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In MATH 2740, we rely on notions you acquired in MATH 1210/1220/1300. We
also use some material from first-year calculus

So let us (briefly) go over material in these courses

| also add (for some of you) a few things that will be handy and establish some
terminology that we use throughout the course
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Sets and elements

Definition 1 (Set)
A set X is a collection of elements

We write x € X or x ¢ X to indicate that the element x belongs to the set X or
does not belong to the set X, respectively

Definition 2 (Subset)

Let X be a set. The set S is a subset of X, which is denoted S c X, if all its
elements belong to X

Not used here but worth noting: we say S is a proper subset of X and write
S C X, ifitis a subset of X and not equal to X

p.2 - Setsand logic



Quantifiers

A shorthand notation for “for all elements x belonging to X” is Vx € X

For example, if X = R, the field of real numbers, then Vx € R means “for all real
numbers x”

A shorthand notation for “there exists an element x in the set X”is Ix € X

Vv and 3 are quantifiers

p.3 — Setsand logic



Intersection and union of sets
Let X and Y be two sets

Definition 3 (Intersection)

The intersection of X and Y, X N Y, is the set of elements that belong to X and to
Y,
XNY={x:xeXandx c Y}

Definition 4 (Union)
The union of X and Y, X U Y, is the set of elements that belongto X orto Y,

XUY={x:xeXorxeY}
In mathematics, or=and/or in common parlance. We also have an exclusive or

(xor)

p. 4 - Setsand logic



A teeny bit of logic

In a logical sense, a proposition is an assertion (or statement) whose truth value
(true or false) can be asserted. For example, a theorem is a proposition that has
been shown to be true. “The sky is blue” is also a proposition

Let A be a proposition. We generally write

A

to mean that A is true, and
not A

to mean that A is false. not A is the contraposition of A (or not A is the
contraposite of A)

p.5 — Setsand logic



A teeny bit of logic (cont.)

Let A, B be propositions. Then
> A= B (read Aimplies B) means that whenever A is true, then so is B

» A< B, also denoted A if and only if B (A iff B for short), means that A= B
and B= A
We also say that A and B are equivalent

Let A and B be propositions. Then

(A= B) < (not B=-not A)

p. 6 — Setsand logic



Necessary or sufficient conditions

Suppose we want to establish whether a given statement P is true, depending on
the truth value of a statement H. Then we say that

» His a necessary condition if P = H
(It is necessary that H be true for P to be true; so whenever P is true, so is H)

» His a sufficient condition if H = P
(It suffices for H to be true for P to also be true)

» His a necessary and sufficient condition if H < P, i.e., Hand P are
equivalent

p. 7 — Setsand logic



Playing with quantifiers

For the quantifiers Vv (for all) and 3 (there exists),

Jis the contraposite of vV

Therefore, for example, the contraposite of

Vxe X,dyeY

IxeX,VyeY

p. 8 — Setsand logic
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Complex numbers

Definition 5 (Complex numbers)

A complex number is an ordered pair (a, b), where a, b € R. Usually written
a-+ibora+ bi,where 2 = —1 (i.e., i = v/—1)
The set of all complex numbers is denoted C,

C={a+ib:abecR}

p. 9 — Complex numbers



Definition 6 (Addition and multiplication on C)
Letting a+ ib and ¢ + id € C, addition on C is defined by

(a+ib)+ (c+id)=(a+c)+i(b+d)
and multiplication on C is defined by

(a+ ib)(c + id) = (ac — bd) + i(ad + bc)

Latter is easy to obtain using regular multiplication and /> = —1

p. 10 — Complex numbers



Properties

Va, 8,7 € C,

a+pB=p+aand af = fa [commutativity]
(a+B)+vy=a+(B+~)and (aB)y = a(87) [associativity]
vy+0=~yand~1 =+~ [identities]
Va € C,38 € Cuniques.t. a+5=0 [additive inverse]
Ya #0 e C, 38 € C unique s.t. af =1 [multiplicative inverse]

Y(a+B)=rya+8 [distributivity]

p. 11— Complex numbers



Additive & multiplicative inverse, subtraction, division

Definition 7

Leta,B e C
» —«is the additive inverse of ¢, i.e., the unique numberin Cs.t. a+(—a) =0
» Subtraction on C:

B-a=p+(-a)
» For a # 0, 1/« is the multiplicative inverse of «, i.e., the uniqgue number in C
s.t.
a(l/a) =1
» Division on C:
Bla=p(1/a)

p. 12 — Complex numbers



Definition 8 (Real and imaginary parts)

