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Dimensionality reduction

One of the reasons the SVD is used is for dimensionality reduction. However, SVD
has many many other uses

Now we look at another dimensionality reduction technique, PCA

PCA is often used as a blackbox technique, here we take a look at the math
behind it
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What is PCA?

Linear algebraic technique

Helps reduce a complex dataset to a lower dimensional one

Non-parametric method: does not assume anything about data distribution
(distribution from the statistical point of view)
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Brief “review” of some probability concepts

Proper definition of probability requires to use measure theory.. will not get into
details here

A random variable X is a measurable function X : Ω → E , where Ω is a set of
outcomes (sample space) and E is a measurable space

P(X ∈ S ⊆ E) = P(ω ∈ Ω|X (ω) ∈ S)

Distribution function of a r.v., F (x) = P(X ≤ x), describes the distribution of a r.v.

R.v. can be discrete or continuous or .. other things.
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Definition 1 (Variance)

Let X be a random variable. The variance of X is given by

Var X = E
[
(X − E(X ))2

]
where E is the expected value

Definition 2 (Covariance)

Let X ,Y be jointly distributed random variables. The covariance of X and Y is
given by

cov(X ,Y ) = E [(X − E(X )) (Y − E(Y ))]

Note that cov(X ,X ) = E
[
(X − E(X ))2

]
= Var X
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In practice: “true law” versus “observation”

In statistics: we reason on the true law of distributions, but we usually have only
access to a sample

We then use estimators to .. estimate the value of a parameter, e.g., the mean,
variance and covariance
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Definition 3 (Unbiased estimators of the mean and variance)

Let x1, . . . , xn be data points (the sample) and

x̄ =
1
n

n∑
i=1

xi

be the mean of the data. An unbiased estimator of the variance of the sample is

σ2 =
1

n − 1

n∑
i=1

(xi − x̄)2
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Definition 4 (Unbiased estimator of the covariance)

Let (x1, y1), . . . , (xn, yn) be data points,

x̄ =
1
n

n∑
i=1

xi and ȳ =
1
n

n∑
i=1

yi

be the means of the data. An estimator of the covariance of the sample is

cov(x , y) =
1
n

n∑
i=1

(xi − x̄)(yi − ȳ)
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What does covariance do?

Variance explains how data disperses around the mean, in a 1-D case

Covariance measures the relationship between two dimensions. E.g., height and
weight

More than the exact value, the sign is important:
▶ cov(X ,Y ) > 0: both dimensions change in the same “direction”; e.g., larger

height usually means higher weight
▶ cov(X ,Y ) < 0: both dimensions change in reverse directions; e.g., time spent

on social media and performance in this class
▶ cov(X ,Y ) = 0: the dimensions are independent from one another; e.g.,

sex/gender and “intelligence”
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The covariance matrix
Typically, we consider more than 2 variables..

Definition 5
Suppose p random variables X1, . . . ,Xp. Then the covariance matrix is the
symmetric matrix 

cov(X1,X1) cov(X1,X2) · · · cov(X1,Xp)
cov(X2,X1) cov(X2,X2) · · · cov(X2,Xp)

...
...

...
cov(Xp,X1) cov(Xp,X2) · · · cov(Xp,Xp)


i.e., using the properties of covariance,

Var X1 cov(X1,X2) · · · cov(X1,Xp)
cov(X1,X2) Var X2 · · · cov(X2,Xp)

...
...

...
cov(X1,Xp) cov(X2,Xp) · · · Var Xp


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Example of a PCA problem

We collect a bunch of information about a bunch of people.. for instance this data
from Loughborough University

This dataset contains the height, weight and 4 fingerprint measurements
(length, width, area and circumference), collected from 200 participants.

