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Setting things up

I will use notation (mostly) as in Joliffe’s Principal Component Analysis (PDF of
older version available for free from UofM Libraries)

x = (x1, . . . , xp) vector of p random variables
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We seek a linear function αT
1 x with maximum variance, where

α1 = (α11, . . . , α1p), i.e.,

αT
1 x =

p∑
j=1

α1jxj

Then we seek a linear function αT
2 x with maximum variance, uncorrelated to αT

1 x

And we continue...

At k th stage, we find a linear function αT
k x with maximum variance, uncorrelated

to αT
1 x , . . . ,αT

k−1x

αT
i x is the i th principal component (PC)
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Case of known covariance matrix

Suppose we know Σ, covariance matrix of x (i.e., typically: we know x)

Then the k th PC is
zk = αT

k x

where αk is an eigenvector of Σ corresponding to the k th largest eigenvalue λk

If, additionally, ∥αk∥ = αT
k α = 1, then λk = Var zk
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Why is that?

Let us start with
αT

1 x

We want maximum variance, where α1 = (α11, . . . , α1p), i.e.,

αT
1 x =

p∑
j=1

α1jxj

with the constraint that ∥α1∥ = 1

We have
Var αT

1 x = αT
1 Σα1

p. 4 – Back to PCA



Objective

We want to maximise Var αT
1 x , i.e.,

αT
1 Σα1

under the constraint that ∥α1∥ = 1

=⇒ use Lagrange multipliers
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Maximisation using Lagrange multipliers
(A.k.a. super-brief intro to multivariable calculus)

We want the max of f (x1, . . . , xn) under the constraint g(x1, . . . , xn) = k
1. Solve

∇f (x1, . . . , xn) = λ∇g(x1, . . . , xn)

g(x1, . . . , xn) = k

where ∇ = ( ∂
∂x1

, . . . , ∂
∂xn

) is the gradient operator
2. Plug all solutions into f (x1, . . . , xn) and find maximum values (provided values

exist and ∇g ̸= 0 there)

λ is the Lagrange multiplier
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The gradient
(Continuing our super-brief intro to multivariable calculus)

f : Rn → R function of several variables, ∇ =
(

∂
∂x1

, . . . , ∂
∂xn

)
the gradient operator

Then

∇f =
(

∂

∂x1
f , . . . ,

∂

∂xn
f
)

So ∇f is a vector-valued function, ∇f : Rn → Rn; also written as

∇f = fx1(x1, . . . , xn)e1 + · · · fxn(x1, . . . , xn)en

where fxi is the partial derivative of f with respect to xi and {e1, . . . ,en} is the
standard basis of Rn
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Bear with me..
(You may experience a brief period of discomfort)

αT
1 Σα1 and ∥α1∥2 = αT

1 α1 are functions of α1 = (α11, . . . , α1p)

In the notation of the previous slide, we want the max of

f (α11, . . . , α1p) := αT
1 Σα1

under the constraint that

g(α11, . . . , α1p) := αT
1 α1 = 1

and with gradient operator

∇ =

(
∂

∂α11
, . . . ,

∂

∂α1p

)
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Effect of ∇ on g

g is easiest to see:

∇g(α11, . . . , α1p) =

(
∂

∂α11
, . . . ,

∂

∂α1p

)
(α11, . . . , α1p)

α11
...

α1p


=

(
∂

∂α11
, . . . ,

∂

∂α1p

)(
α2

11 + · · ·+ α2
1p

)
=

(
2α11, . . . ,2α1p

)
= 2α1

(And that’s a general result: ∇∥x∥2
2 = 2x with ∥ · ∥2 the Euclidean norm)
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Effect of ∇ on f
Expand (write Σ = [sij ] and do not exploit symmetry)

αT
1 Σα1 =

(
α11, . . . , α1p

)


s11 s12 · · · s1p
s21 s22 · · · s2p
...

...
...

sp1 sp2 spp



α11
α12

...
α1p



=
(
α11, . . . , α1p

)


s11α11 + s12α12 + · · ·+ s1pα1p
s21α11 + s22α12 + · · ·+ s2pα1p

...
sp1α11 + sp2α12 + · · ·+ sppα1p


= (s11α11 + s12α12 + · · ·+ s1pα1p)α11

+ (s21α11 + s22α12 + · · ·+ s2pα1p)α12

...
+ (sp1α11 + sp2α12 + · · ·+ sppα1p)α1p
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We have