Let z=a+ ib. Then Re z = ais real part and Im z = b is imaginary part of z
If ambiguous, write Re (z) and Im (2)

Definition 9 (Conjugate and Modulus)

Letz=a+ibe C. Then

» Complex conjugate of z is
z=a-1b

» Modulus (or absolute value) of z is

1z =Va + b2 >0

p. 13 — Complex numbers



Properties of complex numbers

Let w,z € C, then

>

VVvVvVvyVvvVvyYVvyYVvyy

Z+zZ=2Rez
z—2z=2ilmz

zz = |z|?
w+z=w+Zzand wz = wz
zZ=z

|IRe z| <'|z] and |Im z| < |Z|
2| = 2|

jwz| = |wl |Z]

W+ 2| < w|+|Z]

p. 14 — Complex numbers

[triangle inequality]



Solving quadratic equations
Consider the polynomial
P(X) =ap+aiX+ 82X2

where x, ap, ai, a> € R. Letting

A= a? —4apar
you know that if A > 0, then
P(x)=0
has two distinct real solutions,
X _—a-va —vA and X 77—31—1—\/5
L 2a 2= 2a

if A = 0, then there is a (multiplicity 2) unique real solution
x| = —
1 2a,

while if A < 0, there is no solution

p. 15 — Complex numbers



Solving quadratic equations with complex numbers
Consider the polynomial
P(x) = ap + a1x + apx?
where x, ag, a1, a € R. If instead of seeking x € R, we seek x € C, then the
situation is the same, except when A < 0
In the latter case, note that
VA = /(-1)(-A) = V=1V-A = iV-A

Since A < 0, —A > 0 and the square root is the usual one

p. 16 — Complex numbers



Solving quadratic equations with complex numbers
To summarize, consider the polynomial

P(X) =a)+aiX+ 82X2

where x, ag, a1, a2 € R. Letting

A = a? — 43032
Then
P(x)=0
has two solutions,
Yo o — —a + \/E
12 = 2
where, if A < 0, x4, X2 € C and take the form
—a1 i/ —
X12 =

p. 17 — Complex numbers



Why this matters

Recall (we will come back to this later) that to find the eigenvalues of the matrix
A— <a11 a12>
az1  dsp
we seek A solutions to det(A — A\I) = 0, i.e., A solutions to

arr— A anp

A—- | =
| | a1 ap — A

‘ = (a1 — A)(82 — A) — @281 =0

i.e., A solutions to

X2 — (a11 + @22)\ + @r1@z2 — @rzaz1 =0

p. 18 — Complex numbers



Why this matters (cont.)
Let
P(X) = X2 — (a11 + @p2)\ + @118z — 81281

From previous discussion, letting
A = (a11 + a@2)? — 4(ar1az2 — ar2az1)
= & + a5, +2ay1ap — 4ar1ap + 4arap

= a% + 832 — 23811822 + 4aj2821
= (a1 — aze)? + 4a12ap1

we have two (potentially equal) solutions to P(A) =0

ai + ap £ VA
X2 = 5

that are complex if A < 0

(0 —1
Example: <1 0)

p. 19 — Complex numbers
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Vectors

A vector v is an ordered n-tuple of real or complex numbers

Denote F = R or C (real or complex numbers). For v4,...,v, € F,
v=(v,...,Vp) €F"
is a vector. vq, ..., Vv, are the components of v

If unambiguous, we write v. Otherwise, v or vV

p. 20 — Vectors and vector spaces



Vector space

p. 21

Definition 10 (Vector space)

A vector space over [ is a set V together with two binary operations, vector
addition, denoted +, and scalar multiplication, that satisfy the relations:

1.

A0

© N o o

Vvuvwe V,u+(v+w)=(U+Vv)+w

vvwweV, v+w=w-+v

30 € V, the zero vector, suchthat v -0 =vforallve V

Vv € V, there exists an element w ¢ V, the additive inverse of v, such that
v+w=0

VaeRandvVv,we V,a(v+w)=aVv+aw

Va,p e RandVv e V, (a+ )V =av + v

Vo, € Rand Vv € V, (V) = (ap)v

vve V,1lv=v

— Vectors and vector spaces



Norms

Definition 11 (Norm)
Let V be a vector space over FF, and v € V be a vector. The norm of v, denoted
|lv|, is a function from V to R that has the following properties:

