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Similarity

Definition 1 (Similarity)

A,B ∈ Mn are similar (A ∼ B) if ∃P ∈ Mn invertible s.t.

P−1AP = B

Theorem 2 (∼ is an equivalence relation)

A,B,C ∈ Mn, then
▶ A ∼ A (∼ reflexive)
▶ A ∼ B =⇒ B ∼ A (∼ symmetric)
▶ A ∼ B and B ∼ C =⇒ A ∼ C (∼ transitive)
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Similarity (cont.)

Theorem 3
A,B ∈ Mn with A ∼ B. Then
▶ det A = det B
▶ A invertible ⇐⇒ B invertible
▶ A and B have the same eigenvalues
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Diagonalisation

Definition 4 (Diagonalisability)

A ∈ Mn is diagonalisable if ∃D ∈ Mn diagonal s.t. A ∼ D

In other words, A ∈ Mn is diagonalisable if there exists a diagonal matrix D ∈ Mn
and a nonsingular matrix P ∈ Mn s.t. P−1AP = D

Could of course write PAP−1 = D since P invertible, but P−1AP makes more
sense for computations
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Theorem 5
A ∈ Mn diagonalisable ⇐⇒ A has n linearly independent eigenvectors

Corollary 6 (Sufficient condition for diagonalisability)

A ∈ Mn has all its eigenvalues distinct =⇒ A diagonalisable

For P−1AP = D: in P, put the linearly independent eigenvectors as columns and
in D, the corresponding eigenvalues
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Linear combination and span

Definition 7 (Linear combination)

Let V be a vector space. A linear combination of a set {v1, . . . ,vk} of vectors in
V is a vector

c1v1 + · · ·+ ckvk

where c1, . . . , ck ∈ F

Definition 8 (Span)

The set of all linear combinations of a set of vectors v1, . . . ,vk is the span of
{v1, . . . ,vk},

span(v1, . . . ,vk ) = {c1v1 + · · ·+ ckvk : c1, . . . , ck ∈ F}
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Finite/infinite-dimensional vector spaces

Theorem 9
The span of a set of vectors in V is the smallest subspace of V containing all the
vectors in the set

Definition 10 (Set of vectors spanning a space)

If span(v1, . . . ,vk ) = V , we say v1, . . . ,vk spans V

Definition 11 (Dimension of a vector space)

A vector space V is finite-dimensional if some set of vectors in it spans V . A
vector space V is infinite-dimensional if it is not finite-dimensional
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Linear (in)dependence

Definition 12 (Linear independence/Linear dependence)

A set {v1, . . . ,vk} of vectors in a vector space V is linearly independent if

(c1v1 + · · ·+ ckvk = 0) ⇔ (c1 = · · · = ck = 0) ,

where c1, . . . , ck ∈ F. A set of vectors is linearly dependent if it is not linearly
independent.

If linearly dependent, assume w.l.o.g. that c1 ̸= 0, then

v1 = −c2

c1
v2 − · · · − ck

c1
vk

i.e., v1 is a linear combination of the other vectors in the set
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Theorem 13
Let V be a finite-dimensional vector space. Then the cardinal (number of
elements) of every linearly independent set of vectors is less than or equal to the
number of elements in every spanning set of vectors

E.g., in R3, a set with 4 or more vectors is automatically linearly dependent
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Basis

Definition 14 (Basis)

Let V be a vector space. A basis of V is a set of vectors in V that is both linearly
independent and spanning

Theorem 15 (Criterion for a basis)

A set {v1, . . . ,vk} of vectors in a vector space V is a basis of V ⇐⇒ ∀v ∈ V, v
can be written uniquely in the form

v = c1v1 + · · ·+ ckvk ,

where c1, . . . , ck ∈ F
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Plus/Minus Theorem

Theorem 16 (Plus/Minus Theorem)

S a nonempty set of vectors in vector space V
▶ If S is linearly independent and V ∋ v ̸∈ span(S), then S ∪ {v} is linearly

independent
▶ If v ∈ S is linear combination of other vectors in S, then

span(S) = span(S − {v})
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More on bases
Theorem 17 (Basis of finite-dimensional vector space)

Every finite-dimensional vector space has a basis

Theorem 18
Any two bases of a finite-dimensional vector space have the same number of
vectors

Definition 19 (Dimension)

The dimension dimV of a finite-dimensional vector space V is the number of
vectors in any basis of the vector space

Theorem 20 (Dimension of a subspace)

Let V be a finite-dimensional vector space and U ⊂ V be a subspace of V . Then
dimU ≤ dimV
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Constructing bases

Theorem 21
Let V be a finite-dimensional vector space. Then every linearly independent set of
vectors in V with dimV elements is a basis of V

Theorem 22
Let V be a finite-dimensional vector space. Then every spanning set of vectors in
V with dimV elements is a basis of V
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To finish: the “famous” “growing result”

Theorem 23
Let A ∈ Mn. The following statements are equivalent (TFAE)

1. The matrix A is invertible
2. ∀b ∈ Fn, Ax = b has a unique solution (x = A−1b)
3. The only solution to Ax = 0 is the trivial solution x = 0
4. RREF (A) = In