αT
1 Σα1 = (s11α11 + s12α12 + · · ·+ s1pα1p)α11

+ (s21α11 + s22α12 + · · ·+ s2pα1p)α12

...
+ (sp1α11 + sp2α12 + · · ·+ sppα1p)α1p

=⇒ ∂

∂α11
αT

1 Σα1 = (s11α11 + s12α12 + · · ·+ s1pα1p) + s11α11

+ s21α12 + · · ·+ sp1α1p

= s11α11 + s12α12 + · · ·+ s1pα1p

+ s11α11 + s21α12 + · · ·+ sp1α1p

= 2(s11α11 + s12α12 + · · ·+ s1pα1p)

(last equality stems from symmetry of Σ)
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In general, for i = 1, . . . ,p,

∂

∂α1i
αT

1 Σα1 = si1α11 + si2α12 + · · ·+ sipα1p

+ si1α11 + s2iα12 + · · ·+ spiα1p

= 2(si1α11 + si2α12 + · · ·+ sipα1p)

(because of symmetry of Σ)

As a consequence,
∇αT

1 Σα1 = 2Σα1
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So solving
∇f (x1, . . . , xn) = λ∇g(x1, . . . , xn)

means solving
2Σα1 = λ2α1

i.e.,
Σα1 = λα1

=⇒ (λ,α1) eigenpair of Σ, with α1 having unit length
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Picking the right eigenvalue

(λ,α1) eigenpair of Σ, with α1 having unit length

But which λ to choose?

Recall that we want Var αT
1 x = αT

1 Σα1 maximal

We have

Var αT
1 x = αT

1 Σα1 = αT
1 (Σα1) = αT

1 (λα1) = λ(αT
1 α1) = λ

=⇒ we pick λ = λ1, the largest eigenvalue (covariance matrix symmetric so
eigenvalues real)
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What we have this far..

The first principal component is αT
1 x and has variance λ1, where λ1 the largest

eigenvalue of Σ and α1 an associated eigenvector with ∥α1∥ = 1

We want the second principal component to be uncorrelated with αT
1 x and to have

maximum variance Var αT
2 x = αT

2 Σα2, under the constraint that ∥α2∥ = 1

αT
2 x uncorrelated to αT

1 x if cov(αT
1 x ,αT

2 x) = 0
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We have

cov(αT
1 x ,αT

2 x) = αT
1 Σα2

= αT
2 Σ

Tα1

= αT
2 Σα1 [Σ symmetric]

= αT
2 (λ1α1)

= λαT
2 α1

So αT
2 x uncorrelated to αT

1 x if α1 ⊥ α2

This is beginning to sound a lot like Gram-Schmidt, no?
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In short

Take whatever covariance matrix is available to you (known Σ or sample SX ) –
assume sample from now on for simplicity

For i = 1, . . . ,p, the i th principal component is

zi = vT
i x

where vi eigenvector of SX associated to the i th largest eigenvalue λi

If vi is normalised, then λi = Var zk
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Covariance matrix

Σ the covariance matrix of the random variable, SX the sample covariance matrix

X ∈ Mmp the data, then the (sample) covariance matrix SX takes the form

SX =
1

n − 1
X T X

where the data is centred!

Sometimes you will see SX = 1/(n − 1)XX T . This is for matrices with
observations in columns and variables in rows. Just remember that you want the
covariance matrix to have size the number of variables, not observations, this will
give you the order in which to take the product
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Covariance

The function cov returns the covariance of two samples

Note that the functions deals equally well with data that is not centred as with data
that is centred

cov(data$height, data$weight)

## [1] 25.98646

cov(data$height.c, data$weight.c)

## [1] 25.98646
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Covariance matrix

As we could see from plotting the data, there is a positive linear relationship
between the two variables

Let us compute the sample covariance matrix

X = as.matrix(data[,c("height.c", "weight.c")])
S = 1/(dim(X)[1]-1)*t(X) %*% X
S

## height.c weight.c
## height.c 28.98592 25.98646
## weight.c 25.98646 48.49557
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Covariance matrix

The off-diagonal entries do match the computed covariance. Let us check that the
variances are indeed a match too.

var(X[,1])

## [1] 28.98592

var(X[,2])

## [1] 48.49557

Hey, that works. Is math not cool? ;)
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Principal components
Now compute the principal components. We need eigenvalues and eigenvectors

ev = eigen(S)
ev

## eigen() decomposition
## $values
## [1] 66.49777 10.98372
##
## $vectors
## [,1] [,2]
## [1,] 0.5694576 -0.8220207
## [2,] 0.8220207 0.5694576

(eigen returns eigenvalues sorted in decreasing order and normalised
eigenvectors)
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First principal component

Let us plot this first eigenvector (well, the line carrying this first eigenvector)

To use the function abline, we need to give the coefficients of the line in the form
of (intercept,slope). Intercept is easy, as the line goes through the origin (by
construction and because we have centred the data). The slope is also quite
simple..

