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Matrix factorisations

Matrix factorisations are popular because they allow to perform some
computations more easily

There are several different types of factorisations. Here, we study just the QR
factorisation, which is useful for many least squares problems
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Definition 1 (Orthogonal set of vectors)

The set of vectors {v1, . . . ,vk} ∈ Rn is an orthogonal set if

∀i , j = 1, . . . , k , i ̸= j =⇒ vi • vj = 0

Theorem 2
{v1, . . . ,vk} ∈ Rn with ∀i , vi ̸= 0, orthogonal set =⇒ {v1, . . . ,vk} ∈ Rn linearly
independent

Definition 3 (Orthogonal basis)

Let S be a basis of the subspace W ⊂ Rn composed of an orthogonal set of
vectors. We say S is an orthogonal basis of W
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Proof of Theorem 2
Assume {v1, . . . ,vk} orthogonal set with vi ̸= 0 for all i = 1, . . . , k . Recall
{v1, . . . ,vk} is LI if

c1v1 + · · ·+ ckvk = 0 ⇐⇒ c1 = · · · = ck = 0

So assume c1, . . . , ck ∈ R are s.t. c1v1 + · · ·+ ckvk = 0. Recall that ∀x ∈ Rk ,
0k • x = 0. So for some vi ∈ {v1, . . . ,vk}

0 = 0 • vi

= (c1v1 + · · ·+ ckvk ) • vi

= c1v1 • vi + · · ·+ ckvk • vi (1)

As {v1, . . . ,vk} orthogonal, vj • vi = 0 when i ̸= j , (1) reduces to

civi • vi = 0 ⇐⇒ ci∥vi∥2 = 0

As vi ̸= 0 for all i , ∥vi∥ ≠ 0 and so ci = 0. This is true for all i , hence the result
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Example – Vectors of the standard basis of R3

For R3, we denote

i =

1
0
0

 , j =

0
1
0

 and k =

0
0
1


(Rk for k > 3, we denote them ei )
Clearly, {i , j}, {i ,k}, {j ,k} and {i , j ,k} orthogonal sets. The standard basis
vectors are also ̸= 0, so the sets are LI. And

{i , j ,k}

is an orthogonal basis of R3 since it spans R3 and is LI

c1i + c2j + c3k = c1

1
0
0

+ c2

0
1
0

+ c3

0
0
1

 =

c1
c2
c3


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Orthonormal version of things
Definition 4 (Orthonormal set)

The set of vectors {v1, . . . ,vk} ∈ Rn is an orthonormal set if it is an orthogonal
set and furthermore

∀i = 1, . . . , k , ∥vi∥ = 1

Definition 5 (Orthonormal basis)

A basis of the subspace W ⊂ Rn is an orthonormal basis if the vectors
composing it are an orthonormal set

{v1, . . . ,vk} ∈ Rn is orthonormal if

vi • vj =

{
1 if i = j
0 otherwise

p. 5 – QR factorisation



Projections

Definition 6 (Orthogonal projection onto a subspace)

W ⊂ Rn a subspace and {u1, . . . ,uk} an orthogonal basis of W . ∀v ∈ Rn, the
orthogonal projection of v onto W is

projW (v) =
u1 • v
∥u1∥2 u1 + · · ·+ uk • v

∥uk∥2 uk

Definition 7 (Component orthogonal to a subspace)

W ⊂ Rn a subspace and {u1, . . . ,uk} an orthogonal basis of W . ∀v ∈ Rn, the
component of v orthogonal to W is

perpW (v) = v − projW (v)
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What this aims to do is to construct an orthogonal basis for a subspace W ⊂ Rn

To do this, we use the Gram-Schmidt orthogonalisation process, which turn s a
basis of W into an orthogonal basis of W
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Gram-Schmidt process
Theorem 8
W ⊂ Rn a subset and {x1, . . . ,xk} a basis of W. Let

v1 = x1

v2 = x2 −
v1 • x2

∥v1∥2 v1

v3 = x3 −
v1 • x3

∥v1∥2 v1 −
v2 • x3

∥v2∥2 v2

...

vk = xk − v1 • xk

∥v1∥2 v1 − · · · − vk−1 • xk

∥vk−1∥2 vk−1

and
W1 = span(x1),W2 = span(x1,x2), . . . ,Wk = span(x1, . . . ,xk )

Then ∀i = 1, . . . , k, {v1, . . . ,vi} orthogonal basis for Wi
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Theorem 9
Let Q ∈ Mmn. The columns of Q form an orthonormal set if and only if

QT Q = In

Definition 10 (Orthogonal matrix)

Q ∈ Mn is an orthogonal matrix if its columns form an orthonormal set

So Q ∈ Mn orthogonal if QT Q = I, i.e., QT = Q−1

Theorem 11 (NSC for orthogonality)

Q ∈ Mn orthogonal ⇐⇒ Q−1 = QT
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Theorem 12 (Orthogonal matrices “encode" isometries)

Let Q ∈ Mn. TFAE
1. Q orthogonal
2. ∀x ∈ Rn, ∥Qx∥ = ∥x∥
3. ∀x ,y ∈ Rn, Qx • Qy = x • y

Theorem 13
Let Q ∈ Mn be orthogonal. Then

1. The rows of Q form an orthonormal set
2. Q−1 orthogonal
3. detQ = ±1
4. ∀λ ∈ σ(Q), |λ| = 1
5. If Q2 ∈ Mn also orthogonal, then QQ2 orthogonal
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Proof of 4 in Theorem 13

All statements in Theorem 13 are easy, but let’s focus on 4

Let λ be an eigenvalue of Q ∈ Mn orthogonal, i.e., ∃Rn ∋ x ̸= 0 s.t.

Qx = λx

Take the norm on both sides
∥Qx∥ = ∥λx∥

From 2 in Theorem 12, ∥Qx∥ = ∥x∥ and from the properties of norms,
∥λx∥ = |λ| ∥x∥, so we have

∥Qx∥ = ∥λx∥ ⇐⇒ ∥x∥ = |λ| ∥x∥ ⇐⇒ 1 = |λ|

(we can divide by ∥x∥ since x ̸= 0 as an eigenvector)
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The QR factorisation

Theorem 14
Let A ∈ Mmn with LI columns. Then A can be factored as

A = QR

where Q ∈ Mmn has orthonormal columns and R ∈ Mn is nonsingular upper
triangular
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Back to least squares

So what was the point of all that..?

Theorem 15 (Least squares with QR factorisation)

A ∈ Mmn with LI columns, b ∈ Rm. If A = QR is a QR factorisation of A, then the
unique least squares solution x̃ of Ax = b is

x̃ = R−1QT b
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Proof of Theorem 15
A has LI columns so
▶ least squares Ax = b has unique solution x̃ = (AT A)−1AT b
▶ by Theorem 14, A can be written as A = QR with Q ∈ Mmn with orthonormal

columns and R ∈ Mn nonsingular and upper triangular
So

AT Ax̃ = AT b =⇒ (QR)T QRx̃ = (QR)T b

=⇒ RT QT QRx̃ = RT QT b

=⇒ RT InRx̃ = RT QT b

=⇒ RT Rx̃ = RT QT b

=⇒ (RT )−1Rx̃ = (RT )−1RT QT b

=⇒ Rx̃ = QT b

=⇒ x̃ = R−1QT b
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