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Dimensionality reduction

One of the reasons the SVD is used is for dimensionality reduction. However, SVD
has many many other uses

Now we look at another dimensionality reduction technique, PCA

PCA is often used as a blackbox technique, here we take a look at the math
behind it
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What is PCA?

Linear algebraic technique

Helps reduce a complex dataset to a lower dimensional one

Non-parametric method: does not assume anything about data distribution
(distribution from the statistical point of view)
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A 2D example

Dataset (link) of height and weight of some hockey players

# From https://figshare.com/ndownloader/files/5303173
data = read.csv("https://github.com/julien-arino/math-of-data-science/raw/refs/heads/main/DATA/hockey-players.csv")
dim(data)

## [1] 6292 13

In case you are wondering, this is a database of ice hockey players at IIHF world
championships, 2001-2016, assembled by the dataset’s author

See some comments here
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head(data, n=3)

## year country no name position side height weight birth
## 1 2001 RUS 10 tverdovsky oleg D L 185 84 1976-05-18
## 2 2001 RUS 2 vichnevsky vitali D L 188 86 1980-03-18
## 3 2001 RUS 26 petrochinin evgeni D L 182 95 1976-02-07
## club age cohort bmi
## 1 anaheim mighty ducks 24.95277 1976 24.54346
## 2 anaheim mighty ducks 21.11978 1980 24.33228
## 3 severstal cherepovetal 25.22930 1976 28.68011
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As usual, it is a good idea to plot this to get a sense of the lay of the land
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The author of the study is interested in the evolution of weights, so it is likely that
the same person will be in the dataset several times

Let us check this: first check will be FALSE if the number of unique names does not
match the number of rows in the dataset

length(unique(data$name)) == dim(data)[1]

## [1] FALSE

length(unique(data$name))

## [1] 3278
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Not interested in the evolution of weights, so simplify: if more than one record for
someone, take average of recorded weights and heights

To be extra careful, could check as well that there are no major variations on
player height (homonymies?)

data_simplified = data.frame(name = unique(data$name))
w = c()
h = c()
for (n in data_simplified$name) {

tmp = data[which(data$name == n),]
h = c(h, mean(tmp$height))
w = c(w, mean(tmp$weight))

}
data_simplified$weight = w
data_simplified$height = h
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data = data_simplified
head(data_simplified, n = 6)

## name weight height
## 1 tverdovsky oleg 84.0 185.0
## 2 vichnevsky vitali 86.0 188.0
## 3 petrochinin evgeni 95.0 182.0
## 4 zhdan alexander 85.5 178.5
## 5 orekhovsky oleg 88.0 175.0
## 6 zhukov sergei 92.5 193.0
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Centre the data

mean(data$weight)

## [1] 87.71555

mean(data$height)

## [1] 183.8596

data$weight.c = data$weight-mean(data$weight)
data$height.c = data$height-mean(data$height)
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Setting things up

Each player is a row in the matrix (an observation), each variable (height and
weight) is a column

After deduplication, we have an 3278×2 matrix (actually, 3278×4 if we consider
the uncentred and centred variables, but we will use one or the other, not both
uncentred and centred)

We want to find what carries the most information

For this, we are going to project the information in a new basis in which the first
“dimension” will carry most information (in a sense we’ll define later), the second
dimension will carry a little less, etc.

In order to do so, we need to learn how to change bases
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In the following slide,
[x ]B

denotes the coordinates of x in the basis B

The aim of a change of basis is to express vectors in another coordinate system
(another basis)

We do so by finding a matrix allowing to move from one basis to another

p. 14 – Change of basis



Change of basis
Definition 80 (Change of basis matrix)

B = {u1, . . . ,un} and C = {v1, . . . ,vn} bases of vector space V
The change of basis matrix PC←B ∈ Mn,

PC←B = [[u1]C · · · [un]C]

has columns the coordinate vectors [u1]C , . . . , [un]C of vectors in B with respect to
C

Theorem 81
B = {u1, . . . ,un} and C = {v1, . . . ,vn} bases of vector space V and PC←B a
change of basis matrix from B to C

1. ∀x ∈ V, PC←B[x ]B = [x ]C
2. PC←B s.t. ∀x ∈ V, PC←B[x ]B = [x ]C is unique
3. PC←B invertible and P−1

C←B = PB←C
p. 15 – Change of basis



Row-reduction method for changing bases

Theorem 82
B = {u1, . . . ,un} and C = {v1, . . . ,vn} bases of vector space V . Let E be any
basis for V ,

B = [[u1]E , . . . , [un]E ] and C = [[v1]E , . . . , [vn]E ]

and let [C|B] be the augmented matrix constructed using C and B. Then

RREF ([C|B]) = [I|PC←B]

If working in Rn, this is quite useful with E the standard basis of Rn (it does not
matter if B = E)
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So the question now becomes
How do we find what new basis to look at our data in?

