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Matrix factorisations (continued)

The singular value decomposition (known mostly by its acronym, SVD) is yet
another type of factorisation/decomposition..
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Singular values

Definition 1 (Singular value)

Let A ∈ Mmn(R). The singular values of A are the real numbers

σ1 ≥ σ2 ≥ · · ·σn ≥ 0

that are the square roots of the eigenvalues of AT A
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Singular values are real and nonnegative?

Recall that ∀A ∈ Mmn, AT A is symmetric

Claim 1. Real symmetric matrices have real eigenvalues

Proof. A ∈ Mn(R) symmetric and (λ,v) eigenpair of A, i.e, Av = λv . Taking the
complex conjugate, Av = λv

Since A ∈ Mn(R), A = A (z = z̄ ⇐⇒ z ∈ R)

So
Av̄ = Av̄ = Av = λv = λv̄

i.e., if (λ,v) eigenpair, (λ̄, v̄) also eigenpair
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Still assuming A ∈ Mn(R) symmetric and (λ,v) eigenpair of A and using what we
just proved (that (λ̄, v̄) also eigenpair), take transposes

Av̄ = λ̄v̄ ⇐⇒ (Av̄)T = (λ̄v̄)T

⇐⇒ v̄T AT = λ̄v̄T

⇐⇒ v̄T A = λ̄v̄T [A symmetric]

Let us now compute λ(v̄ • v). We have

λ(v̄ • v) = λv̄T v = v̄T (λv)

= v̄T (Av) = (v̄T A)v

= (λ̄v̄T )v = λ̄(v̄ • v)
⇐⇒ (λ− λ̄)(v̄ • v) = 0
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We have shown
(λ− λ̄)(v̄ • v) = 0

Let

v =

a1 + ib1
...

an + ibn


Then

v̄ =

a1 − ib1
...

an − ibn


So

v̄ • v = (a2
1 + b2

1) + · · ·+ (a2
n + b2

n)

But v eigenvector is ̸= 0, so v̄ • v ̸= 0, so

(λ− λ̄)(v̄ • v) = 0 ⇐⇒ λ− λ̄ = 0 ⇐⇒ λ = λ̄ ⇐⇒ λ ∈ R
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Claim 2. For A ∈ Mmn(R), the eigenvalues of AT A are real and nonnegative

Proof. We know that for A ∈ Mmn, AT A symmetric and from previous claim, if
A ∈ Mmn(R), then AT A is symmetric and real and with real eigenvalues

Let (λ,v) be an eigenpair of AT A, with v chosen so that ∥v∥ = 1

Norms are functions V → R+, so ∥Av∥ and ∥Av∥2 are ≥ 0 and thus

0 ≤ ∥Av∥2 = (Av) • (Av) = (Av)T (Av)

= vT AT Av = vT (AT Av) = vT (λv)

= λ(vT v) = λ(v • v) = λ∥v∥2

= λ

p. 6 – Singular values decomposition (SVD)



Claim 3. For A ∈ Mmn(R), the nonzero eigenvalues of AT A and AAT are the same

Proof. Let (λ,v) be an eigenpair of AT A with λ ̸= 0. Then v ̸= 0 and

AT Av = λv ̸= 0

Left multiply by A
AAT Av = λAv

Let w = Av , we thus have AAT w = λw ; in other words, Av is an eigenvector of
AAT corresponding to the (nonzero) eigenvalue λ

The reverse works the same way..
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The singular value decomposition (SVD)

Theorem 2 (SVD)

A ∈ Mmn with singular values σ1 ≥ · · · ≥ σr > 0 and σr+1 = · · · = σn = 0

Then there exists U ∈ Mm orthogonal, V ∈ Mn orthogonal and a block matrix
Σ ∈ Mmn taking the form

Σ =

(
D 0r ,n−r

0m−r ,r 0m−r ,n−r

)
where

D = diag(σ1, . . . , σr ) ∈ Mr

such that
A = UΣV T
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Definition 3
We call a factorisation as in Theorem 2 the singular value decomposition of A.
The columns of U and V are, respectively, the left and right singular vectors of A

U and V T are rotation or reflection matrices, Σ is a scaling matrix

U ∈ Mm orthogonal matrix with columns the eigenvectors of AAT

V ∈ Mn orthogonal matrix with columns the eigenvectors of AT A
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Outer product form of the SVD

Theorem 4 (Outer product form of the SVD)

