
The University of Manitoba campuses are located on original lands of Anishinaabeg, Ininew, Anisininew, Dakota
and Dene peoples, and on the National Homeland of the Red River Métis. We respect the Treaties that were
made on these territories, we acknowledge the harms and mistakes of the past, and we dedicate ourselves to
move forward in partnership with Indigenous communities in a spirit of Reconciliation and collaboration.

Matrix methods – Least squares problems
MATH 2740 – Mathematics of Data Science – Lecture 06

Julien Arino
julien.arino@umanitoba.ca

Department of Mathematics @ University of Manitoba

Fall 202X

julien.arino@umanitoba.ca

Outline

Least squares problems

Least squares problems

Least squares problems
Getting the Canadian census data
Least squares problem – Initial considerations
Least squares problem
Fitting something more complicated

Grabing the Canadian census data

We want to consider the evolution of the population of Canada through time

For this, we grab the Canadian census data

Search for (Google) “Canada historical census data csv", since csv (comma
separated values) is a very easy format to use with R

Here, we find a csv for 1851 to 1976

We follow the link to Table A2-14, where we find another link, this time to a csv file.
This is what we use in R

p. 1 – Least squares problems

Grabing the Canadian census data
The function read.csv reads in a file (potentially directly from the web)
Assign the result to the variable data. We then use the function head to show the
first few lines in the result.

data_old = read.csv("https://www150.statcan.gc.ca/n1/en/pub/11-516-x/sectiona/A2_14-eng.csv?st=L7vSnqio")
head(data_old)

X Series.A2.14.
1 NA
2 NA Year
3 NA
4 NA
5 NA
6 NA
Population.of.Canada..by.province..census.dates..1851.to.1976 X.1 X.2
1 NA
2 Canada NA Newfound-
3 NA land
4 NA
5 2 NA 3
6 NA
X.3 X.4 X.5 X.6 X.7 X.8 X.9 X.10 X.11 X.12
1 NA NA NA
2 Prince NA Nova New Quebec Ontario Manitoba NA Saskat- NA
3 Edward NA Scotia Brunswick NA chewan NA
4 Island NA NA NA
5 4 NA 5 6 7 8 9 NA 10 NA
6 NA NA NA
X.13 X.14 X.15 X.16 X.17 X.18 X.19 X.20
1 NA NA NA NA
2 Alberta NA British NA Yukon Northwest NA NA
3 NA Columbia NA Territory Territories NA NA
4 NA NA NA NA
5 11 NA 12 NA 13 14 NA NA
6 NA NA NA NA

p. 2 – Least squares problems

Obviously, this does not make a lot of sense. This is normal: take a look at the first
few lines in the file. They take the form

head(data_old)

X Series.A2.14.
1 NA
2 NA Year
3 NA
4 NA
5 NA
6 NA
Population.of.Canada..by.province..census.dates..1851.to.1976 X.1 X.2
1 NA
2 Canada NA Newfound-
3 NA land
4 NA
5 2 NA 3
6 NA
X.3 X.4 X.5 X.6 X.7 X.8 X.9 X.10 X.11 X.12
1 NA NA NA
2 Prince NA Nova New Quebec Ontario Manitoba NA Saskat- NA
3 Edward NA Scotia Brunswick NA chewan NA
4 Island NA NA NA
5 4 NA 5 6 7 8 9 NA 10 NA
6 NA NA NA
X.13 X.14 X.15 X.16 X.17 X.18 X.19 X.20
1 NA NA NA NA
2 Alberta NA British NA Yukon Northwest NA NA
3 NA Columbia NA Territory Territories NA NA
4 NA NA NA NA
5 11 NA 12 NA 13 14 NA NA
6 NA NA NA NA

This happens often: the first few lines are here to set the information, they lay out
a simple version of the so-called metadata

p. 3 – Least squares problems

The first line here does this; it is easy to deal with this: the function read.csv takes
the optional argument skip=, which indicates how many lines to skip at the
beginning The second line is also empty, so let us skip it too

data_old = read.csv("https://www150.statcan.gc.ca/n1/en/pub/11-516-x/sectiona/A2_14-eng.csv?st=L7vSnqio",
skip = 2)

head(data_old)

