelled dataset into groups of similar objects

Classification sorts data into specific categories using a labelled dataset
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Clustering

From Wikipedia
Cluster analysis or clustering is the task of grouping a set of objects in such
a way that objects in the same group (called a cluster) are more similar (in
some sense) to each other than to those in other groups (clusters).

There are a myriad of ways to do clustering, this is an extremely active field of research
and application. See the Wikipedia page for leads
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Classification

From Wikipedia
In statistics, classification is the problem of identifying which of a set of cate-
gories (sub-populations) an observation (or observations) belongs to. Examples
are assigning a given email to the ”spam” or ”non-spam” class, and assigning
a diagnosis to a given patient based on observed characteristics of the patient
(sex, blood pressure, presence or absence of certain symptoms, etc.).
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Support vector machines (SVM)

We are given a training dataset of n points of the form

(x1, y1), . . . , (xn, yn)

where xi ∈ Rp and yi = {−1, 1}. The value of yi indicates the class to which the point
xi belongs

We want to find a surface S in Rp that divides the group of points into two subgroups

Once we have this surface S, any additional point that is added to the set can then be
classified as belonging to either one of the sets depending on where it is with respect
to the surface S
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Linear SVM

We are given a training dataset of n points of the form

(x1, y1), . . . , (xn, yn)

where xi ∈ Rp and yi = {−1, 1}. The value of yi indicates the class to which the point
xi belongs

Linear SVM – Find the “maximum-margin hyperplane” that divides the group
of points xi for which yi = 1 from the group of points for which yi = −1,
which is such that the distance between the hyperplane and the nearest point
xi from either group is maximized.
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Maximum-margin hy-
perplane and margins
for an SVM trained
with samples from two
classes. Samples on the
margin are the support
vectors
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Any hyperplane can be written as the set of points x satisfying

wTx − b = 0

where w is the (not necessarily normalized) normal vector to the hyperplane (if the
hyperplane has equation a1z1 + · · ·+ apzp = c , then (a1, . . . , an) is normal to the
hyperplane)

The parameter b/∥w∥ determines the offset of the hyperplane from the origin along
the normal vector w

Remark: a hyperplane defined thusly is not a subspace of Rp unless b = 0. We can of
course transform the data so that it is...
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Linearly separable points

Let X1 and X2 be two sets of points in Rp

Then X1 and X2 are linearly separable if there exist w1,w2, ..,wp, k ∈ R such that

▶ every point x ∈ X1 satisfies
∑p

i=1 wixi > k

▶ every point x ∈ X2 satisfies
∑p

i=1 wixi < k

where xi is the ith component of x
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Hard-margin SVM

If the training data is linearly separable, we can select two parallel hyperplanes that
separate the two classes of data, so that the distance between them is as large as
possible

The region bounded by these two hyperplanes is called the “margin”, and the
maximum-margin hyperplane is the hyperplane that lies halfway between them

With a normalized or standardized dataset, these hyperplanes can be described by the
equations

▶ wTx− b = 1 (anything on or above this boundary is of one class, with label 1)

▶ wTx− b = −1 (anything on or below this boundary is of the other class, with
label -1)
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Distance between these two hyperplanes is 2/∥w∥

⇒ to maximize the distance between the planes we want to minimize ∥w∥

The distance is computed using the distance from a point to a plane equation

We must also prevent data points from falling into the margin, so we add the following
constraint: for each i either

wTxi − b ≥ 1 , if yi = 1

or
wTxi − b ≤ −1 , if yi = −1

(Each data point must lie on the correct side of the margin)
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This can be rewritten as

yi (w
Txi − b) ≥ 1, for all 1 ≤ i ≤ n

or
yi (w

Txi − b)− 1 ≥ 0, for all 1 ≤ i ≤ n

We get the optimization problem:

Minimize ∥w∥ subject to yi (w
Txi − b)− 1 ≥ 0 for i = 1, . . . , n

The w and b that solve this problem determine the classifier, x 7→ sgn(wTx− b) where
sgn(·) is the sign function.
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The maximum-margin hyperplane is completely determined by those xi that lie nearest
to it

These xi are the support vectors
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Writing the goal in terms of Lagrange multipliers

Recall that our goal is to

minimize ∥w∥ subject to yi (w
Txi − b)− 1 ≥ 0 for i = 1, . . . , n

Using Lagrange multipliers λ1, . . . , λn, we have the function

LP := F (w , bλ1, . . . , λn) =
1

2
∥w∥2 −

n∑
i=1

λiyi (xiw + b) +
n∑

i=1

λi

Note that we have as many Lagrange multipliers as there are data points. Indeed,
there are that many inequalities that must be satisfied

The aim is to minimise Lp with respect to w and b while the derivatives of Lp w.r.t. λi

vanish and the λi ≥ 0, i = 1, . . . , n
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Lagrange multipliers

We have already seen Lagrange multipliers, when we were studying PCA
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Maximisation using Lagrange multipliers (V1.0)

We want the max of f (x1, . . . , xn) under the constraint g(x1, . . . , xn) = k

1. Solve

∇f (x1, . . . , xn) = λ∇g(x1, . . . , xn)

g(x1, . . . , xn) = k

where ∇ = ( ∂
∂x1

, . . . , ∂
∂xn

) is the gradient operator

2. Plug all solutions into f (x1, . . . , xn) and find maximum values (provided values
exist and ∇g ̸= 0 there)

λ is the Lagrange multiplier
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The gradient

f : Rn → R function of several variables, ∇ =
(

∂
∂x1

, . . . , ∂
∂xn

)
the gradient operator

Then

∇f =

(
∂

∂x1
f , . . . ,

∂

∂xn
f

)