What best describes a participant?
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The variables
Each participant is associated to 11 variables

▶ "Participant Number"
▶ "Gender"
▶ "Age"
▶ "Dominant Hand"
▶ "Height (cm) (average of 3 measurements)"
▶ "Weight (kg) (average of 3 measurements)"
▶ "Fingertip Temperature (°C)"
▶ "Fingerprint Height (mm)"
▶ "Fingerprint Width (mm)"
▶ "Fingerprint Area (mm2)"
▶ "Fingerprint Circumference (mm)"
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Nature of variables
Variables have different natures

▶ "Participant Number": ∈ N (not interesting)
▶ "Gender": categorical
▶ "Age": ∈ N
▶ "Dominant Hand": categorical
▶ "Height (cm) (average of 3 measurements)": ∈ R
▶ "Weight (kg) (average of 3 measurements)": ∈ R
▶ "Fingertip Temperature (°C)": ∈ R
▶ "Fingerprint Height (mm)": ∈ R
▶ "Fingerprint Width (mm)": ∈ R
▶ "Fingerprint Area (mm2)": ∈ R
▶ "Fingerprint Circumference (mm)": ∈ R
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Setting things up

Each participant is a row in the matrix (an observation)

Each variable is a column

So we have an 200 × 10 matrix (we discard the “Participant number” column)

We want to find what carries the most information

For this, we are going to project the information in a new basis in which the first
“dimension” will carry most variance, the second dimension will carry a little less,
etc.

In order to do so, we need to learn how to change bases
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In the following slide,
[x ]B

denotes the coordinates of x in the basis B

The aim of a change of basis is to express vectors in another coordinate system
(another basis)

We do so by finding a matrix allowing to move from one basis to another
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Change of basis
Definition 6 (Change of basis matrix)

B = {u1, . . . ,un} and C = {v1, . . . ,vn} bases of vector space V
The change of basis matrix PC←B ∈ Mn,

PC←B = [[u1]C · · · [un]C]

has columns the coordinate vectors [u1]C , . . . , [un]C of vectors in B with respect to
C

Theorem 7
B = {u1, . . . ,un} and C = {v1, . . . ,vn} bases of vector space V and PC←B a
change of basis matrix from B to C

1. ∀x ∈ V, PC←B[x ]B = [x ]C
2. PC←B s.t. ∀x ∈ V, PC←B[x ]B = [x ]C is unique
3. PC←B invertible and P−1

C←B = PB←C
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Row-reduction method for changing bases

Theorem 8
B = {u1, . . . ,un} and C = {v1, . . . ,vn} bases of vector space V . Let E be any
basis for V ,

B = [[u1]E , . . . , [un]E ] and C = [[v1]E , . . . , [vn]E ]

and let [C|B] be the augmented matrix constructed using C and B. Then

RREF ([C|B]) = [I|PC←B]

If working in Rn, this is quite useful with E the standard basis of Rn (it does not
matter if B = E)
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So the question now becomes
How do we find what new basis to look at our data in?

(Changing the basis does not change the data, just the view you have of it)

(Think of what happens when you do a headstand.. your up becomes down, your
right and left switch, but the world does not change, just your view of it)

(Changes of bases are fundamental operations in Science)
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Setting things up

I will use notation (mostly) as in Joliffe’s Principal Component Analysis (PDF of
older version available for free from UofM Libraries)

x = (x1, . . . , xp) vector of p random variables
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We seek a linear function αT
1 x with maximum variance, where

α1 = (α11, . . . , α1p), i.e.,

αT
1 x =

p∑
j=1

α1jxj

Then we seek a linear function αT
2 x with maximum variance, uncorrelated to αT

1 x

And we continue...

At k th stage, we find a linear function αT
k x with maximum variance, uncorrelated

to αT
1 x , . . . ,αT

k−1x

αT
i x is the i th principal component (PC)
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Case of known covariance matrix

Suppose we know Σ, covariance matrix of x (i.e., typically: we know x)

Then the k th PC is
zk = αT

k x

where αk is an eigenvector of Σ corresponding to the k th largest eigenvalue λk

If, additionally, ∥αk∥ = αT
k α = 1, then λk = Var zk
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Why is that?

Let us start with
αT

1 x

We want maximum variance, where α1 = (α11, . . . , α1p), i.e.,

αT
1 x =

p∑
j=1

α1jxj

with the constraint that ∥α1∥ = 1

We have
Var αT

1 x = αT
1 Σα1
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Objective

We want to maximise Var αT
1 x , i.e.,

αT
1 Σα1

under the constraint that ∥α1∥ = 1

=⇒ use Lagrange multipliers
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Maximisation using Lagrange multipliers
(A.k.a. super-brief intro to multivariable calculus)

We want the max of f (x1, . . . , xn) under the constraint g(x1, . . . , xn) = k
1. Solve

