
The University of Manitoba campuses are located on original lands of Anishinaabeg, Ininew, Anisininew, Dakota
and Dene peoples, and on the National Homeland of the Red River Métis. We respect the Treaties that were
made on these territories, we acknowledge the harms and mistakes of the past, and we dedicate ourselves to
move forward in partnership with Indigenous communities in a spirit of Reconciliation and collaboration.

Matrix methods – QR factorisation (2) & SVD (1)
MATH 2740 – Mathematics of Data Science – Lecture 08

Julien Arino
julien.arino@umanitoba.ca

Department of Mathematics @ University of Manitoba

Fall 202X

julien.arino@umanitoba.ca

Outline

The QR factorisation & Least squares

Singular values

The SVD

An application of the SVD – Image compression

The QR factorisation & Least squares

Singular values

The SVD

An application of the SVD – Image compression

The QR factorisation

Theorem 70
Let A ∈ Mmn with LI columns. Then A can be factored as

A = QR

where Q ∈ Mmn has orthonormal columns and R ∈ Mn is nonsingular upper
triangular

p. 1 – The QR factorisation & Least squares

Back to least squares

So what was the point of all that..?

Theorem 71 (Least squares with QR factorisation)

A ∈ Mmn with LI columns, b ∈ Rm. If A = QR is a QR factorisation of A, then the
unique least squares solution x̃ of Ax = b is

x̃ = R−1QT b

p. 2 – The QR factorisation & Least squares

Proof of Theorem 71
A has LI columns so
▶ least squares Ax = b has unique solution x̃ = (AT A)−1AT b
▶ by Theorem 70, A can be written as A = QR with Q ∈ Mmn with orthonormal

columns and R ∈ Mn nonsingular and upper triangular
So

AT Ax̃ = AT b =⇒ (QR)T QRx̃ = (QR)T b

=⇒ RT QT QRx̃ = RT QT b

=⇒ RT InRx̃ = RT QT b

=⇒ RT Rx̃ = RT QT b

=⇒ (RT)−1Rx̃ = (RT)−1RT QT b

=⇒ Rx̃ = QT b

=⇒ x̃ = R−1QT b

p. 3 – The QR factorisation & Least squares

The QR factorisation & Least squares

Singular values

The SVD

An application of the SVD – Image compression

Matrix factorisations (continued)

The singular value decomposition (known mostly by its acronym, SVD) is yet
another type of factorisation/decomposition..

p. 4 – Singular values

Singular values

Definition 72 (Singular value)

Let A ∈ Mmn(R). The singular values of A are the real numbers

σ1 ≥ σ2 ≥ · · ·σn ≥ 0

that are the square roots of the eigenvalues of AT A

p. 5 – Singular values

Singular values are real and nonnegative?

Recall that ∀A ∈ Mmn, AT A is symmetric

Claim 1. Real symmetric matrices have real eigenvalues

Proof. A ∈ Mn(R) symmetric and (λ,v) eigenpair of A, i.e, Av = λv . Taking the
complex conjugate, Av = λv

Since A ∈ Mn(R), A = A (z = z̄ ⇐⇒ z ∈ R)

So
Av̄ = Av̄ = Av = λv = λv̄

i.e., if (λ,v) eigenpair, (λ̄, v̄) also eigenpair

p. 6 – Singular values

Still assuming A ∈ Mn(R) symmetric and (λ,v) eigenpair of A and using what we
just proved (that (λ̄, v̄) also eigenpair), take transposes

Av̄ = λ̄v̄ ⇐⇒ (Av̄)T = (λ̄v̄)T

⇐⇒ v̄T AT = λ̄v̄T

⇐⇒ v̄T A = λ̄v̄T [A symmetric]

Let us now compute λ(v̄ • v). We have

λ(v̄ • v) = λv̄T v = v̄T (λv)

= v̄T (Av) = (v̄T A)v

= (λ̄v̄T)v = λ̄(v̄ • v)
⇐⇒ (λ− λ̄)(v̄ • v) = 0

p. 7 – Singular values

We have shown
(λ− λ̄)(v̄ • v) = 0

Let

v =

a1 + ib1
...

an + ibn


Then

v̄ =

a1 − ib1
...

an − ibn


So

v̄ • v = (a2
1 + b2

1) + · · ·+ (a2
n + b2

n)