X Year Canada X.1 Newfound. Prince X.2 Nova New Quebec
1 NA NA land Edward NA Scotia Brunswick
2 NA NA Island NA
3 NA 2 NA 3 4 NA 5 6 7
4 NA NA NA
5 NA 1976 22,992,604 NA 557,725 118,229 NA 828,571 677,250 6,234,445
6 NA NA NA
Ontario Manitoba X.3 Saskat. X.4 Alberta X.5 British X.6 Yukon
1 NA chewan NA NA Columbia NA Territory
2 NA NA NA NA
3 8 9 NA 10 NA 11 NA 12 NA 13
4 NA NA NA NA
5 8,264,465 1,021,506 NA 921,323 NA 1,838,037 NA 2,466,608 NA 21,836
6 NA NA NA NA
Northwest X.7 X.8
1 Territories NA NA
2 NA NA
3 14 NA NA
4 NA NA
5 42,609 NA NA
6 NA NA

p. 4 – Least squares problems

Here, there is the further issue that to make things legible, the table authors used
3 rows (from 2 to 4) to encode for long names (e.g., Prince Edward Island is
written over 3 rows). Note, however, that ‘read.csv‘ has rightly picked up on the
first row being the column names.
(You could also use the function ‘read_csv‘ from the package ‘readr‘ to read in the
file. This function is a bit more flexible than ‘read.csv‘ and can handle such cases
more easily. However, it is not part of the base R package, so you would need to
install it first.)
Because we are only interested in the total population of the country and the year,
let us simply get rid of the first 4 rows and of all columns except the second (Year)
and third (Canada)

data_old = data_old[5:dim(data_old)[1], 2:3]
head(data_old, n=4)

Year Canada
5 1976 22,992,604
6
7 1971 21,568,311
8 1966 20,014,880

p. 5 – Least squares problems

Still not perfect:
- there are some empty rows; - the last few rows need to be removed too, they
contain remarks about the data; - the population counts contain commas; - it
would be better if years were increasing.
Let us fix these issues.
For 1 and 2, this is easy: remark that the Canada column is empty for both issues.
Now remark as well that below Canada (and Year, for that matter), it is written
<chr>. This means that entries in the column are characters. Looking for empty
content therefore means looking for empty character chains.
So to fix 1 and 2, we keep the rows where Canada does not equal the empty chain.
To get rid of commas, we just need to substitute an empty chain for ",".
To sort, we find the order for the years and apply it to the entire table.
Finally, as remarked above, for now, both the year and the population are
considered as character chains. This means that in order to plot anything, we will
have to indicate that these are numbers, not characters.

p. 6 – Least squares problems

data_old = data_old[which(data_old$Canada != ""),]
data_old$Canada = gsub(",", "", data_old$Canada)
order_data = order(data_old$Year)
data_old = data_old[order_data,]
data_old$Year = as.numeric(data_old$Year)
data_old$Canada = as.numeric(data_old$Canada)
data_old

Year Canada
23 1851 2436297
22 1861 3229633
21 1871 3689257
20 1881 4324810
19 1891 4833239
17 1901 5371315
16 1911 7206643
15 1921 8787949
14 1931 10376786
13 1941 11506655
11 1951 14009429
10 1956 16080791
9 1961 18238247
8 1966 20014880
7 1971 21568311
5 1976 22992604

p. 7 – Least squares problems

Row numbers are a little weird, so let us fix this.

row.names(data_old) = 1:dim(data_old)[1]
data_old

Year Canada
1 1851 2436297
2 1861 3229633
3 1871 3689257
4 1881 4324810
5 1891 4833239
6 1901 5371315
7 1911 7206643
8 1921 8787949
9 1931 10376786
10 1941 11506655
11 1951 14009429
12 1956 16080791
13 1961 18238247
14 1966 20014880
15 1971 21568311
16 1976 22992604