∇f (x1, . . . , xn) = λ∇g(x1, . . . , xn)

g(x1, . . . , xn) = k

where ∇ = ( ∂
∂x1

, . . . , ∂
∂xn

) is the gradient operator
2. Plug all solutions into f (x1, . . . , xn) and find maximum values (provided values

exist and ∇g ̸= 0 there)

λ is the Lagrange multiplier
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The gradient
(Continuing our super-brief intro to multivariable calculus)

f : Rn → R function of several variables, ∇ =
(

∂
∂x1

, . . . , ∂
∂xn

)
the gradient operator

Then

∇f =
(

∂

∂x1
f , . . . ,

∂

∂xn
f
)

So ∇f is a vector-valued function, ∇f : Rn → Rn; also written as

∇f = fx1(x1, . . . , xn)e1 + · · · fxn(x1, . . . , xn)en

where fxi is the partial derivative of f with respect to xi and {e1, . . . ,en} is the
standard basis of Rn
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Bear with me..
(You may experience a brief period of discomfort)

αT
1 Σα1 and ∥α1∥2 = αT

1 α1 are functions of α1 = (α11, . . . , α1p)

In the notation of the previous slide, we want the max of

f (α11, . . . , α1p) := αT
1 Σα1

under the constraint that

g(α11, . . . , α1p) := αT
1 α1 = 1

and with gradient operator

∇ =

(
∂

∂α11
, . . . ,

∂

∂α1p

)
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Effect of ∇ on g

g is easiest to see:

∇g(α11, . . . , α1p) =

(
∂

∂α11
, . . . ,

∂

∂α1p

)
(α11, . . . , α1p)

α11
...

α1p


=

(
∂

∂α11
, . . . ,

∂

∂α1p

)(
α2

11 + · · ·+ α2
1p

)
=

(
2α11, . . . ,2α1p

)
= 2α1

(And that’s a general result: ∇∥x∥2
2 = 2x with ∥ · ∥2 the Euclidean norm)
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Effect of ∇ on f
Expand (write Σ = [sij ] and do not exploit symmetry)

αT
1 Σα1 =

(
α11, . . . , α1p

)


s11 s12 · · · s1p
s21 s22 · · · s2p
...

...
...

sp1 sp2 spp



α11
α12

...
α1p



=
(
α11, . . . , α1p

)


s11α11 + s12α12 + · · ·+ s1pα1p
s21α11 + s22α12 + · · ·+ s2pα1p

...
sp1α11 + sp2α12 + · · ·+ sppα1p


= (s11α11 + s12α12 + · · ·+ s1pα1p)α11

+ (s21α11 + s22α12 + · · ·+ s2pα1p)α12

...
+ (sp1α11 + sp2α12 + · · ·+ sppα1p)α1p
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We have

αT
1 Σα1 = (s11α11 + s12α12 + · · ·+ s1pα1p)α11

+ (s21α11 + s22α12 + · · ·+ s2pα1p)α12

...
+ (sp1α11 + sp2α12 + · · ·+ sppα1p)α1p

=⇒ ∂

∂α11
αT

1 Σα1 = (s11α11 + s12α12 + · · ·+ s1pα1p) + s11α11

+ s21α12 + · · ·+ sp1α1p

= s11α11 + s12α12 + · · ·+ s1pα1p

+ s11α11 + s21α12 + · · ·+ sp1α1p

= 2(s11α11 + s12α12 + · · ·+ s1pα1p)

(last equality stems from symmetry of Σ)
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In general, for i = 1, . . . ,p,

∂

∂α1i
αT

1 Σα1 = si1α11 + si2α12 + · · ·+ sipα1p

+ si1α11 + s2iα12 + · · ·+ spiα1p

= 2(si1α11 + si2α12 + · · ·+ sipα1p)

(because of symmetry of Σ)

As a consequence,
∇αT

1 Σα1 = 2Σα1
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So solving
∇f (x1, . . . , xn) = λ∇g(x1, . . . , xn)

means solving
2Σα1 = λ2α1

i.e.,
Σα1 = λα1

=⇒ (λ,α1) eigenpair of Σ, with α1 having unit length
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Picking the right eigenvalue

(λ,α1) eigenpair of Σ, with α1 having unit length

But which λ to choose?

Recall that we want Var αT
1 x = αT

1 Σα1 maximal

We have

Var αT
1 x = αT

1 Σα1 = αT
1 (Σα1) = αT

1 (λα1) = λ(αT
1 α1) = λ

=⇒ we pick λ = λ1, the largest eigenvalue (covariance matrix symmetric so
eigenvalues real)
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What we have this far..