But v eigenvector is ̸= 0, so v̄ • v ̸= 0, so

(λ− λ̄)(v̄ • v) = 0 ⇐⇒ λ− λ̄ = 0 ⇐⇒ λ = λ̄ ⇐⇒ λ ∈ R

p. 8 – Singular values

Claim 2. For A ∈ Mmn(R), the eigenvalues of AT A are real and nonnegative

Proof. We know that for A ∈ Mmn, AT A symmetric and from previous claim, if
A ∈ Mmn(R), then AT A is symmetric and real and with real eigenvalues

Let (λ,v) be an eigenpair of AT A, with v chosen so that ∥v∥ = 1

Norms are functions V → R+, so ∥Av∥ and ∥Av∥2 are ≥ 0 and thus

0 ≤ ∥Av∥2 = (Av) • (Av) = (Av)T (Av)

= vT AT Av = vT (AT Av) = vT (λv)

= λ(vT v) = λ(v • v) = λ∥v∥2

= λ

p. 9 – Singular values

Claim 3. For A ∈ Mmn(R), the nonzero eigenvalues of AT A and AAT are the same

Proof. Let (λ,v) be an eigenpair of AT A with λ ̸= 0. Then v ̸= 0 and

AT Av = λv ̸= 0

Left multiply by A
AAT Av = λAv

Let w = Av , we thus have AAT w = λw ; in other words, Av is an eigenvector of
AAT corresponding to the (nonzero) eigenvalue λ

The reverse works the same way..

p. 10 – Singular values

The QR factorisation & Least squares

Singular values

The SVD

An application of the SVD – Image compression

The singular value decomposition (SVD)

Theorem 73 (SVD)

A ∈ Mmn with singular values σ1 ≥ · · · ≥ σr > 0 and σr+1 = · · · = σn = 0

Then there exists U ∈ Mm orthogonal, V ∈ Mn orthogonal and a block matrix
Σ ∈ Mmn taking the form

Σ =

(
D 0r ,n−r

0m−r ,r 0m−r ,n−r

)
where

D = diag(σ1, . . . , σr) ∈ Mr

such that
A = UΣV T

p. 11 – The SVD

Definition 74
We call a factorisation as in Theorem 73 the singular value decomposition of A.
The columns of U and V are, respectively, the left and right singular vectors of A

U and V T are rotation or reflection matrices, Σ is a scaling matrix

U ∈ Mm orthogonal matrix with columns the eigenvectors of AAT

V ∈ Mn orthogonal matrix with columns the eigenvectors of AT A

p. 12 – The SVD

Outer product form of the SVD

Theorem 75 (Outer product form of the SVD)

A ∈ Mmn with singular values σ1 ≥ · · · ≥ σr > 0 and σr+1 = · · · = σn = 0,
u1, . . . ,ur and v1, . . . ,vr , respectively, left and right singular vectors of A
corresponding to these singular values

Then
A = σ1u1vT

1 + · · ·+ σr ur vT
r (1)

p. 13 – The SVD

The QR factorisation & Least squares

Singular values

The SVD

An application of the SVD – Image compression

Applications of the SVD

Many applications of the SVD, both theoretical and practical..

1. Obtaining a unique solutions to least squares when AT A singular
2. Image compression

p. 14 – An application of the SVD – Image compression

Compressing images

Consider an image (for simplicity, assume in shades of grey). This can be stored
in a matrix A ∈ Mmn

Take the SVD of A. Then the small singular values carry information about the
regions with little variation and can perhaps be omitted, whereas the large singular
values carry information about more “dynamic” regions of the image

Suppose A has r nonzero singular values. For k ≤ r , let

Ak = σ1u1vT
1 + · · ·+ σkukvT

k

For k = r we get the usual outer product form (1)

p. 15 – An application of the SVD – Image compression

Load the image using bmp::read.bmp

my_image = bmp::read.bmp("../CODE/Julien_and_friend_1000x800.bmp")
my_image_g = pixmap::pixmapGrey(my_image)
my_image_g

Pixmap image
Type : pixmapGrey
Size : 800x1000
Resolution : 1x1
Bounding box : 0 0 1000 800

p. 16 – An application of the SVD – Image compression

Doing the computations “by hand”

M = my_image_g@grey
MTM = t(M) %*% M
Ensure matrix is symmetric
MTM = (MTM+t(MTM))/2
ev = eigen(MTM)

Given the size and nature of the entries, the matrix MT M is symmetric only to 1e-5
precision, so we use a little trick to make it symmetric no matter what: take the
average of MT M and its transpose MMT

p. 18 – An application of the SVD – Image compression

Which version of the algorithm to use?

