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Applications of the SVD

Many applications of the SVD, both theoretical and practical..

1. Obtaining a unique solutions to least squares when AT A singular
2. Image compression
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Least squares revisited

Theorem 1
Let A ∈ Mmn, x ∈ Rn and b ∈ Rm. The least squares problem Ax = b has a
unique least squares solution x̃ of minimal length (closest to the origin) given by

x̃ = A+b

where A+ is the pseudoinverse of A
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Definition 2 (Pseudoinverse)

A = UΣV T an SVD for A ∈ Mmn, where

Σ =

(
D 0
0 0

)
, with D = diag(σ1, . . . , σr )

(D contains the nonzero singular values of A ordered as usual)

The pseudoinverse (or Moore-Penrose inverse) of A is A+ ∈ Mnm given by

A+ = VΣ+UT

with

Σ+ =

(
D−1 0

0 0

)
∈ Mnm
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Compressing images

Consider an image (for simplicity, assume in shades of grey). This can be stored
in a matrix A ∈ Mmn

Take the SVD of A. Then the small singular values carry information about the
regions with little variation and can perhaps be omitted, whereas the large singular
values carry information about more “dynamic” regions of the image

Suppose A has r nonzero singular values. For k ≤ r , let

Ak = σ1u1vT
1 + · · ·+ σkukvT

k

For k = r we get the usual outer product form (??)
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Load the image using bmp::read.bmp

my_image = bmp::read.bmp("../CODE/Julien_and_friend_1000x800.bmp")
my_image_g = pixmap::pixmapGrey(my_image)
my_image_g

## Pixmap image
## Type : pixmapGrey
## Size : 800x1000
## Resolution : 1x1
## Bounding box : 0 0 1000 800
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Doing the computations “by hand”

M = my_image_g@grey
MTM = t(M) %*% M
# Ensure matrix is symmetric
MTM = (MTM+t(MTM))/2
ev = eigen(MTM)

Given the size and nature of the entries, the matrix MT M is symmetric only to 1e-5
precision, so we use a little trick to make it symmetric no matter what: take the
average of MT M and its transpose MMT
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Which version of the algorithm to use?

Make zero the eigenvalues that are close to zero (200 out of 1000)

ev$values = ev$values*(ev$values>1e-10)

Can we use the algorithm for all eigenvalues being distinct or do we have repeated
ones?

any(duplicated(ev$values[ev$values>1e-10]))

## [1] FALSE

So we can use the standard algorithm
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Computing the SVD

idx_positive_ev = which(ev$values>1e-10)
sv = sqrt(ev$values[idx_positive_ev])
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Computing the SVD

Then D = diag(σ1, . . . , σr ), V is the matrix of normalised eigenvectors in the same
order as the σi and for i = 1, . . . , r

ui =
1
σi

Avi

ensuring that ∥ui∥ = 1

D = diag(sv)
V = ev$vectors[idx_positive_ev, idx_positive_ev]
c1 = colSums(V)
for (i in 1:dim(V)[2]) {

V[,i] = V[,i]/c1[i]
}
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Computing the SVD

Finally, we compute the ui ’s

U = M %*% V %*% diag(1/sv)

## Error in M %*% V: non-conformable arguments

r = length(sv)
im = list(u=U, d=sv, v=V)

## Error: object ’U’ not found
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Using built-in functions

We can also use the built-in function svd to compute the SVD of M

M.svd = svd(M)

The results are stored in a list with components u, d and v
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Make function to recreate an image from the SVD

Given the SVD im of an image and a number of singular values to keep n, we can
recreate the image using the function compress_image

We output the new image, but also, the amount of information required to encode
this new image, as a percentage of the original image size
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compress_image = function(im, n) {
if (n > length(im$d)) {

# Check that we gave a value of n within range, otherwise
# just set to the max
n = length(im$d)

}
d_tmp = im$d[1:n]
u_tmp = im$u[,1:n]
v_tmp = im$v[,1:n]
# We store the results in a list (so we can return other information)

out = list()
# First, compute the resulting image
out$img = mat.or.vec(nr = dim(im$u)[1], nc = dim(im$v)[1])
for (i in 1:n) {

out$img = out$img + d_tmp[i] * u_tmp[,i] %*% t(v_tmp[,i])
}
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# Values of the "colours" must be between 0 and 1, so we shift and rescale
if (min(min(out$img)) < 0 ) {

out$img = out$img - min(min(out$img))
}
out$img = out$img / max(max(out$img))
# Store some information: number of points needed and percentage of the original required
out$nb_pixels_original = dim(im$u)[1] * dim(im$v)[2]
out$nb_pixels_compressed = length(d_tmp) + dim(u_tmp)[1]*dim(u_tmp)[2] + dim(v_tmp)[1]*dim(v_tmp)[2]
out$pct_of_original = out$nb_pixels_compressed / out$nb_pixels_original * 100
# Return the result
return(out)

}
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Recreating the image

We can now recreate the image using the function compress_image

new_image = my_image_g
M.svd = svd(M)
M_tmp = compress_image(M.svd, 2)
new_image@grey = M_tmp$img
plot(new_image)
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Using n = 2 singular values

Uses 0.56% of the original information
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Using n = 5 singular values

Uses 1.41% of the original information
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Using n = 10 singular values

Uses 2.81% of the original information
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Using n = 20 singular values

Uses 5.63% of the original information
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Using n = 50 singular values

Uses 14.07% of the original information
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