The first principal component is αT
1 x and has variance λ1, where λ1 the largest

eigenvalue of Σ and α1 an associated eigenvector with ∥α1∥ = 1

We want the second principal component to be uncorrelated with αT
1 x and to have

maximum variance Var αT
2 x = αT

2 Σα2, under the constraint that ∥α2∥ = 1

αT
2 x uncorrelated to αT

1 x if cov(αT
1 x ,αT

2 x) = 0
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We have

cov(αT
1 x ,αT

2 x) = αT
1 Σα2

= αT
2 Σ

Tα1

= αT
2 Σα1 [Σ symmetric]

= αT
2 (λ1α1)

= λαT
2 α1

So αT
2 x uncorrelated to αT

1 x if α1 ⊥ α2

This is beginning to sound a lot like Gram-Schmidt, no?
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In short

Take whatever covariance matrix is available to you (known Σ or sample SX ) –
assume sample from now on for simplicity

For i = 1, . . . ,p, the i th principal component is

zi = vT
i x

where vi eigenvector of SX associated to the i th largest eigenvalue λi

If vi is normalised, then λi = Var zk
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Covariance matrix

Σ the covariance matrix of the random variable, SX the sample covariance matrix

X ∈ Mmp the data, then the (sample) covariance matrix SX takes the form

SX =
1

n − 1
X T X

where the data is centred!

Sometimes you will see SX = 1/(n − 1)XX T . This is for matrices with
observations in columns and variables in rows. Just remember that you want the
covariance matrix to have size the number of variables, not observations, this will
give you the order in which to take the product
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A 2D example
See a dataset on this page for a dataset of height and weight of some hockey
players

data = read.csv("https://figshare.com/ndownloader/files/5303173")

## Error in file(file, "rt"): cannot open the connection to
’https://figshare.com/ndownloader/files/5303173’

head(data, n=3)

##
## 1 function (..., list = character(), package = NULL, lib.loc = NULL,
## 2 verbose = getOption("verbose"), envir = .GlobalEnv, overwrite = TRUE)
## 3 {

dim(data)

## NULL
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In case you are wondering, this is a database of ice hockey players at IIHF world
championships, 2001-2016, assembled by the dataset’s author

See some comments here

As usual, it is a good idea to plot this to get a sense of the lay of the land

p. 37 – Principal component analysis (PCA)
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## Error in (function (cond) : error in evaluating the argument ’x’
in selecting a method for function ’plot’: object of type ’closure’
is not subsettable



FIGS/L12-plot-hockey-1-1.pdf
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The author of the study is interested in the evolution of weights, so it is likely that
the same person will be in the dataset several times

Let us check this: first check will be FALSE if the number of unique names does not
match the number of rows in the dataset

length(unique(data$name)) == dim(data)[1]

## Error in data$name: object of type ’closure’ is not subsettable

length(unique(data$name))

## Error in data$name: object of type ’closure’ is not subsettable
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Not interested in the evolution of weights, so simplify: if more than one record for
someone, take average of recorded weights and heights
To be extra careful, could check as well that there are no major variations on
player height (homonymies?)

data_simplified = data.frame(name = unique(data$name))

## Error in data$name: object of type ’closure’ is not subsettable

w = c()
h = c()
for (n in data_simplified$name) {

tmp = data[which(data$name == n),]
h = c(h, mean(tmp$height))
w = c(w, mean(tmp$weight))

}

## Error: object ’data_simplified’ not found

data_simplified$weight = w

## Error: object ’data_simplified’ not found

data_simplified$height = h

## Error: object ’data_simplified’ not found
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data = data_simplified

## Error: object ’data_simplified’ not found

head(data_simplified, n = 6)

## Error in h(simpleError(msg, call)): error in evaluating the
argument ’x’ in selecting a method for function ’head’: object
’data_simplified’ not found
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## Error in (function (cond) : error in evaluating the argument ’x’
in selecting a method for function ’plot’: object of type ’closure’
is not subsettable



FIGS/L12-plot-hockey-2-1.pdf
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Centre the data

mean(data$weight)

## Error in (function (cond) : error in evaluating the argument ’x’
in selecting a method for function ’mean’: object of type ’closure’
is not subsettable

mean(data$height)