Make zero the eigenvalues that are close to zero (200 out of 1000)

ev$values = ev$values*(ev$values>1e-10)

Can we use the algorithm for all eigenvalues being distinct or do we have repeated
ones?

any(duplicated(ev$values[ev$values>1e-10]))

[1] FALSE

So we can use the standard algorithm

p. 19 – An application of the SVD – Image compression

Computing the SVD

idx_positive_ev = which(ev$values>1e-10)
sv = sqrt(ev$values[idx_positive_ev])

p. 20 – An application of the SVD – Image compression

Computing the SVD

Then D = diag(σ1, . . . , σr), V is the matrix of normalised eigenvectors in the same
order as the σi and for i = 1, . . . , r

ui =
1
σi

Avi

ensuring that ∥ui∥ = 1

D = diag(sv)
V = ev$vectors[idx_positive_ev, idx_positive_ev]
c1 = colSums(V)
for (i in 1:dim(V)[2]) {

V[,i] = V[,i]/c1[i]
}

p. 21 – An application of the SVD – Image compression

Computing the SVD

Finally, we compute the ui ’s

U = M %*% V %*% diag(1/sv)

Error in M %*% V: non-conformable arguments

r = length(sv)
im = list(u=U, d=sv, v=V)

Error: object ’U’ not found

p. 22 – An application of the SVD – Image compression

Using built-in functions

We can also use the built-in function svd to compute the SVD of M

M.svd = svd(M)

The results are stored in a list with components u, d and v

p. 23 – An application of the SVD – Image compression

Make function to recreate an image from the SVD

Given the SVD im of an image and a number of singular values to keep n, we can
recreate the image using the function compress_image

We output the new image, but also, the amount of information required to encode
this new image, as a percentage of the original image size

p. 24 – An application of the SVD – Image compression

compress_image = function(im, n) {
if (n > length(im$d)) {

Check that we gave a value of n within range, otherwise
just set to the max
n = length(im$d)

}
d_tmp = im$d[1:n]
u_tmp = im$u[,1:n]
v_tmp = im$v[,1:n]
We store the results in a list (so we can return other information)

out = list()
First, compute the resulting image
out$img = mat.or.vec(nr = dim(im$u)[1], nc = dim(im$v)[1])
for (i in 1:n) {

out$img = out$img + d_tmp[i] * u_tmp[,i] %*% t(v_tmp[,i])
}

p. 25 – An application of the SVD – Image compression

Values of the "colours" must be between 0 and 1, so we shift and rescale
if (min(min(out$img)) < 0) {

out$img = out$img - min(min(out$img))
}
out$img = out$img / max(max(out$img))
Store some information: number of points needed and percentage of the original required
out$nb_pixels_original = dim(im$u)[1] * dim(im$v)[2]
out$nb_pixels_compressed = length(d_tmp) + dim(u_tmp)[1]*dim(u_tmp)[2] + dim(v_tmp)[1]*dim(v_tmp)[2]
out$pct_of_original = out$nb_pixels_compressed / out$nb_pixels_original * 100
Return the result
return(out)

}

p. 26 – An application of the SVD – Image compression

Recreating the image

We can now recreate the image using the function compress_image

new_image = my_image_g
M.svd = svd(M)
M_tmp = compress_image(M.svd, 2)
new_image@grey = M_tmp$img
plot(new_image)

p. 27 – An application of the SVD – Image compression

Using n = 2 singular values

Uses 0.56% of the original information

p. 28 – An application of the SVD – Image compression

Using n = 5 singular values

Uses 1.41% of the original information

p. 29 – An application of the SVD – Image compression

Using n = 10 singular values

Uses 2.81% of the original information

p. 30 – An application of the SVD – Image compression

Using n = 20 singular values

Uses 5.63% of the original information

p. 31 – An application of the SVD – Image compression

Using n = 50 singular values

Uses 14.07% of the original information

p. 32 – An application of the SVD – Image compression

	The QR factorisation & Least squares
	Singular values
	The SVD
	An application of the SVD – Image compression