1. Forallve V,|v| >0with |v||=0iff v=0

2. ForallaeFandallveV, |av|=|al| V]

3. Forallu,ve V, |u+v| <|u|+|v|

p. 22 — Vectors and vector spaces



Let V be a vector space (for example, R? or R3)
The zero element (or zero vector) is the vector 0 = (0,...,0)
The additive inverse of v = (vy4,...,Vvp)is =V =(—vq,...,—Vp)

For v =(vy,...,vn) € V, the length (or Euclidean norm) of v is the scalar

vl =+ 3

To normalize the vector v consists in considering v = v/||v||, i.e., the vector in
the same direction as v that has unit length

p. 23 — Vectors and vector spaces



Standard basis vectors

N T oA
Vectors i = (1,0,0), j = (0,1,0) and ol T 7
k = (0,0,1) are the standard basis e

|
|
|
‘ l
vectors of R3. A vector v = (vy, v, V3) r """""" !
can then be written ! k |
1 2j . j/l -
|
|
|

i
1
2i ~ 1
V=wi+ vj+ vk / J ;Jf: /,/
r,
I I

_____________ v
X
For V (R™), the standard basis vectors are usually denoted ey, ..., e,, with
e =(0,...,0,1,0,...,0)
—— ——
k—1 n—k-+1

p. 24 — Vectors and vector spaces



Dot product

Definition 12 (Dot product)

Leta=(ai,...,an) e R", b= (by,...,by) € R". The ofaand bis
the scalar

n
aob:Za,-b,-:a1b1+---+a,,b,,
i=1

The dot product is a special case of

p. 25 — Vectors and vector spaces



Properties of the dot product

Theorem 13
Fora,b,c c R" and o € R,

> aea=|a|?

> aeb=Dbea

> ae(b+c)=aeb+taec

> (ca)eb=ca(aeb)=ae(ab)
> 0ea=0

p. 26 — Vectors and vector spaces

(soaea>0,withaea=0iffa=0)
(e is commutative)
(e distributive over +)



Some results stemming from the dot product

If 0 is the angle between the vectors a and b, then

aeb=|a| ||b| cosd

For any two vectors a and b, we have
laeb| < |a |b]

with equality if and only if a is a scalar multiple of b, or one of them is 0.

a and b are orthogonal if and only ifae b = 0.

p. 27 — \Vectors and vector spaces



Scalar and vector projections
Scalar projection of v onto a (or component of v along a):

comp,Vv = asv
all
\
\
Vector (or orthogonal) projection of v onto a: /
proj,v = <a‘ V) a _aev, Orthogonal
lall / llall  lal® projection

of von a

p. 28 — Vectors and vector spaces
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Linear systems

Definition 17 (Linear system)

A of m equations in n unknowns takes the form
ay Xy + apXe + - + aipXn = b
a1Xy + apXe + - + axpXn = b )
amX1 + amXe + -+ + amXn = bp

The aj, x; and b; could be in R or C, although here we typically assume they are in
R

The aim is to find x, X, . . ., X, that satisfy all equations simultaneously

p. 29 - Linear systems and matrices



Theorem 18 (Nature of solutions to a linear system)

A linear system can have
» no solution
» a unique solution
» infinitely many solutions

p. 30 — Linear systems and matrices



Operations on linear systems

You learned to manipulate linear systems using
» Gaussian elimination
» Gauss-Jordan elimination

with the aim to put the system in row echelon form (REF) or reduced row
echelon form (RREF)

p. 31 — Linear systems and matrices



Matrices and linear systems

Writing
air ar - an X1 b;
A a1 axp -+ an Cox— Xo ond b — by
ar.m 31'772 T ar'nn X'n b.n

where Ais an m x n matrix, x and b are n (column) vectors (or n x 1 matrices),
then the linear system in the previous slide takes the form

Ax=D>b

p. 32 — Linear systems and matrices



Notation for vectors

We usually assume vectors are column vectors and thus write, e.g.,

Here, T is the transpose operator (more on this soon)

p. 33 - Linear systems and matrices



Consider the system
Ax

I
(~3

If b =0, the system is and always has the solution x = 0 and so
the “no solution” option in Theorem 18 goes away

p. 34 — Linear systems and matrices
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Definition 19 (Matrix)

An m-by-n or m x n matrix is a rectangular array of elements of R or C with m

rows and n columns,
ayn -+ Ain

A=[a] =

am - amn

We always list indices as “row,column”

We denote M () or F™ the set of m x n matrices with entries in F = {R, C}.
Often, we omit F in M, if the nature of IF is not important