## Error in (function (cond) : error in evaluating the argument ’x’
in selecting a method for function ’mean’: object of type ’closure’
is not subsettable

data$weight.c = data$weight-mean(data$weight)

## Error in data$weight: object of type ’closure’ is not subsettable

data$height.c = data$height-mean(data$height)

## Error in data$height: object of type ’closure’ is not subsettable
## Error in (function (cond) : error in evaluating the argument ’x’
in selecting a method for function ’plot’: object of type ’closure’
is not subsettable
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Covariance

The function cov returns the covariance of two samples

Note that the functions deals equally well with data that is not centred as with data
that is centred

cov(data$height, data$weight)

## Error in data$weight: object of type ’closure’ is not subsettable

cov(data$height.c, data$weight.c)

## Error in data$weight.c: object of type ’closure’ is not
subsettable
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Covariance matrix
As we could see from plotting the data, there is a positive linear relationship
between the two variables
Let us compute the sample covariance matrix

X = as.matrix(data[,c("height.c", "weight.c")])

## Error in (function (cond) : error in evaluating the argument ’x’
in selecting a method for function ’as.matrix’: object of type
’closure’ is not subsettable

S = 1/(dim(X)[1]-1)*t(X) %*% X

## Error: object ’X’ not found

S

## Error: object ’S’ not found
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Covariance matrix

The off-diagonal entries do match the computed covariance. Let us check that the
variances are indeed a match too.

var(X[,1])

## Error: object ’X’ not found

var(X[,2])

## Error: object ’X’ not found

Hey, that works. Is math not cool? ;)

p. 49 – Principal component analysis (PCA)



Principal components

Now compute the principal components. We need eigenvalues and eigenvectors

ev = eigen(S)

## Error: object ’S’ not found

ev

## Error: object ’ev’ not found

(eigen returns eigenvalues sorted in decreasing order and normalised
eigenvectors)

p. 50 – Principal component analysis (PCA)



First principal component
Let us plot this first eigenvector (well, the line carrying this first eigenvector)
To use the function abline, we need to give the coefficients of the line in the form
of (intercept,slope). Intercept is easy, as the line goes through the origin (by
construction and because we have centred the data). The slope is also quite
simple..

plot(data$height.c, data$weight.c,
pch = 19, col = "dodgerblue4",
main = "IIHF players 2001-2016 (with first component)",
xlab = "Height (cm)", ylab = "Weight (kg)")

## Error in (function (cond) : error in evaluating the argument ’x’
in selecting a method for function ’plot’: object of type ’closure’
is not subsettable

abline(a = 0, b = ev$vectors[2,1]/ev$vectors[1,1],
col = "red", lwd = 3)

## Error: object ’ev’ not found
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Rotating the data

Let us rotate the data so that the red line becomes the x-axis

To do that, we use a rotation matrix

Rθ =

(
cos θ − sin θ
sin θ cos θ

)

To find the angle θ, recall that tan θ is equal to opposite length over adjacent
length, i.e.,

tan θ =
ev$vectors[2, 1]
ev$vectors[1, 1]

So we just use the arctan of this

Note that angles are in radians
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Rotating the data

theta = atan(ev$vectors[2,1]/ev$vectors[1,1])

## Error: object ’ev’ not found

theta

## Error: object ’theta’ not found

R_theta = matrix(c(cos(theta), -sin(theta),
sin(theta), cos(theta)),

nr = 2, byrow = TRUE)

## Error: object ’theta’ not found

R_theta

## Error: object ’R_theta’ not found
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Rotating the data
And now we rotate the points
(In this case, we think of the points as vectors, of course)

tmp_in = matrix(c(data$weight.c, data$height.c),
nc = 2)

## Error in data$weight.c: object of type ’closure’ is not
subsettable

tmp_out = c()
for (i in 1:dim(tmp_in)[1]) {

tmp_out = rbind(tmp_out,
t(R_theta %*% tmp_in[i,]))

}

## Error: object ’tmp_in’ not found

data$weight.c_r = tmp_out[,1]

## Error in data$weight.c_r = tmp_out[, 1]: object of type ’closure’
is not subsettable

data$height.c_r = tmp_out[,2]

