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In MATH 2740, we rely on notions you acquired in MATH 1210/1220/1300. We
also use some material from first-year calculus

So let us (briefly) go over material in these courses

I also add (for some of you) a few things that will be handy and establish some
terminology that we use throughout the course
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Sets and elements

Definition 1 (Set)

A set X is a collection of elements

We write x ∈ X or x ̸∈ X to indicate that the element x belongs to the set X or
does not belong to the set X , respectively

Definition 2 (Subset)

Let X be a set. The set S is a subset of X , which is denoted S ⊂ X , if all its
elements belong to X

Not used here but worth noting: we say S is a proper subset of X and write
S ⊊ X , if it is a subset of X and not equal to X
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Quantifiers

A shorthand notation for “for all elements x belonging to X ” is ∀x ∈ X

For example, if X = R, the field of real numbers, then ∀x ∈ R means “for all real
numbers x”

A shorthand notation for “there exists an element x in the set X ” is ∃x ∈ X

∀ and ∃ are quantifiers
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Intersection and union of sets
Let X and Y be two sets

Definition 3 (Intersection)

The intersection of X and Y , X ∩ Y , is the set of elements that belong to X and to
Y ,

X ∩ Y = {x : x ∈ X and x ∈ Y}

Definition 4 (Union)

The union of X and Y , X ∪ Y , is the set of elements that belong to X or to Y ,

X ∪ Y = {x : x ∈ X or x ∈ Y}

In mathematics, or=and/or in common parlance. We also have an exclusive or
(xor)
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A teeny bit of logic

In a logical sense, a proposition is an assertion (or statement) whose truth value
(true or false) can be asserted. For example, a theorem is a proposition that has
been shown to be true. “The sky is blue” is also a proposition

Let A be a proposition. We generally write

A

to mean that A is true, and
not A

to mean that A is false. not A is the contraposition of A (or not A is the
contraposite of A)
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A teeny bit of logic (cont.)

Let A,B be propositions. Then
▶ A ⇒ B (read A implies B) means that whenever A is true, then so is B
▶ A ⇔ B, also denoted A if and only if B (A iff B for short), means that A ⇒ B

and B ⇒ A
We also say that A and B are equivalent

Let A and B be propositions. Then

(A ⇒ B) ⇔ (not B ⇒ not A)
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Necessary or sufficient conditions

Suppose we want to establish whether a given statement P is true, depending on
the truth value of a statement H. Then we say that
▶ H is a necessary condition if P ⇒ H

(It is necessary that H be true for P to be true; so whenever P is true, so is H)

▶ H is a sufficient condition if H ⇒ P
(It suffices for H to be true for P to also be true)

▶ H is a necessary and sufficient condition if H ⇔ P, i.e., H and P are
equivalent
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Playing with quantifiers

For the quantifiers ∀ (for all) and ∃ (there exists),

∃ is the contraposite of ∀

Therefore, for example, the contraposite of

∀x ∈ X , ∃y ∈ Y

is
∃x ∈ X , ∀y ∈ Y
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Complex numbers

Definition 5 (Complex numbers)

A complex number is an ordered pair (a,b), where a,b ∈ R. Usually written
a + ib or a + bi , where i2 = −1 (i.e., i =

√
−1)

The set of all complex numbers is denoted C,

C = {a + ib : a,b ∈ R}
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Definition 6 (Addition and multiplication on C)

Letting a + ib and c + id ∈ C, addition on C is defined by

(a + ib) + (c + id) = (a + c) + i(b + d)

and multiplication on C is defined by

(a + ib)(c + id) = (ac − bd) + i(ad + bc)

Latter is easy to obtain using regular multiplication and i2 = −1
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Properties

∀α, β, γ ∈ C,

α+ β = β + α and αβ = βα [commutativity]

(α+ β) + γ = α+ (β + γ) and (αβ)γ = α(βγ) [associativity]

γ + 0 = γ and γ1 = γ [identities]

∀α ∈ C, ∃β ∈ C unique s.t. α+ β = 0 [additive inverse]

∀α ̸= 0 ∈ C, ∃β ∈ C unique s.t. αβ = 1 [multiplicative inverse]

γ(α+ β) = γα+ γβ [distributivity]
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Additive & multiplicative inverse, subtraction, division

Definition 7
Let α, β ∈ C
▶ −α is the additive inverse of α, i.e., the unique number in C s.t. α+ (−α) = 0
▶ Subtraction on C:

β − α = β + (−α)

▶ For α ̸= 0, 1/α is the multiplicative inverse of α, i.e., the unique number in C
s.t.