When m = n, we usually write M,

p. 35 — Matrix arithmetic



Basic matrix arithmetic

Let A€ Mpmn, B € Mpm, be matrices (of the same size) and ¢ € F = {R,C} be a
scalar

» Scalar multiplication
CA = [cay]

> Addition
A+B= [a,-j + b,'j]

» Subtraction (addition of —-B = (—1)B to A)
A—-B=A+(-1)B=a;+(-1)b] = [a; — bj]
» Transposition of A gives a matrix A7 = M, with

AT =[q], j=1,...,n, i=1,....m

p. 36 — Matrix arithmetic



Matrix multiplication

The (matrix) product of A and B, AB, requires the “inner dimensions” to match,
i.e., the number of columns in A must equal the number of rows in B

Suppose that is the case, i.e., let A € Mpp, B € Mpp. Thenthe i,j entry in
C := AB takes the form

n
cj =Y akby
k=1

Recall that the matrix product is not commutative, i.e., in general, AB # BA (when
both those products are defined, i.e., when A, B € M)

p. 37 — Matrix arithmetic



Special matrices

Definition 20 (Zero and identity matrices)

The zero matrix is the matrix 0,,, whose entries are all zero. The identity matrix is
a square n x n matrix I, with all entries on the main diagonal equal to one and all
off diagonal entries equal to zero

Definition 21 (Symmetric matrix)

A square matrix A € M is symmetric if Vi,j =1,...,n, a; = a;. In other words,
Ac M, is symmetric if A= AT

p. 38 — Matrix arithmetic



Properties of symmetric matrices

Theorem 22

1. IfAe M,, then A+ AT is symmetric
2. If A€ Mmp, then AAT € M, and ATA € M,, are symmetric

X symmetric <= X = X7, so use X = the matrix whose symmetric property you
want to check
1. True if A+ AT = (A+ AT)T. We have

A+ANT =AT + (AT =AT+ A=A+ AT
2. AAT symmetric if AAT = (AAT)T. We have
(AAT)T — (AT)TAT — AAT

AT A works similarly

p. 39 — Matrix arithmetic



Determinants
Definition 23 (Determinant)

Let A € M, with n > 2. The determinant of A is the scalar
det(A) = |A| = Z a;Cj

where Cj = (—1)"*/det(A;j) is the (i, /)-cofactor of A and A; is the submatrix of A
from which the ith row and jth column have been removed

This is a cofactor expansion along the ith row
This is a recursive formula: it gives result in terms of n M,_1 matrices, to which it
must in turn be applied, all the way down to

ap a2
det ( = @118 — A12821
dx1 o2

p. 40 — Matrix arithmetic



Two special matrices and their determinants

Definition 24

A € Mp is upper triangular if a; = 0 when / > j, lower triangular if a; = 0 when
f > i, triangular if it is either upper or lower triangular and diagonal if it is both
upper and lower triangular

When A diagonal, we often write A = diag(ai1, a2, - .., ann)

Theorem 25
Let A € M, be triangular or diagonal. Then

n
det(A) = H ajj = a1a2 - - ann
i—1

p. 41 — Matrix arithmetic



Inversion/Singularity

Definition 26 (Matrix inverse)

A € M, is invertible (or nonsingular) if JA~" € M, s.t.
AATT = ATTA=T

A1 is the inverse of A. If A~! does not exist, A is singular

Theorem 27
LetAec My, x,b cF". Then
> Ainvertible <= det(A) #0
> If Ainvertible, A= is unique
> If A invertible, then Ax = b has the unique solution x = A~'b

p. 42 — Matrix arithmetic



Revisiting matrix arithmetic

With addition, subtraction, scalar multiplication, multiplication, transposition and
inversion, you can perform arithmetic on matrices essentially as on scalar, if you
bear in mind a few rules

» The sizes have to be compatible
» The order is important since matrix multiplication is not commutative
» Transposition and inversion change the order of products:

(AB)T =BTAT and (AB)™' =B 1A

p. 43 — Matrix arithmetic
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Eigenvalues / Eigenvectors / Eigenpairs

Definition 28

Let A€ M. A vector x € F" such that x # 0 is an eigenvector of Aif IA € FF

called an eigenvalue, s.t.
Ax = \x

A couple (), x) with x £ 0 s.t. Ax = A\X is an eigenpair

If (A, x) eigenpair, then for ¢ # 0, (A, cx) also eigenpair since A(cx) = cAx = cAx
and dividing both sides by c..

p. 44 — Eigenpairs
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