
The University of Manitoba campuses are located on original lands of Anishinaabeg, Ininew, Anisininew, Dakota
and Dene peoples, and on the National Homeland of the Red River Métis. We respect the Treaties that were
made on these territories, we acknowledge the harms and mistakes of the past, and we dedicate ourselves to
move forward in partnership with Indigenous communities in a spirit of Reconciliation and collaboration.

Matrix methods – Singular value decomposition
MATH 2740 – Mathematics of Data Science – Lecture 10

Julien Arino
julien.arino@umanitoba.ca

Department of Mathematics @ University of Manitoba

Fall 202X

julien.arino@umanitoba.ca

Outline

Applications of the SVD – Least squares

FIGS-slides-admin/Gemini_Generated_Image_38bqnt38bqnt38bq.jpeg

Applications of the SVD – Least squares

Applications of the SVD

Many applications of the SVD, both theoretical and practical..

1. Obtaining a unique solutions to least squares when AT A singular
2. Image compression

p. 1 – Applications of the SVD – Least squares

Least squares revisited

Theorem 1
Let A ∈ Mmn, x ∈ Rn and b ∈ Rm. The least squares problem Ax = b has a
unique least squares solution x̃ of minimal length (closest to the origin) given by

x̃ = A+b

where A+ is the pseudoinverse of A

p. 2 – Applications of the SVD – Least squares

Definition 2 (Pseudoinverse)

A = UΣV T an SVD for A ∈ Mmn, where

Σ =

(
D 0
0 0

)
, with D = diag(σ1, . . . , σr)

(D contains the nonzero singular values of A ordered as usual)

The pseudoinverse (or Moore-Penrose inverse) of A is A+ ∈ Mnm given by

A+ = VΣ+UT

with

Σ+ =

(
D−1 0

0 0

)
∈ Mnm

p. 3 – Applications of the SVD – Least squares

FIGS-slides-admin/Gemini_Generated_Image_6dnw706dnw706dnw.jpeg

Applications of the SVD – Least squares
Applications of the SVD – Compressing images

Compressing images

Consider an image (for simplicity, assume in shades of grey). This can be stored
in a matrix A ∈ Mmn

Take the SVD of A. Then the small singular values carry information about the
regions with little variation and can perhaps be omitted, whereas the large singular
values carry information about more “dynamic” regions of the image

Suppose A has r nonzero singular values. For k ≤ r , let

Ak = σ1u1vT
1 + · · ·+ σkukvT

k

For k = r we get the usual outer product form (??)

p. 4 – Applications of the SVD – Least squares

Load the image using bmp::read.bmp

my_image = bmp::read.bmp("../CODE/Julien_and_friend_1000x800.bmp")
my_image_g = pixmap::pixmapGrey(my_image)
my_image_g

Pixmap image
Type : pixmapGrey
Size : 800x1000
Resolution : 1x1
Bounding box : 0 0 1000 800

p. 5 – Applications of the SVD – Least squares

Doing the computations “by hand”

M = my_image_g@grey
MTM = t(M) %*% M
Ensure matrix is symmetric
MTM = (MTM+t(MTM))/2
ev = eigen(MTM)

Given the size and nature of the entries, the matrix MT M is symmetric only to 1e-5
precision, so we use a little trick to make it symmetric no matter what: take the
average of MT M and its transpose MMT

p. 7 – Applications of the SVD – Least squares

Which version of the algorithm to use?

Make zero the eigenvalues that are close to zero (200 out of 1000)

ev$values = ev$values*(ev$values>1e-10)

Can we use the algorithm for all eigenvalues being distinct or do we have repeated
ones?

any(duplicated(ev$values[ev$values>1e-10]))

[1] FALSE

So we can use the standard algorithm

p. 8 – Applications of the SVD – Least squares

Computing the SVD

idx_positive_ev = which(ev$values>1e-10)
sv = sqrt(ev$values[idx_positive_ev])

p. 9 – Applications of the SVD – Least squares

Computing the SVD

Then D = diag(σ1, . . . , σr), V is the matrix of normalised eigenvectors in the same
order as the σi and for i = 1, . . . , r

ui =
1
σi

Avi

ensuring that ∥ui∥ = 1

D = diag(sv)
V = ev$vectors[idx_positive_ev, idx_positive_ev]
c1 = colSums(V)
for (i in 1:dim(V)[2]) {

V[,i] = V[,i]/c1[i]
}

p. 10 – Applications of the SVD – Least squares

Computing the SVD

Finally, we compute the ui ’s

U = M %*% V %*% diag(1/sv)

Error in M %*% V: non-conformable arguments

r = length(sv)
im = list(u=U, d=sv, v=V)

Error: object ’U’ not found

p. 11 – Applications of the SVD – Least squares

Using built-in functions

We can also use the built-in function svd to compute the SVD of M

M.svd = svd(M)

The results are stored in a list with components u, d and v

p. 12 – Applications of the SVD – Least squares

Make function to recreate an image from the SVD

Given the SVD im of an image and a number of singular values to keep n, we can
recreate the image using the function compress_image

We output the new image, but also, the amount of information required to encode
this new image, as a percentage of the original image size

p. 13 – Applications of the SVD – Least squares

compress_image = function(im, n) {
if (n > length(im$d)) {

Check that we gave a value of n within range, otherwise
just set to the max
n = length(im$d)

}
d_tmp = im$d[1:n]
u_tmp = im$u[,1:n]
v_tmp = im$v[,1:n]
We store the results in a list (so we can return other information)

out = list()
First, compute the resulting image
out$img = mat.or.vec(nr = dim(im$u)[1], nc = dim(im$v)[1])
for (i in 1:n) {

out$img = out$img + d_tmp[i] * u_tmp[,i] %*% t(v_tmp[,i])
}

p. 14 – Applications of the SVD – Least squares

Values of the "colours" must be between 0 and 1, so we shift and rescale
if (min(min(out$img)) < 0) {

out$img = out$img - min(min(out$img))
}
out$img = out$img / max(max(out$img))
Store some information: number of points needed and percentage of the original required
out$nb_pixels_original = dim(im$u)[1] * dim(im$v)[2]
out$nb_pixels_compressed = length(d_tmp) + dim(u_tmp)[1]*dim(u_tmp)[2] + dim(v_tmp)[1]*dim(v_tmp)[2]
out$pct_of_original = out$nb_pixels_compressed / out$nb_pixels_original * 100
Return the result
return(out)

}

p. 15 – Applications of the SVD – Least squares

Recreating the image

We can now recreate the image using the function compress_image

new_image = my_image_g
M.svd = svd(M)
M_tmp = compress_image(M.svd, 2)
new_image@grey = M_tmp$img
plot(new_image)

p. 16 – Applications of the SVD – Least squares

Using n = 2 singular values

Uses 0.56% of the original information

p. 17 – Applications of the SVD – Least squares

Using n = 5 singular values

Uses 1.41% of the original information

p. 18 – Applications of the SVD – Least squares

Using n = 10 singular values

Uses 2.81% of the original information

p. 19 – Applications of the SVD – Least squares

Using n = 20 singular values

Uses 5.63% of the original information

p. 20 – Applications of the SVD – Least squares

Using n = 50 singular values

Uses 14.07% of the original information

p. 21 – Applications of the SVD – Least squares

	Applications of the SVD – Least squares
	Applications of the SVD – Compressing images