Well, that looks about right! Let’s see what this looks like in a graph.

p. 8 – Least squares problems

plot(data_old$Year, data_old$Canada,
type = "b", lwd = 2,
xlab = "Year", ylab = "Population")

1860 1880 1900 1920 1940 1960 1980

5.
0e

+
06

1.
5e

+
07

Year

P
op

ul
at

io
n

p. 9 – Least squares problems

But wait, this is only to 1976..! Looking around, we find another table here. There’s
a download csv link in there, let us see where this leads us. The table is 720KB, so
surely there must be more to this than just the population. To get a sense of that,
we dump the whole data.frame, not just its head.

data_new = read.csv("https://www12.statcan.gc.ca/census-recensement/2011/dp-pd/vc-rv/download-telecharger/download-telecharger.cfm?Lang=eng&CTLG=98-315-XWE2011001&FMT=csv")
head(data_new, 10)

GEOGRAPHY.NAME CHARACTERISTIC YEAR.S. TOTAL FLAG_TOTAL
1 Canada Population (in thousands) 1956 16081
2 Canada Population (in thousands) 1961 18238
3 Canada Population (in thousands) 1966 20015
4 Canada Population (in thousands) 1971 21568
5 Canada Population (in thousands) 1976 22993
6 Canada Population (in thousands) 1981 24343
7 Canada Population (in thousands) 1986 25309
8 Canada Population (in thousands) 1991 27297
9 Canada Population (in thousands) 1996 28847
10 Canada Population (in thousands) 2001 30007

p. 10 – Least squares problems

Haha, this looks quite nice but has way more information than we need: we just
want the population of Canada and here we get 9960 rows. Also, the population of
Canada is expressed in thousands, so once we selected what we want, we will
need to multiply by 1,000.
There are many ways to select rows. Let us proceed as follows: we want the rows
where the geography is "Canada" and the characteristic is "Population (in
thousands)". Let us find those indices of rows that satisfy the first criterion, those
that satisfy the second; if we then intersect these two sets of indices, we will have
selected the rows we want.

idx_CAN = which(data_new$GEOGRAPHY.NAME == "Canada")
idx_char = which(data_new$CHARACTERISTIC == "Population (in thousands)")
idx_keep = intersect(idx_CAN, idx_char)
head(idx_keep, n = 8)

[1] 1 2 3 4 5 6 7 8

p. 11 – Least squares problems

Yes, this looks okay, so let us keep only these

data_new = data_new[idx_keep,]
head(data_new, n = 8)

GEOGRAPHY.NAME CHARACTERISTIC YEAR.S. TOTAL FLAG_TOTAL
1 Canada Population (in thousands) 1956 16081
2 Canada Population (in thousands) 1961 18238
3 Canada Population (in thousands) 1966 20015
4 Canada Population (in thousands) 1971 21568
5 Canada Population (in thousands) 1976 22993
6 Canada Population (in thousands) 1981 24343
7 Canada Population (in thousands) 1986 25309
8 Canada Population (in thousands) 1991 27297

p. 12 – Least squares problems

We want to concatenate this data.frame with the one from earlier

To do this, we need the two data frames to have the same number of columns and,
actually, the same column names and entry types (notice that YEAR.S. in data_new
is a column of characters)

p. 13 – Least squares problems

What remains to do

▶ Rename the columns in the pruned old data (data_pruned) to year and
population. Personally, I prefer lowercase column names.. and population
is more informative than Canada

▶ Keep only the relevant columns in data_new, rename them accordingly and
multiply population by 1,000 there

▶ Transform year in data_new to numbers
▶ We already have data up to and including 1976 in data_old, so get rid of that

in data_new
▶ Append the rows of data_new to those of data_pruned

p. 14 – Least squares problems

colnames(data_old) = c("year", "population")
data_new = data_new[,c("YEAR.S.","TOTAL")]
colnames(data_new) = c("year", "population")
data_new$year = as.numeric(data_new$year)
data_new = data_new[which(data_new$year>1976),]
data_new$population = data_new$population*1000

data = rbind(data_old,data_new)

p. 15 – Least squares problems

Let us plot the result

plot(data$year, data$population,
type = "b", lwd = 2,
xlab = "Year", ylab = "Population")