5. The matrix A is equal to a product of elementary matrices
6. ∀b ∈ Fn, Ax = b has a solution
7. There is a matrix B ∈ Mn such that AB = In

8. There is an invertible matrix B ∈ Mn such that AB = In

9. det(A) ̸= 0
10. 0 is not an eigenvalue of A
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One dimension
MATH 1500 & 1700 deal with functions of one variable, like f (x) = x2

−4 −2 0 2 4

0
1

2
3

4

A 1D function

x

f(
x)

p. 14 – A crash course in multivariable calculus



Multivariable calculus
Multivariable calculus extends this to functions of two or more variables, like
f (x , y) = x2 + y2
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A 2D function surface
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Partial derivatives

How do we measure the “slope” on a 3D surface?

A partial derivative measures the slope in a direction parallel to one of the axes

▶
∂f
∂x

measures height change as we move only in the x direction. Treat y as a
constant

▶
∂f
∂y

measures height change as we move only in the y direction. Treat x as a

constant
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Partial derivatives
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Slices for Partial Derivatives
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The Steepest path: the gradient

The gradient, denoted ∇f , is a vector that combines all the partial derivatives:

∇f (x , y) =
(
∂f
∂x

,
∂f
∂y

)
What does it tell us?
▶ Direction: it points in the direction of the steepest ascent
▶ Magnitude: its length represents the steepness of that ascent
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Follow the gradient

Gradient Field
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At a peak or a valley (a local max/min), the ground is flat. So, ∇f = (0,0)
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The real-world problem

Often, we want to maximize or minimize a function, but we don’t have unlimited
freedom. We have constraints

▶ Maximize the profit of your company... subject to a limited budget

▶ Minimize the material used for a can... that must hold a specific volume

▶ Find the highest point on a mountain... while staying on a specific trail

Setting the gradient to zero (∇f = 0) finds the highest point on the whole
mountain, which might not be on our trail!

p. 20 – A crash course in multivariable calculus



Visualizing the problem

Imagine our function f (x , y) is the altitude on a map (contour lines)

Our constraint, g(x , y) = c, is a specific path we must walk on
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Optimization with a Constraint
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Path g(x,y)=c

We are looking for the highest (or lowest) point along the red path
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The key insight
At the optimal point on the path, the path will be perfectly tangent to the contour
line of the surface

Tangency at the Optimum
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Why? If the path crossed the contour line, you could move along the path to get to
a higher (or lower) contour

Mathematically, this tangency means the gradient vectors of the function and the
constraint are parallel

∇f = λ∇g

The scalar λ (lambda) is called the Lagrange multiplier
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The Lagrangian function

The condition ∇f = λ∇g is clever, but solving it can be messy

Instead, we combine our function and constraint into a single, new function called
the Lagrangian

L(x , y , λ) = f (x , y)− λ[g(x , y)− c]

▶ f (x , y) the function we want to optimize
▶ g(x , y) = c the constraint we must follow
▶ λ the Lagrange multiplier

Finding the unconstrained optimum of L solves the original constrained problem!
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The method – step-by-step

To find the optimum of the Lagrangian L(x , y , λ), we find where its gradient is zero

We take the partial derivative with respect to all its variables (x , y , and λ) and set
them to zero

1. ∂L
∂x = ∂f

∂x − λ∂g
∂x = 0

2. ∂L
∂y = ∂f

∂y − λ∂g
∂y = 0

3. ∂L
∂λ = −(g(x , y)− c) = 0 =⇒ g(x , y) = c

The first two equations rearrange to ∇f = λ∇g and the third equation is the
original constraint
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Example: Fencing a Field

Problem: You have 40 meters of fence. What is the largest rectangular area you
can enclose?
▶ Maximize Area: A(x , y) = xy
▶ Constraint (Perimeter): 2x + 2y = 40

1. Form the Lagrangian:

L(x , y , λ) = xy − λ(2x + 2y − 40)

2. Take Partial Derivatives:
▶ ∂L

∂x = y − 2λ = 0 =⇒ y = 2λ
▶ ∂L

∂y = x − 2λ = 0 =⇒ x = 2λ

▶ ∂L
∂λ = −(2x + 2y − 40) = 0

p. 27 – A crash course in multivariable calculus



Example: Solution

From the first two equations, we see that x = y

Now, substitute this into the third equation (the constraint):

2x + 2(x) = 40

4x = 40

x = 10

Since x = y , we have y = 10, i.e., optimal dimensions are 10m by 10m (a square),
giving a maximum area of 100 m2

p. 28 – A crash course in multivariable calculus



A crash course in multivariable calculus
What is Multivariable Calculus?
Optimization with Constraints
The Lagrangian Method
Conclusion



What does λ mean?

The Lagrange multiplier λ has a very useful interpretation

It tells you how much the optimal value of your function f will change if you slightly
relax the constraint c

λ =
dfoptimal

dc

In our example: If we had 41 meters of fence instead of 40 (so c changes by 1),
how much would the max area increase?

x = y = 2λ, so λ = x/2 = 10/2 = 5. The maximum area would increase by
approximately 5 m2
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