A ∈ Mmn with singular values σ1 ≥ · · · ≥ σr > 0 and σr+1 = · · · = σn = 0,
u1, . . . ,ur and v1, . . . ,vr , respectively, left and right singular vectors of A
corresponding to these singular values

Then
A = σ1u1vT

1 + · · ·+ σr ur vT
r (1)
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Computing the SVD (case of ̸= eigenvalues)

To compute the SVD, we use the following result

Theorem 5
Let A ∈ Mn symmetric, (λ1,u1) and (λ2,u2) be eigenpairs, λ1 ̸= λ2. Then
u1 • u2 = 0
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Proof of Theorem 5

A ∈ Mn symmetric, (λ1,u1) and (λ2,u2) eigenpairs with λ1 ̸= λ2

λ1(v1 • v2) = (λ1v1) • v2

= Av1 • v2

= (Av1)
T v2

= vT
1 AT v2

= vT
1 (Av2) [A symmetric so AT = A]

= vT
1 (λ2v2)

= λ2(vT
1 v2)

= λ2(v1 • v2)

So (λ1 − λ2)(v1 • v2) = 0. But λ1 ̸= λ2, so v1 • v2 = 0
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Computing the SVD (case of ̸= eigenvalues)

If all eigenvalues of AT A (or AAT ) are distinct, we can use Theorem 5

1. Compute AT A ∈ Mn

2. Compute eigenvalues λ1, . . . , λn of AT A; order them as λ1 > · · · > λn ≥ 0 (>
not ≥ since ̸=)

3. Compute singular values σ1 =
√
λ1, . . . , σn =

√
λn

4. Diagonal matrix D in Σ is either in Mn (if σn > 0) or in Mn−1 (if σn = 0)
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5. Since eigenvalues are distinct, Theorem 5 =⇒ eigenvectors are orthogonal
set. Compute these eigenvectors in the same order as the eigenvalues

6. Normalise them and use them to make the matrix V , i.e., V = [v1 · · · vn]

7. To find the ui , compute, for i = 1, . . . , r ,

ui =
1
σi

Avi

and ensure that ∥ui∥ = 1
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Computing the SVD (case where some eigenvalues are =)

1. Compute AT A ∈ Mn

2. Compute eigenvalues λ1, . . . , λn of AT A; order them as λ1 ≥ · · · ≥ λn ≥ 0
3. Compute singular values σ1 =

√
λ1, . . . , σn =

√
λn, with r ≤ n the index of the

last positive singular value
4. For eigenvalues that are distinct, proceed as before
5. For eigenvalues with multiplicity > 1, we need to ensure that the resulting

eigenvectors are LI and orthogonal
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Dealing with eigenvalues with multiplicity > 1

When an eigenvalue has (algebraic) multiplicity > 1, e.g., characteristic polynomial
contains a factor like (λ− 2)2, things can become a little bit more complicated

The proper way to deal with this involves the so-called Jordan Normal Form
(another matrix decomposition)

In short: not all square matrices are diagonalisable, but all square matrices admit
a JNF
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Sometimes, we can find several LI eigenvectors associated to the same
eigenvalue. Check this. If not, need to use the following

Definition 6 (Generalised eigenvectors)

x ̸= 0 generalized eigenvector of rank m of A ∈ Mn corresponding to eigenvalue
λ if

(A − λI)mx = 0

but
(A − λI)m−1x ̸= 0

p. 17 – Singular values decomposition (SVD)



Procedure for generalised eigenvectors

A ∈ Mn and assume λ eigenvalue with algebraic multiplicity k

Find v1, “classic" eigenvector, i.e., v1 ̸= 0 s.t. (A − λI)v1 = 0

Find generalised eigenvector v2 of rank 2 by solving for v2 ̸= 0,

(A − λI)v2 = v1

. . .

Find generalised eigenvector vk of rank k by solving for vk ̸= 0,

(A − λI)vk = vk−1

Then {v1, . . . ,vk} LI
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Back to the normal procedure

With the LI eigenvectors {v1, . . . ,vk} corresponding to λ

Apply Gram-Schmidt to get orthogonal set

For all eigenvalues with multiplicity > 1, check that you either have LI eigenvectors
or do what we just did

When you are done, be back on your merry way to step 6 in the case where
eigenvalues are all ̸=

I am caricaturing a little here: there can be cases that do not work exactly like this,
but this is general enough..
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