So ∇f is a vector-valued function, ∇f : Rn → Rn; also written as

∇f = fx1(x1, . . . , xn)e1 + · · · fxn(x1, . . . , xn)en

where fxi is the partial derivative of f with respect to xi and {e1, . . . , en} is the
standard basis of Rn
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Lagrange multipliers (V2.0)

However, the problem we were considering then involved a single multiplier λ

Here we want λ1, . . . , λn
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Lagrange multiplier theorem

Theorem 38

Let f : Rn → R be the objective function, g : Rn → Rc be the constraints function,
both being C 1. Consider the optimisation problem

maximize f (x)

subject to g(x) = 0

Let x∗ be an optimal solution to the optimization problem, such that
rank(Dg(x∗)) = c < n, where Dg(x∗) denotes the matrix of partial derivatives

[∂gj/∂xk ]

Then there exists a unique Lagrange multiplier λ∗ ∈ Rc such that

Df (x∗) = λ∗TDg(x∗)
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Lagrange multipliers (V3.0)

Here we want λ1, . . . , λn

But we also are looking for λi ≥ 0

So we need to consider the so-called Karush-Kuhn-Tucker (KKT) conditions
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Karush-Kuhn-Tucker (KKT) conditions
Consider the optimisation problem

maximize f (x)

subject to gi (x) ≤ 0

hi (x) = 0

Form the Lagrangian

L(x , µ, λ) = f (x) + µTg(x) + λTh(x)

Theorem 39

If (x∗, µ∗) is a saddle point of L(x, µ) in x ∈ X, µ ≥ 0, then x∗ is an optimal vector for
the above optimization problem. Suppose that f (x) and gi (x), i = 1, . . . ,m, are
convex in x and that there exists x0 ∈ X such that g(x0) < 0. Then with an optimal
vector x∗ for the above optimization problem there is associated a non-negative vector
µ∗ such that L(x∗, µ∗) is a saddle point of L(x, µ)
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KKT conditions

∂

∂wν
LP = wν −

n∑
i

λiyixiν = 0 ν = 1, . . . , p

∂

∂b
LP = −

n∑
i=1

λiyi = 0

yi (xT
i w + b)− 1 ≥ 0 i = 1, . . . , n

λi ≥ 0 i = 1, . . . , n

λi (yi (xT
i w + b)− 1) = 0 i = 1, . . . , n
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Numerical example

Example from here

set.seed(10111)

x = matrix(rnorm(40), 20, 2)

y = rep(c(-1, 1), c(10, 10))

x[y == 1,] = x[y == 1,] + 1

plot(x, col = y + 3, pch = 19)
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dat = data.frame(x, y = as.factor(y))

svmfit = svm(y ~ ., data = dat, kernel = "linear", cost = 10, scale = FALSE)

print(svmfit)

##

## Call:

## svm(formula = y ~ ., data = dat, kernel = "linear", cost = 10, scale = FALSE)

##

##

## Parameters:

## SVM-Type: C-classification

## SVM-Kernel: linear

## cost: 10

##

## Number of Support Vectors: 6

plot(svmfit, dat)
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make.grid = function(x, n = 75) {
grange = apply(x, 2, range)

x1 = seq(from = grange[1,1], to = grange[2,1], length = n)

x2 = seq(from = grange[1,2], to = grange[2,2], length = n)

expand.grid(X1 = x1, X2 = x2)

}
xgrid = make.grid(x)

ygrid = predict(svmfit, xgrid)

plot(xgrid, col = c("red","blue")[as.numeric(ygrid)], pch = 20, cex = .2)

points(x, col = y + 3, pch = 19)

points(x[svmfit$index,], pch = 5, cex = 2)
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beta = drop(t(svmfit$coefs)%*%x[svmfit$index,])

beta0 = svmfit$rho

plot(xgrid, col = c("red", "blue")[as.numeric(ygrid)], pch = 20, cex = .2)

points(x, col = y + 3, pch = 19)

points(x[svmfit$index,], pch = 5, cex = 2)

abline(beta0 / beta[2], -beta[1] / beta[2])

abline((beta0 - 1) / beta[2], -beta[1] / beta[2], lty = 2)

abline((beta0 + 1) / beta[2], -beta[1] / beta[2], lty = 2)
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Soft-margin SVM

To extend SVM to cases in which the data are not linearly separable, the hinge loss
function is helpful

max
(
0, 1− yi (w

Txi − b)
)

yi is the ith target (i.e., in this case, 1 or -1), and wTxi − b is the i-th output

This function is zero if the constraint is satisfied, in other words, if xi lies on the
correct side of the margin

For data on the wrong side of the margin, the function’s value is proportional to the
distance from the margin
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The goal of the optimization then is to minimize

λ∥w∥2 +

[
1

n

n∑
i=1

max
(
0, 1− yi (w

Txi − b)
)]

where the parameter λ > 0 determines the trade-off between increasing the margin size
and ensuring that the xi lie on the correct side of the margin

Thus, for sufficiently small values of λ, it will behave similar to the hard-margin SVM,
if the input data are linearly classifiable, but will still learn if a classification rule is
viable or not
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