plot(data$height.c, data$weight.c,
pch = 19, col = "dodgerblue4",
main = "IIHF players 2001-2016 (with first component)",
xlab = "Height (cm)", ylab = "Weight (kg)")

abline(a = 0, b = ev$vectors[2,1]/ev$vectors[1,1],
col = "red", lwd = 3)
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Rotating the data

Let us rotate the data so that the red line becomes the x-axis

To do that, we use a rotation matrix

Rθ =

(
cos θ − sin θ
sin θ cos θ

)

To find the angle θ, recall that tan θ is equal to opposite length over adjacent
length, i.e.,

tan θ =
ev$vectors[2, 1]
ev$vectors[1, 1]

So we just use the arctan of this

Note that angles are in radians
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Rotating the data

theta = atan(ev$vectors[2,1]/ev$vectors[1,1])
theta

## [1] 0.9649505

R_theta = matrix(c(cos(theta), -sin(theta),
sin(theta), cos(theta)),

nr = 2, byrow = TRUE)
R_theta

## [,1] [,2]
## [1,] 0.5694576 -0.8220207
## [2,] 0.8220207 0.5694576

p. 26 – Hockey players



Rotating the data

And now we rotate the points

(In this case, we think of the points as vectors, of course)

tmp_in = matrix(c(data$weight.c, data$height.c),
nc = 2)

tmp_out = c()
for (i in 1:dim(tmp_in)[1]) {

tmp_out = rbind(tmp_out,
t(R_theta %*% tmp_in[i,]))

}
data$weight.c_r = tmp_out[,1]
data$height.c_r = tmp_out[,2]
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Principal components

Note that the axes have changed quite a lot, hence the very different aspect

Let us plot with the same range as for the non-rotated data for the y-axis

plot(data$height.c_r, data$weight.c_r,
pch = 19, col = "dodgerblue4",
xlab = "x-axis", ylab = "y-axis",
main = "IIHF players 2001-2016 (rotated to first component)",
ylim = range(data$weight.c))

abline(h = 0, col = "red", lwd = 2)
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First and second principal components

Plot the first and second eigenvectors

plot(data$height.c, data$weight.c,
pch = 19, col = "dodgerblue4",
main = "IIHF players 2001-2016 (with first and second components)",
xlab = "Height (cm)", ylab = "Weight (kg)")

abline(a = 0, b = ev$vectors[2,1]/ev$vectors[1,1],
col = "red", lwd = 3)

abline(a = 0, b = ev$vectors[2,2]/ev$vectors[1,2],
col = "darkgreen", lwd = 3)
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Proper change of basis

Let us change the basis so that, in the new basis, the first component is the x-axis
and the second component is the y -axis

We want to use Theorem ??

We need the coordinates of the new basis in the canonical basis of R2

Since both axes go through the origin, we can just use y = ax , with a the slope of
the lines and, say, x = 1, i.e., (x , y) = (1,a)

We then normalise the resulting vectors
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Proper change of basis

red_line = c(1, ev$vectors[2,1]/ev$vectors[1,1])
red_line = red_line/sqrt(sum(red_line^2))
green_line = c(1, ev$vectors[2,2]/ev$vectors[1,2])
green_line = green_line/sqrt(sum(green_line^2))
augmented_M = cbind(red_line,green_line, diag(2))
P = rref(augmented_M)[,3:4]

tmp_in = matrix(c(data$weight.c, data$height.c), nc = 2)
tmp_out = c()
for (i in 1:dim(tmp_in)[1]) {

tmp_out = rbind(tmp_out, t(P %*% tmp_in[i,]))
}
data$weight.c_r2 = tmp_out[,1]
data$height.c_r2 = tmp_out[,2]
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PCA using built-in functions

Now do things “properly”

GS = pracma::gramSchmidt(A = ev$vectors, tol = 1e-10)
GS

## $Q
## [,1] [,2]
## [1,] 0.5694576 -0.8220207
## [2,] 0.8220207 0.5694576
##
## $R
## [,1] [,2]
## [1,] 1 0
## [2,] 0 1
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PCA using built-in functions

Now recall we saw a theorem that told us how to construct a new basis..

A=matrix(c(GS$Q,1,0,0,1), nr = 2)
A

## [,1] [,2] [,3] [,4]
## [1,] 0.5694576 -0.8220207 1 0
## [2,] 0.8220207 0.5694576 0 1

pracma::rref(A)

## [,1] [,2] [,3] [,4]
## [1,] 1 0 0.5694576 0.8220207
## [2,] 0 1 -0.8220207 0.5694576
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PCA using built-in functions

P = pracma::rref(A)[,c(3,4)]

## [,1] [,2]
## [1,] 0.5694576 0.8220207
## [2,] -0.8220207 0.5694576

X.new = X %*% t(P)
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