1850 1900 1950 2000

5.
0e

+
06

2.
5e

+
07

Year

P
op

ul
at

io
n

p. 16 – Least squares problems

Save the processed data

In case we need the data elsewhere, we save the data to a csv file

write.csv(data, file = "../CODE/Canada_census.csv")

Using readr saves the data without row numbers (by default), so we can do this
instead

readr::write_csv(data, file = "../CODE/Canada_census.csv")

p. 17 – Least squares problems

Least squares problems
Getting the Canadian census data
Least squares problem – Initial considerations
Least squares problem
Fitting something more complicated

We just collected the census data for Canada

Suppose we want to predict the population of Canada in 20 years given the
historical population growth seen in the previous plot. What can we do?

If there were just two points, we could easily "drive" a line through these two
points. However, we have much more than two points, so we will use fitting, i.e., try
to make a curve come as close to possible to the points

We start with a line, giving rise to linear least squares

p. 18 – Least squares problems

Least squares approximation – A trivial case

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
1

2
3

4
5

6

x

y

p. 19 – Least squares problems

We want to find the equation of a line y = a + bx that goes through these two
points, i.e., we seek a and b such that

3 = a + b
5 = a + 2b

i.e., they satisfy y = a + bx for (x , y) = (1,3) and (x , y) = (2,5)

p. 20 – Least squares problems

This is a linear system with 2 equations and 2 unknowns a and b(
1 1
1 2

)(
a
b

)
=

(
3
5

)

p. 21 – Least squares problems

We know from the “famous” linear algebra in a nutshell theorem that this system
has a unique solution if the matrix

M =

(
1 1
1 2

)
is invertible

det(M) = 1, so we are good, we’ll find a and b easily..

p. 22 – Least squares problems

Now let’s add another point

points = list()
points$x = c(1,2,3)
points$y = c(3,5,4) # So the points are (1,3), (2,5) and (3,4)
plot(points$x, points$y,

pch = 19, cex = 2, bty = "n",
xlim = c(0, 3.5), ylim = c(0,6), xlab = "x", ylab = "y")

These points are clearly not colinear, so there is not one line going through the 3

p. 23 – Least squares problems

We end up with an *overdetermined* system

3 = a + b
5 = a + 2b
4 = a + 3b

i.e., 1 1
1 2
1 3

(
a
b

)
=

3
5
4



p. 24 – Least squares problems

We have verified visually that the points are not colinear, so this system has no
solution.
(If you had to do it for good, you consider two vectors stemming from these 3
points and compute the angle between them or check that one is a multiple of the
other).
So let us instead try to find the line that comes "closest" to the 3 points.

A = matrix(c(1,1,1,2), nr = 2, nc = 2, byrow = TRUE)
rhs = matrix(c(3,5), nr = 2, nc =1)
coefs = solve(A,rhs) # To invert A, in R, you use solve(A), to solve Ax=b, you use solve(A,b)
plot(points$x, points$y,

pch = 19, cex = 2, bty = "n",
xlim = c(0, 3.5), ylim = c(0,6), xlab = "x", ylab = "y")

abline(coef = coefs, lwd = 2)

Obviously, not sensational..

p. 25 – Least squares problems

plot(points$x, points$y,
pch = 19, cex = 2, bty = "n",

xlim = c(0, 3.5), ylim = c(0,6), xlab = "x", ylab = "y")
abline(coef = coefs, lwd = 2)
abline(a = 3, b = 0.5, lwd = 2, col = "red")

How do we find "how far away"?
- We could use projections onto the line (which we know minimises the distance) -
However, this will be a problem if we later decide that rather than a straight line, we
want to use something more "funky" like a quadratic or an exponential

p. 26 – Least squares problems

So instead, we compare, for a given value x , the distance between the true value
y and the value of y obtained using the curve (line, here) that we use to fit the data
Let (xi , yi) be the data points, i.e., here, (x1, y1) = (1,3), (x2, y2) = (2,5) and
(x3, y3) = (3,4)
Now suppose we use a line with equation y = a + bx and that we pick a value for
a and b. Then at x1,

