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Computing the SVD (case of ̸= eigenvalues)

To compute the SVD, we use the following result

Theorem 76
Let A ∈ Mn symmetric, (λ1,u1) and (λ2,u2) be eigenpairs, λ1 ̸= λ2. Then
u1 • u2 = 0
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Proof of Theorem 76

A ∈ Mn symmetric, (λ1,u1) and (λ2,u2) eigenpairs with λ1 ̸= λ2

λ1(v1 • v2) = (λ1v1) • v2

= Av1 • v2

= (Av1)
T v2

= vT
1 AT v2

= vT
1 (Av2) [A symmetric so AT = A]

= vT
1 (λ2v2)

= λ2(vT
1 v2)

= λ2(v1 • v2)

So (λ1 − λ2)(v1 • v2) = 0. But λ1 ̸= λ2, so v1 • v2 = 0
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Computing the SVD (case of ̸= eigenvalues)

If all eigenvalues of AT A (or AAT ) are distinct, we can use Theorem 76

1. Compute AT A ∈ Mn

2. Compute eigenvalues λ1, . . . , λn of AT A; order them as λ1 > · · · > λn ≥ 0 (>
not ≥ since ̸=)

3. Compute singular values σ1 =
√
λ1, . . . , σn =

√
λn

4. Diagonal matrix D in Σ is either in Mn (if σn > 0) or in Mn−1 (if σn = 0)
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5. Since eigenvalues are distinct, Theorem 76 =⇒ eigenvectors are orthogonal
set. Compute these eigenvectors in the same order as the eigenvalues

6. Normalise them and use them to make the matrix V , i.e., V = [v1 · · · vn]

7. To find the ui , compute, for i = 1, . . . , r ,

ui =
1
σi

Avi

and ensure that ∥ui∥ = 1
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Computing the SVD (case where some eigenvalues are =)

1. Compute AT A ∈ Mn

2. Compute eigenvalues λ1, . . . , λn of AT A; order them as λ1 ≥ · · · ≥ λn ≥ 0
3. Compute singular values σ1 =

√
λ1, . . . , σn =

√
λn, with r ≤ n the index of the

last positive singular value
4. For eigenvalues that are distinct, proceed as before
5. For eigenvalues with multiplicity > 1, we need to ensure that the resulting

eigenvectors are LI and orthogonal
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Dealing with eigenvalues with multiplicity > 1

When an eigenvalue has (algebraic) multiplicity > 1, e.g., characteristic polynomial
contains a factor like (λ− 2)2, things can become a little bit more complicated

The proper way to deal with this involves the so-called Jordan Normal Form
(another matrix decomposition)

In short: not all square matrices are diagonalisable, but all square matrices admit
a JNF
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Sometimes, we can find several LI eigenvectors associated to the same
eigenvalue. Check this. If not, need to use the following

Definition 77 (Generalised eigenvectors)

The vector x ̸= 0 is a generalized eigenvector of rank m of A ∈ Mn
corresponding to eigenvalue λ if

(A − λI)mx = 0

but
(A − λI)m−1x ̸= 0
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Procedure for generalised eigenvectors

A ∈ Mn and assume λ eigenvalue with algebraic multiplicity k

Find v1, “classic" eigenvector, i.e., v1 ̸= 0 s.t. (A − λI)v1 = 0

Find generalised eigenvector v2 of rank 2 by solving for v2 ̸= 0,

(A − λI)v2 = v1

. . .

Find generalised eigenvector vk of rank k by solving for vk ̸= 0,

(A − λI)vk = vk−1

Then {v1, . . . ,vk} LI
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Back to the normal procedure

With the LI eigenvectors {v1, . . . ,vk} corresponding to λ

Apply Gram-Schmidt to get orthogonal set

For all eigenvalues with multiplicity > 1, check that you either have LI eigenvectors
or do what we just did

When you are done, be back on your merry way to step 6 in the case where
eigenvalues are all ̸=

I am caricaturing a little here: there can be cases that do not work exactly like this,
but this is general enough..
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Pseudoinverse of a matrix
Definition 78 (Pseudoinverse)

A = UΣV T an SVD for A ∈ Mmn, where

Σ =

(
D 0
0 0

)
, with D = diag(σ1, . . . , σr )

(D contains the nonzero singular values of A ordered as usual)

The pseudoinverse (or Moore-Penrose inverse) of A is A+ ∈ Mnm given by

A+ = VΣ+UT

with

Σ+ =

(
D−1 0

0 0

)
∈ Mnm
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Least squares revisited

Theorem 79
Let A ∈ Mmn, x ∈ Rn and b ∈ Rm. The least squares problem Ax = b has a
unique least squares solution x̃ of minimal length (closest to the origin) given by

x̃ = A+b

where A+ is the pseudoinverse of A
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The least squares problem

Problem Statement:

Given a system Ax = b where A ∈ Mmn, x ∈ Rn, b ∈ Rm (typically m > n), find x̃
that minimizes

∥b − Ax∥2 =
m∑

i=1

(bi −
n∑

j=1

Aijxj)
2

Geometric interpretation: Find the vector Ax̃ in the column space of A that is
closest to b

Solution: Ax̃ = projcol(A)(b)
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Method 1: Normal equations

The normal equations:
AT Ax̃ = AT b

When this works:
▶ Always has at least one solution
▶ Any solution x̃ to the normal equations is a least squares solution

Computational issues:
▶ Forming AT A can be numerically unstable
▶ Condition number of AT A is the square of the condition number of A
▶ Still useful for theoretical analysis
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Method 2: when A Has linearly independent columns

Condition: A ∈ Mmn has linearly independent columns

Then: AT A is invertible and the least squares solution is unique

x̃ = (AT A)−1AT b

Properties:
▶ AT A ∈ Mn is square, symmetric, and positive definite
▶ (AT A)−1AT is called the left pseudoinverse of A
▶ This gives the unique least squares solution

Drawback: Computing (AT A)−1 directly can be numerically unstable
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Method 3: QR factorization
QR Factorization: If A ∈ Mmn has linearly independent columns, then

A = QR

where Q ∈ Mmn has orthonormal columns and R ∈ Mn is upper triangular and
nonsingular

Least squares solution:
x̃ = R−1QT b

Advantages:
▶ More numerically stable than forming AT A
▶ R is upper triangular ⇒ solving Rx̃ = QT b by back substitution
▶ Condition number of R equals condition number of A
▶ Gram-Schmidt or Householder reflections can compute QR factorization
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Method 4: Singular Value Decomposition (SVD)
SVD: For any A ∈ Mmn,

A = UΣV T

where U ∈ Mm orthogonal, V ∈ Mn orthogonal, Σ ∈ Mmn with Σii = σi ≥ 0
(singular values)

Pseudoinverse: A+ = VΣ+UT where Σ+ has (Σ+)ii = 1/σi if σi > 0, else 0

Least squares solution:
x̃ = A+b

Key advantages:
▶ Works for any matrix A (even when columns are linearly dependent)
▶ Gives the solution of minimal length when multiple solutions exist
▶ Most numerically stable method
▶ Reveals the rank of A through the number of non-zero singular values
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When to use which method

Method When to use Advantages/Drawbacks
Normal equations Theory, small problems Simple, but unstable
(AT A)−1AT A has LI columns Explicit formula, unstable
QR Factorization A has LI columns Stable, efficient
SVD Any A, rank-deficient Most stable, handles all cases

Use QR for well-conditioned problems with LI columns, SVD for rank-deficient or
ill-conditioned problems
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