## Error in data$height.c_r = tmp_out[, 2]: object of type ’closure’
is not subsettable
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## Error in (function (cond) : error in evaluating the argument ’x’
in selecting a method for function ’plot’: object of type ’closure’
is not subsettable
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Principal components
Note that the axes have changed quite a lot, hence the very different aspect
Let us plot with the same range as for the non-rotated data for the y-axis

plot(data$height.c_r, data$weight.c_r,
pch = 19, col = "dodgerblue4",
xlab = "x-axis", ylab = "y-axis",
main = "IIHF players 2001-2016 (rotated to first component)",
ylim = range(data$weight.c))

## Error in (function (cond) : error in evaluating the argument ’x’
in selecting a method for function ’plot’: object of type ’closure’
is not subsettable

abline(h = 0, col = "red", lwd = 2)

## Error in int_abline(a = a, b = b, h = h, v = v, untf = untf, ...):
plot.new has not been called yet
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First and second principal components
Plot the first and second eigenvectors

plot(data$height.c, data$weight.c,
pch = 19, col = "dodgerblue4",
main = "IIHF players 2001-2016 (with first and second components)",
xlab = "Height (cm)", ylab = "Weight (kg)")

## Error in (function (cond) : error in evaluating the argument ’x’
in selecting a method for function ’plot’: object of type ’closure’
is not subsettable

abline(a = 0, b = ev$vectors[2,1]/ev$vectors[1,1],
col = "red", lwd = 3)

## Error: object ’ev’ not found

abline(a = 0, b = ev$vectors[2,2]/ev$vectors[1,2],
col = "darkgreen", lwd = 3)

## Error: object ’ev’ not found
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Proper change of basis

Let us change the basis so that, in the new basis, the first component is the x-axis
and the second component is the y -axis

We want to use Theorem 8

We need the coordinates of the new basis in the canonical basis of R2

Since both axes go through the origin, we can just use y = ax , with a the slope of
the lines and, say, x = 1, i.e., (x , y) = (1,a)

We then normalise the resulting vectors

p. 62 – Principal component analysis (PCA)



Proper change of basis

red_line = c(1, ev$vectors[2,1]/ev$vectors[1,1])

## Error: object ’ev’ not found

red_line = red_line/sqrt(sum(red_line^2))

## Error: object ’red_line’ not found

green_line = c(1, ev$vectors[2,2]/ev$vectors[1,2])

## Error: object ’ev’ not found

green_line = green_line/sqrt(sum(green_line^2))

## Error: object ’green_line’ not found

augmented_M = cbind(red_line,green_line, diag(2))

## Error: object ’red_line’ not found

P = rref(augmented_M)[,3:4]

## Error: object ’augmented_M’ not found

tmp_in = matrix(c(data$weight.c, data$height.c), nc = 2)

## Error in data$weight.c: object of type ’closure’ is not
subsettable

tmp_out = c()
for (i in 1:dim(tmp_in)[1]) {

tmp_out = rbind(tmp_out, t(P %*% tmp_in[i,]))
}

## Error: object ’tmp_in’ not found

data$weight.c_r2 = tmp_out[,1]

## Error in data$weight.c_r2 = tmp_out[, 1]: object of type ’closure’
is not subsettable

data$height.c_r2 = tmp_out[,2]

## Error in data$height.c_r2 = tmp_out[, 2]: object of type ’closure’
is not subsettable
## Error in (function (cond) : error in evaluating the argument ’x’
in selecting a method for function ’plot’: object of type ’closure’
is not subsettable
## Error in int_abline(a = a, b = b, h = h, v = v, untf = untf, ...):
plot.new has not been called yet
## Error in int_abline(a = a, b = b, h = h, v = v, untf = untf, ...):
plot.new has not been called yet
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PCA using built-in functions

Now do things “properly”

GS = pracma::gramSchmidt(A = ev$vectors, tol = 1e-10)

## Error: object ’ev’ not found

GS

## Error: object ’GS’ not found
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PCA using built-in functions

Now recall we saw a theorem that told us how to construct a new basis..