ỹ1 = a + bx1 = a + b

at x2
ỹ2 = a + bx2 = a + 2b

and at x3,
ỹ3 = a + bx3 = a + 3b

Consider x1, for instance. The error we made by using the line with coefficients
(a,b) is

−−−−−−−−−−→
(x1, y1)(x1, ỹ1).

p. 27 – Least squares problems

For future use, let us create a function for y = a0 + a1x .

my_line = function(x, a_0, a_1){
return(a_0 + a_1*x)

}

Functions are super useful when programming

my_line(1,2,3)

[1] 5

my_line(a_0 = 2, a_1 = 3, x = 1)

[1] 5

my_line(x = c(1,2,3), a_0 = 2, a_1 = 3)

[1] 5 8 11

p. 28 – Least squares problems

a = 3
b = 0.5 # The line has equation y=a+bx
plot(points$x, points$y,

pch = 19, cex = 2, bty = "n",
xlim = c(0, 3.5), ylim = c(0,6), xlab = "x", ylab = "y")

abline(a = a, b = b, lwd = 2)
abline(v = c(1,2,3)) # If we used abline(h=c(0,1)), we would get horizontal lines at y=0 and y=1
p = my_line(c(1,2,3), a, b)
points(c(1,2,3), p, pch = 19, cex = 2, col = "red")

p. 29 – Least squares problems

Let us return to the error −−−−−−−−−−→
(x1, y1)(x1, ỹ1)

We have −−−−−−−−−−→
(x1, y1)(x1, ỹ1) = (x1 − x1, y1 − ỹ1) = (0, y1 − ỹ1)

Let us call
ε1 = y1 − ỹ1

We can compute ε2 and ε3 too. And we can then form the **error vector**

e = (ε1, ε2, ε3)
T

The norm of e, ∥e∥, then tells us how much error we are making for the choice of
(a,b) we are using

p. 30 – Least squares problems

The norm of e, ∥e∥, tells us how much error we are making for the choice of (a,b)
we are using
So our objective is to find (a,b) such that ∥e∥ is minimal
We could use various norms, but the Euclidean norm has some very interesting
properties, so we use

∥e∥ =
√
ε2

1 + ε2
2 + ε2

3

p. 31 – Least squares problems

The linear least squares problem

Given a collection of data points (x1, y1), . . . , (xn, yn), find the coefficients a,b of
the line y = a + bx such that

∥e∥ =
√

ε2
1 + · · ·+ ε2

n =
√

(y1 − ỹ1)2 + · · ·+ (yn − ỹn)2

is minimal, where ỹi = a + bxi , for i = 1, . . . ,n

p. 32 – Least squares problems

Let us first hack a brute force solution! (For the example we have been using this
far)
We have our three points in the list ‘points‘, the function my_line that computes the
value ỹ given x and a,b, so let us make a new function that, given a,b, computes e
We’ll also pass the points ‘points‘

error = function(a_0, a_1, points) {
y_tilde = my_line(points$x, a_0 = a_0, a_1 = a_1)
e = points$y - y_tilde
return(sqrt(sum(e^2)))

}
error(a_0 = 2, a_1 = 3, points)

[1] 7.874008

error(a_0 = 3, a_1 = 0.5, points)

[1] 1.224745

error(a_0 = 3.1, a_1 = 0.48, points)

[1] 1.229471

We can’t be doing this by hand..

p. 33 – Least squares problems

Genetic algorithms

Let’s use something cool: a genetic algorithm
- Genetic algorithms are a stochastic *optimisation* method. There are other
types, e.g., gradient descent (deterministic) - The idea is to use a mechanism
mimicking evolution’s drive towards higher fitness - The function value is its fitness
- We try different genes (here, different values of a,b) and evaluate their fitness..
keep the good ones - We mutate or crossover genes, throw in new ones, etc. - We
keep doing this until we reach a stopping criterion - We then return the best gene
we found

p. 34 – Least squares problems

if (!require("GA", quietly = TRUE)) {
install.packages("GA")
library(GA)