α(1/α) = 1

▶ Division on C:
β/α = β(1/α)
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Definition 8 (Real and imaginary parts)

Let z = a + ib. Then Re z = a is real part and Im z = b is imaginary part of z

If ambiguous, write Re (z) and Im (z)

Definition 9 (Conjugate and Modulus)

Let z = a + ib ∈ C. Then
▶ Complex conjugate of z is

z̄ = a − ib

▶ Modulus (or absolute value) of z is

|z| =
√

a2 + b2 ≥ 0
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Properties of complex numbers

Let w , z ∈ C, then
▶ z + z̄ = 2Re z
▶ z − z̄ = 2iIm z
▶ zz̄ = |z|2

▶ w + z = w̄ + z̄ and wz = w̄ z̄
▶ z̄ = z
▶ |Re z| ≤ |z| and |Im z| ≤ |z|
▶ |z̄| = |z|
▶ |wz| = |w | |z|
▶ |w + z| ≤ |w |+ |z| [triangle inequality]
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Solving quadratic equations
Consider the polynomial

P(x) = a0 + a1x + a2x2

where x ,a0,a1,a2 ∈ R. Letting

∆ = a2
1 − 4a0a2

you know that if ∆ > 0, then
P(x) = 0

has two distinct real solutions,

x1 =
−a1 −

√
∆

2a2
and x2 =

−a1 +
√
∆

2a2

if ∆ = 0, then there is a (multiplicity 2) unique real solution

x1 =
−a1

2a2

while if ∆ < 0, there is no solution
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Solving quadratic equations with complex numbers

Consider the polynomial
P(x) = a0 + a1x + a2x2

where x ,a0,a1,a2 ∈ R. If instead of seeking x ∈ R, we seek x ∈ C, then the
situation is the same, except when ∆ < 0

In the latter case, note that
√
∆ =

√
(−1)(−∆) =

√
−1

√
−∆ = i

√
−∆

Since ∆ < 0, −∆ > 0 and the square root is the usual one
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Solving quadratic equations with complex numbers
To summarize, consider the polynomial

P(x) = a0 + a1x + a2x2

where x ,a0,a1,a2 ∈ R. Letting

∆ = a2
1 − 4a0a2

Then
P(x) = 0

has two solutions,

x1,2 =
−a1 ±

√
∆

2a2

where, if ∆ < 0, x1, x2 ∈ C and take the form

x1,2 =
−a1 ± i

√
−∆

2a2
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Why this matters

Recall (we will come back to this later) that to find the eigenvalues of the matrix

A =

(
a11 a12
a21 a22

)
we seek λ solutions to det(A − λI) = 0, i.e., λ solutions to

|A − λI| =
∣∣∣∣a11 − λ a12

a21 a22 − λ

∣∣∣∣ = (a11 − λ)(a22 − λ)− a12a21 = 0

i.e., λ solutions to

λ2 − (a11 + a22)λ+ a11a22 − a12a21 = 0
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Why this matters (cont.)
Let

P(λ) = λ2 − (a11 + a22)λ+ a11a22 − a12a21

From previous discussion, letting

∆ = (a11 + a22)
2 − 4(a11a22 − a12a21)

= a2
11 + a2

22 + 2a11a22 − 4a11a22 + 4a12a21
= a2

11 + a2
22 − 2a11a22 + 4a12a21

= (a11 − a22)
2 + 4a12a21

we have two (potentially equal) solutions to P(λ) = 0

x1,2 =
a11 + a22 ±

√
∆

2

that are complex if ∆ < 0

Example:
(

0 −1
1 0

)
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Vectors

A vector v is an ordered n-tuple of real or complex numbers

Denote F = R or C (real or complex numbers). For v1, . . . , vn ∈ F,

v = (v1, . . . , vn) ∈ Fn

is a vector. v1, . . . , vn are the components of v

If unambiguous, we write v . Otherwise, v or v⃗
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Vector space

Definition 10 (Vector space)

A vector space over F is a set V together with two binary operations, vector
addition, denoted +, and scalar multiplication, that satisfy the relations:

1. ∀u,v ,w ∈ V , u + (v + w) = (u + v) + w
2. ∀v ,w ∈ V , v + w = w + v
3. ∃0 ∈ V , the zero vector, such that v + 0 = v for all v ∈ V
4. ∀v ∈ V , there exists an element w ∈ V , the additive inverse of v , such that

v + w = 0
5. ∀α ∈ R and ∀v ,w ∈ V , α(v + w) = αv + αw
6. ∀α, β ∈ R and ∀v ∈ V , (α+ β)v = αv + βv
7. ∀α, β ∈ R and ∀v ∈ V , α(βv) = (αβ)v
8. ∀v ∈ V , 1v = v
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Norms

Definition 11 (Norm)