(Changing the basis does not change the data, just the view you have of it)

(Think of what happens when you do a headstand.. your up becomes down, your
right and left switch, but the world does not change, just your view of it)

(Changes of bases are fundamental operations in Science)
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Worked example: change of basis

Problem: Find the change of basis matrix from basis B to basis C in R2, where

B =

{(
1
0

)
,

(
0
1

)}
and C =

{(
1
1

)
,

(
1
−1

)}

Then use this to find the coordinates of x =

(
3
2

)
in basis C
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Step 1 – Set up the matrices

▶ B is the standard basis of R2, so [u1]E =

(
1
0

)
, [u2]E =

(
0
1

)
▶ For C: [v1]E =

(
1
1

)
, [v2]E =

(
1
−1

)
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Step 2 – Row reduce

Using Theorem 82, we form the augmented matrix [C|B]:

[C|B] =

[
1 1 1 0
1 −1 0 1

]

Row reduce to RREF:[
1 1 1 0
1 −1 0 1

]
R2←R2−R1−−−−−−−→

[
1 1 1 0
0 −2 −1 1

]
R2←− 1

2 R2−−−−−−→
[

1 1 1 0
0 1 1

2 −1
2

]
R1←R1−R2−−−−−−−→

[
1 0 1

2
1
2

0 1 1
2 −1

2

]
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Step 3 – Extract the change of basis matrix

From the RREF form [I|PC←B], we get:

PC←B =

(1
2

1
2

1
2 −1

2

)

Verification: Let’s check that this matrix works correctly.

▶ [u1]C = PC←B[u1]B =

(1
2

1
2

1
2 −1

2

)(
1
0

)
=

(1
2
1
2

)
▶ Check: 1

2

(
1
1

)
+ 1

2

(
1
−1

)
=

(
1
0

)
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Step 4 – Coordinates of x in basis C

Now we find [x ]C for x =

(
3
2

)
:

[x ]C = PC←B[x ]B =

(1
2

1
2

1
2 −1

2

)(
3
2

)
=

(5
2
1
2

)

Verification: Check that this gives us back the original vector:

5
2

(
1
1

)
+

1
2

(
1
−1

)
=

(5
2 + 1

2
5
2 − 1

2

)
=

(
3
2

)

Answer: The coordinates of x =

(
3
2

)
in basis C are [x ]C =

(5
2
1
2

)
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Alternative method – Direct calculation

We could also solve this directly by setting up the system:

x = c1v1 + c2v2(
3
2

)
= c1

(
1
1

)
+ c2

(
1
−1

)
This gives us the system:

c1 + c2 = 3
c1 − c2 = 2

Solving: c1 = 5
2 , c2 = 1

2

This confirms our result: [x ]C =
(5

2
1
2

)
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Why probability?

We said earlier that we would look for a basis in which the first dimension carries
most information

But how do we define information?

We use concepts from probability and statistics to do so

A good measure of information is variance (how much data varies around the
mean)
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Brief “review” of some probability concepts

Proper definition of probability requires to use measure theory.. will not get into
details here

A random variable X is a measurable function X : Ω → E , where Ω is a set of
outcomes (sample space) and E is a measurable space

P(X ∈ S ⊆ E) = P(ω ∈ Ω|X (ω) ∈ S)

Distribution function of a r.v., F (x) = P(X ≤ x), describes the distribution of a r.v.

R.v. can be discrete or continuous or .. other things.
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Definition 83 (Variance)

Let X be a random variable. The variance of X is given by

Var X = E
[
(X − E(X ))2

]
where E is the expected value

Definition 84 (Covariance)

Let X ,Y be jointly distributed random variables. The covariance of X and Y is
given by

cov(X ,Y ) = E [(X − E(X )) (Y − E(Y ))]

Note that cov(X ,X ) = E
[
(X − E(X ))2

]
= Var X
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In practice: “true law” versus “observation”

In statistics: we reason on the true law of distributions, but we usually have only
access to a sample

We then use estimators to .. estimate the value of a parameter, e.g., the mean,
variance and covariance
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Definition 85 (Unbiased estimators of the mean and variance)

Let x1, . . . , xn be data points (the sample) and

x̄ =
1
n

n∑
i=1

xi

be the mean of the data. An unbiased estimator of the variance of the sample is

σ2 =
1

n − 1

n∑
i=1

(xi − x̄)2
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Definition 86 (Unbiased estimator of the covariance)

Let (x1, y1), . . . , (xn, yn) be data points,

x̄ =
1
n

n∑
i=1

xi and ȳ =
1
n

n∑
i=1

yi

be the means of the data. An estimator of the covariance of the sample is

cov(x , y) =
1
n

n∑
i=1

(xi − x̄)(yi − ȳ)
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What does covariance do?

Variance explains how data disperses around the mean, in a 1-D case

Covariance measures the relationship between two dimensions. E.g., height and
weight

More than the exact value, the sign is important:
▶ cov(X ,Y ) > 0: both dimensions change in the same “direction”; e.g., larger

height usually means higher weight
▶ cov(X ,Y ) < 0: both dimensions change in reverse directions; e.g., time spent

on social media and performance in this class
▶ cov(X ,Y ) = 0: the dimensions are independent from one another; e.g.,

sex/gender and “intelligence”
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The covariance matrix (we usually have more than 2 variables)
Definition 87
Suppose p random variables X1, . . . ,Xp. Then the covariance matrix is the
symmetric matrix 

cov(X1,X1) cov(X1,X2) · · · cov(X1,Xp)
cov(X2,X1) cov(X2,X2) · · · cov(X2,Xp)

...
...

...
cov(Xp,X1) cov(Xp,X2) · · · cov(Xp,Xp)


i.e., using the properties of covariance,

Var X1 cov(X1,X2) · · · cov(X1,Xp)
cov(X1,X2) Var X2 · · · cov(X2,Xp)

...
...

...
cov(X1,Xp) cov(X2,Xp) · · · Var Xp


p. 31 – A crash course on probability


	A running example: hockey players
	Change of basis
	Example of change of basis
	A crash course on probability