}
GA = ga(type = "real-valued",

fitness = function(x) -error(a_0 = x[1], a_1 = x[2], points),
suggestions = c(a_0 = 2, a_1 = 3),
lower = c(-10, -10), upper = c(10, 10),
popSize = 200, maxiter = 150)

plot(GA)
GA

An object of class "ga"
##
Call:
ga(type = "real-valued", fitness = function(x) -error(a_0 = x[1], a_1 = x[2], points), lower = c(-10, -10), upper = c(10, 10), popSize = 200, maxiter = 150, suggestions = c(a_0 = 2, a_1 = 3))
##
Available slots:
[1] "call" "type" "lower" "upper" "nBits"
[6] "names" "popSize" "iter" "run" "maxiter"
[11] "suggestions" "population" "elitism" "pcrossover" "pmutation"
[16] "optim" "fitness" "summary" "bestSol" "fitnessValue"
[21] "solution"

GA@solution

x1 x2
[1,] 3.00034 0.4998667

-GA@fitnessValue

[1] 1.224745

- Here, however, we do not have to go brute force: we can reason using
mathematics - We now take a little detour on the math side of things, we will come
back to code in a while..

p. 35 – Least squares problems

Least squares problems
Getting the Canadian census data
Least squares problem – Initial considerations
Least squares problem
Fitting something more complicated

The least squares problem (simplest version)

Definition 1
Given a collection of points (x1, y1), . . . , (xn, yn), find the coefficients a,b of the line
y = a + bx such that

∥e∥ =
√

ε2
1 + · · ·+ ε2

n =
√

(y1 − ỹ1)2 + · · ·+ (yn − ỹn)2

is minimal, where ỹi = a + bxi for i = 1, . . . ,n

We just saw how to solve this by brute force using a genetic algorith to minimise
∥e∥, let us now see how to solve this problem “properly”

p. 36 – Least squares problems

For a data point i = 1, . . . ,n

εi = yi − ỹi = yi − (a + bxi)

So if we write this for all data points,

ε1 = y1 − (a + bx1)

...
εn = yn − (a + bxn)

In matrix form
e = b − Ax

with

e =

ε1
...
εn

 ,A =

1 x1
...

...
1 xn

 ,x =

(
a
b

)
and b =

y1
...

yn


p. 37 – Least squares problems

The least squares problem (reformulated)

Definition 2 (Least squares solutions)

Consider a collection of points (x1, y1), . . . , (xn, yn), a matrix A ∈ Mmn, b ∈ Rm. A
least squares solution of Ax = b is a vector x̃ ∈ Rn s.t.

∀x ∈ Rn, ∥b − Ax̃∥ ≤ ∥b − Ax∥

p. 38 – Least squares problems

Needed to solve the problem

Definition 3 (Best approximation)

Let V be a vector space, W ⊂ V and v ∈ V . The best approximation to v in W is
ṽ ∈ W s.t.

∀w ∈ W ,w ̸= ṽ, ∥v − ṽ∥ < ∥v − w∥

Theorem 4 (Best approximation theorem)

Let V be a vector space with an inner product, W ⊂ V and v ∈ V. Then projW (v)
is the best approximation to v in W

p. 39 – Least squares problems

Let us find the least squares solution

∀xRn, Ax is a vector in the column space of A (the space spanned by the vectors
making up the columns of A)

Since x ∈ Rn, Ax ∈ col(A)

=⇒ least squares solution of Ax = b is a vector ỹ ∈ col(A) s.t.

∀y ∈ col(A), ∥b − ỹ∥ ≤ ∥b − y∥

This looks very much like Best approximation and Best approximation theorem

p. 40 – Least squares problems

Putting things together

We just stated: The least squares solution of Ax = b is a vector ỹ ∈ col(A) s.t.