Let V be a vector space over F, and v ∈ V be a vector. The norm of v , denoted
∥v∥, is a function from V to R+ that has the following properties:

1. For all v ∈ V , ∥v∥ ≥ 0 with ∥v∥ = 0 iff v = 0
2. For all α ∈ F and all v ∈ V , ∥αv∥ = |α| ∥v∥
3. For all u,v ∈ V , ∥u + v∥ ≤ ∥u∥+ ∥v∥
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Let V be a vector space (for example, R2 or R3)

The zero element (or zero vector) is the vector 0 = (0, . . . ,0)

The additive inverse of v = (v1, . . . , vn) is −v = (−v1, . . . ,−vn)

For v = (v1, . . . , vn) ∈ V , the length (or Euclidean norm) of v is the scalar

∥v∥ =
√

v2
1 + · · ·+ v2

n

To normalize the vector v consists in considering ṽ = v/∥v∥, i.e., the vector in
the same direction as v that has unit length
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Standard basis vectors

Vectors i = (1,0,0), j = (0,1,0) and
k = (0,0,1) are the standard basis
vectors of R3. A vector v = (v1, v2, v3)
can then be written

v = v1i + v2j + v3k

  

For V (Rn), the standard basis vectors are usually denoted e1, . . . ,en, with

ek = (0, . . . ,0︸ ︷︷ ︸
k−1

,1,0, . . . ,0︸ ︷︷ ︸
n−k+1

)
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Dot product

Definition 12 (Dot product)

Let a = (a1, . . . ,an) ∈ Rn, b = (b1, . . . ,bn) ∈ Rn. The dot product of a and b is
the scalar

a • b =
n∑

i=1

aibi = a1b1 + · · ·+ anbn

The dot product is a special case of inner product
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Properties of the dot product

Theorem 13
For a,b,c ∈ Rn and α ∈ R,
▶ a • a = ∥a∥2 (so a • a ≥ 0, with a • a = 0 iff a = 0)
▶ a • b = b • a (• is commutative)
▶ a • (b + c) = a • b + a • c (• distributive over +)
▶ (αa) • b = α(a • b) = a • (αb)
▶ 0 • a = 0
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Some results stemming from the dot product
Theorem 14
If θ is the angle between the vectors a and b, then

a • b = ∥a∥ ∥b∥ cos θ

Corollary 15 (Cauchy-Schwarz inequality)

For any two vectors a and b, we have

|a • b| ≤ ∥a∥ ∥b∥

with equality if and only if a is a scalar multiple of b, or one of them is 0.

Theorem 16
a and b are orthogonal if and only if a • b = 0.
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Scalar and vector projections
Scalar projection of v onto a (or component of v along a):

compav =
a • v
∥a∥

Vector (or orthogonal) projection of v onto a:

projav =

(
a • v
∥a∥

)
a

∥a∥
=

a • v
∥a∥2 a
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Linear systems

Definition 17 (Linear system)

A linear system of m equations in n unknowns takes the form

a11x1 + a12x2 + · · · + a1nxn = b1
a21x1 + a22x2 + · · · + a2nxn = b2

...
...

...
...

...
am1x1 + am2x2 + · · · + amnxn = bn

(1)

The aij , xj and bj could be in R or C, although here we typically assume they are in
R

The aim is to find x1, x2, . . . , xn that satisfy all equations simultaneously
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Theorem 18 (Nature of solutions to a linear system)

A linear system can have
▶ no solution
▶ a unique solution
▶ infinitely many solutions
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Operations on linear systems

You learned to manipulate linear systems using
▶ Gaussian elimination
▶ Gauss-Jordan elimination

with the aim to put the system in row echelon form (REF) or reduced row
echelon form (RREF)
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Matrices and linear systems

Writing

A =


a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

...
am1 am2 · · · amn

 , x =


x1
x2
...

xn

 and b =


b1
b2
...

bn


where A is an m × n matrix, x and b are n (column) vectors (or n × 1 matrices),
then the linear system in the previous slide takes the form

Ax = b
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Notation for vectors

We usually assume vectors are column vectors and thus write, e.g.,

x =


x1
x2
...

xn

 = (x1, x2, . . . , xn)
T

Here, T is the transpose operator (more on this soon)
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Consider the system
Ax = b

If b = 0, the system is homogeneous and always has the solution x = 0 and so
the “no solution” option in Theorem 18 goes away
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Definition 19 (Matrix)

An m-by-n or m × n matrix is a rectangular array of elements of R or C with m
rows and n columns,

A = [aij ] =

a11 · · · a1n
...