∀y ∈ col(A), ∥b − ỹ∥ ≤ ∥b − y∥

We know (reformulating a tad):

Theorem 5 (Best approximation theorem)

Let V be a vector space with an inner product, W ⊂ V and v ∈ V. Then
projW (v) ∈ W is the best approximation to v in W, i.e.,

∀w ∈ W ,w ̸= projW (v), ∥v − projW (v)∥ < ∥v − w∥

=⇒ W = col(A), v = b and ỹ = projcol(A)(b)

p. 41 – Least squares problems

So if x̃ is a least squares solution of Ax = b, then

ỹ = Ax̃ = projcol(A)(b)

We have
b − Ax̃ = b − projcol(A)(b) = perpcol(A)(b)

and it is easy to show that

perpcol(A)(b) ⊥ col(A)

So for all columns ai of A
ai · (b − Ax̃) = 0

which we can also write as aT
i (b − Ax̃) = 0

p. 42 – Least squares problems

For all columns ai of A,
aT

i (b − Ax̃) = 0

This is equivalent to saying that

AT (b − Ax̃) = 0

We have

AT (b − Ax̃) = 0 ⇐⇒ AT b − AT Ax̃ = 0

⇐⇒ AT b = AT Ax̃

⇐⇒ AT Ax̃ = AT b

The latter system constitutes the normal equations for x̃

p. 43 – Least squares problems

Least squares theorem

Theorem 6 (Least squares theorem)

A ∈ Mmn, b ∈ Rm. Then
1. Ax = b always has at least one least squares solution x̃
2. x̃ least squares solution to Ax = b ⇐⇒ x̃ is a solution to the normal

equations AT Ax̃ = AT b
3. A has linearly independent columns ⇐⇒ AT A invertible.

In this case, the least squares solution is unique and

x̃ =
(

AT A
)−1

AT b

We have seen 1 and 2, we will not show 3 (it is not hard)

p. 44 – Least squares problems

Least squares problems
Getting the Canadian census data
Least squares problem – Initial considerations
Least squares problem
Fitting something more complicated

Suppose we want to fit something a bit more complicated..

For instance, instead of the affine function

y = a + bx

suppose we want to do the quadratic

y = a0 + a1x + a2x2

or even
y = k0ek1x

How do we proceed?

p. 45 – Least squares problems

Fitting the quadratic

We have the data points (x1, y1), (x2, y2), . . . , (xn, yn) and want to fit

y = a0 + a1x + a2x2

At (x1, y1),
ỹ1 = a0 + a1x1 + a2x2

1

...
At (xn, yn),

ỹn = a0 + a1xn + a2x2
n

p. 46 – Least squares problems

In terms of the error

ε1 = y1 − ỹ1 = y1 − (a0 + a1x1 + a2x2
1)

...

εn = yn − ỹn = yn − (a0 + a1xn + a2x2
n)

i.e.,
e = b − Ax

where

e =

ε1
...
εn

 ,A =

1 x1 x2
1

...
...

...
1 xn x2

n

 ,x =

a0
a1
a2

 and b =

y1
...

yn


Theorem 6 applies, with here A ∈ Mn3 and b ∈ Rn

p. 47 – Least squares problems

Fitting the exponential

Things are a bit more complicated here

If we proceed as before, we get the system

y1 = k0ek1x1

...

yn = k0ek1xn

ek1xi is a nonlinear term, it cannot be put in a matrix

However: take the ln of both sides of the equation

ln(yi) = ln(k0ek1xi) = ln(k0) + ln(ek1xi) = ln(k0) + k1xi

If yi , k0 > 0, then their ln are defined and we’re in business..

p. 48 – Least squares problems

ln(yi) = ln(k0) + k1xi

So the system is

y = Ax + b

with

A =

x1
...

xn

 ,x =
(
k1
)
,b =

(
ln(k0)

)
and y =

ln(y1)
...

ln(yn)



p. 49 – Least squares problems

	Least squares problems
	Getting the Canadian census data
	Least squares problem – Initial considerations
	Least squares problem
	Fitting something more complicated