...
am1 · · · amn



We always list indices as “row,column”

We denote Mmn(F) or Fmn the set of m × n matrices with entries in F = {R,C}.
Often, we omit F in Mmn if the nature of F is not important

When m = n, we usually write Mn
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Basic matrix arithmetic

Let A ∈ Mmn,B ∈ Mmn be matrices (of the same size) and c ∈ F = {R,C} be a
scalar
▶ Scalar multiplication

cA = [caij ]

▶ Addition
A + B = [aij + bij ]

▶ Subtraction (addition of −B = (−1)B to A)

A − B = A + (−1)B = [aij + (−1)bij ] = [aij − bij ]

▶ Transposition of A gives a matrix AT = Mnm with

AT = [aji ], j = 1, . . . ,n, i = 1, . . . ,m
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Matrix multiplication

The (matrix) product of A and B, AB, requires the “inner dimensions” to match,
i.e., the number of columns in A must equal the number of rows in B

Suppose that is the case, i.e., let A ∈ Mmn, B ∈ Mnp. Then the i , j entry in
C := AB takes the form

cij =
n∑

k=1

aikbkj

Recall that the matrix product is not commutative, i.e., in general, AB ̸= BA (when
both those products are defined, i.e., when A,B ∈ Mn)
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Special matrices

Definition 20 (Zero and identity matrices)

The zero matrix is the matrix 0mn whose entries are all zero. The identity matrix is
a square n × n matrix In with all entries on the main diagonal equal to one and all
off diagonal entries equal to zero

Definition 21 (Symmetric matrix)

A square matrix A ∈ Mn is symmetric if ∀i , j = 1, . . . ,n, aij = aji . In other words,
A ∈ Mn is symmetric if A = AT
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Properties of symmetric matrices

Theorem 22

1. If A ∈ Mn, then A + AT is symmetric
2. If A ∈ Mmn, then AAT ∈ Mm and AT A ∈ Mn are symmetric

X symmetric ⇐⇒ X = X T , so use X = the matrix whose symmetric property you
want to check
1. True if A + AT = (A + AT )T . We have

(A + AT )T = AT + (AT )T = AT + A = A + AT

2. AAT symmetric if AAT = (AAT )T . We have

(AAT )T = (AT )T AT = AAT

AT A works similarly
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Determinants
Definition 23 (Determinant)

Let A ∈ Mn with n ≥ 2. The determinant of A is the scalar

det(A) = |A| =
n∑

j=1

aijCij

where Cij = (−1)i+jdet(Aij) is the (i , j)-cofactor of A and Aij is the submatrix of A
from which the i th row and j th column have been removed

This is a cofactor expansion along the i th row
This is a recursive formula: it gives result in terms of n Mn−1 matrices, to which it
must in turn be applied, all the way down to

det
(

a11 a12
a21 a22

)
= a11a22 − a12a21
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Two special matrices and their determinants

Definition 24
A ∈ Mn is upper triangular if aij = 0 when i > j , lower triangular if aij = 0 when
j > i , triangular if it is either upper or lower triangular and diagonal if it is both
upper and lower triangular

When A diagonal, we often write A = diag(a11,a22, . . . ,ann)

Theorem 25
Let A ∈ Mn be triangular or diagonal. Then

det(A) =
n∏

i=1

aii = a11a22 · · · ann
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Inversion/Singularity

Definition 26 (Matrix inverse)

A ∈ Mn is invertible (or nonsingular) if ∃A−1 ∈ Mn s.t.

AA−1 = A−1A = I

A−1 is the inverse of A. If A−1 does not exist, A is singular

Theorem 27
Let A ∈ Mn, x ,b ∈ Fn. Then
▶ A invertible ⇐⇒ det(A) ̸= 0
▶ If A invertible, A−1 is unique
▶ If A invertible, then Ax = b has the unique solution x = A−1b

p. 42 – Matrix arithmetic



Revisiting matrix arithmetic

With addition, subtraction, scalar multiplication, multiplication, transposition and
inversion, you can perform arithmetic on matrices essentially as on scalar, if you
bear in mind a few rules
▶ The sizes have to be compatible
▶ The order is important since matrix multiplication is not commutative
▶ Transposition and inversion change the order of products:

(AB)T = BT AT and (AB)−1 = B−1A−1
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Eigenvalues / Eigenvectors / Eigenpairs

Definition 28
Let A ∈ Mn. A vector x ∈ Fn such that x ̸= 0 is an eigenvector of A if ∃λ ∈ F
called an eigenvalue, s.t.

Ax = λx

A couple (λ,x) with x ̸= 0 s.t. Ax = λx is an eigenpair

If (λ,x) eigenpair, then for c ̸= 0, (λ, cx) also eigenpair since A(cx) = cAx = cλx
and dividing both sides by c..
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