A=matrix(c(GS$Q,1,0,0,1), nr = 2)

## Error: object ’GS’ not found

A

## Error: object ’A’ not found

pracma::rref(A)

## Error: object ’A’ not found
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PCA using built-in functions

P = pracma::rref(A)[,c(3,4)]

## Error: object ’A’ not found
## Error: object ’P’ not found

X.new = X %*% t(P)

## Error: object ’X’ not found
## Error in h(simpleError(msg, call)): error in evaluating the
argument ’x’ in selecting a method for function ’plot’: object
’X.new’ not found
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We get the data from here

This time, we first download the data, then open the file

The file is an excel table, so we need to use a library for doing that

p. 69 – Principal component analysis (PCA)
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Loading the excel fingerprint data

download.file(url = "https://repository.lboro.ac.uk/ndownloader/files/14015774",
destfile = "../CODE/fingerprint_data.xlsx")

## Error in download.file(url =
"https://repository.lboro.ac.uk/ndownloader/files/14015774", : cannot
open URL ’https://repository.lboro.ac.uk/ndownloader/files/14015774’

data = openxlsx::read.xlsx("../CODE/fingerprint_data.xlsx")

## Error in read.xlsx.default("../CODE/fingerprint_data.xlsx"): File
does not exist.

head(data, n=3)

##
## 1 function (..., list = character(), package = NULL, lib.loc = NULL,
## 2 verbose = getOption("verbose"), envir = .GlobalEnv, overwrite = TRUE)
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Some wrangling
Let us rework the names of columns a bit, for convenience. Let us also get rid of a
few columns we are not using

data = data[,2:dim(data)[2]]

## Error in 2:dim(data)[2]: argument of length 0

colnames(data) = c("gender", "age", "handedness", "height", "weight",
"fing_temp", "fing_height", "fing_width",
"fing_area", "fing_circ")

## Error in ‘colnames<-‘(‘*tmp*‘, value = c("gender", "age",
"handedness", : attempt to set ’colnames’ on an object with less than
two dimensions

head(data, n=3)

##
## 1 function (..., list = character(), package = NULL, lib.loc = NULL,
## 2 verbose = getOption("verbose"), envir = .GlobalEnv, overwrite = TRUE)
## 3 {
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Some wrangling – Centering

Plotting all these variables is complicated, so we forgo this for the time being

Let us centre the data. That there are some NA values, so we remove them using
the function complete.cases, which identifies rows where at least one of the
variables is NA

(We could also use na.rm = TRUE when taking the average to remove these
values.)

We make new columns with the prefix .c, just to still have the initial data handy if
need be.
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Some wrangling – Centering

data = data[complete.cases(data),]

## Error in complete.cases(data): invalid ’type’ (closure) of
argument

to_centre = c("age", "height",
"weight", "fing_temp",
"fing_height", "fing_width",
"fing_area", "fing_circ")

for (c in to_centre) {
new_c = sprintf("%s.c", c)
data[[new_c]] = data[[c]] - mean(data[[c]], na.rm = TRUE)

}

## Error in data[[c]]: object of type ’closure’ is not subsettable

head(data)

##
## 1 function (..., list = character(), package = NULL, lib.loc = NULL,
## 2 verbose = getOption("verbose"), envir = .GlobalEnv, overwrite = TRUE)
## 3 {
## 4 fileExt <- function(x) {
## 5 db <- grepl("\\\\.[^.]+\\\\.(gz|bz2|xz)$", x)
## 6 ans <- sub(".*\\\\.", "", x)
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Covariance matrix

X = as.matrix(data[, to_centre])

## Error in (function (cond) : error in evaluating the argument ’x’
in selecting a method for function ’as.matrix’: object of type
’closure’ is not subsettable

S = 1/(dim(X)[1]-1)*t(X) %*% X

## Error: object ’X’ not found

S

## Error: object ’S’ not found
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Eigenvalues

ev = eigen(S)

## Error: object ’S’ not found

ev$values

## Error: object ’ev’ not found

Let us add the singular values to ev

ev$sing_values = sqrt(ev$values)

## Error: object ’ev’ not found
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Use built-in functions

GS = pracma::gramSchmidt(A = ev$vectors)

## Error: object ’ev’ not found

GS$Q

## Error: object ’GS’ not found

# Just to check that Q is indeed with normalised columns
colSums(GS$Q[,1:dim(GS$Q)[2]]^2)

## Error in h(simpleError(msg, call)): error in evaluating the
argument ’x’ in selecting a method for function ’colSums’: object
’GS’ not found

GS$Q[,1] %*% GS$Q[,2]

## Error: object ’GS’ not found

So Q is indeed an orthogonal matrix
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Some wrangling
Now recall we saw a theorem that told us how to construct a new basis..

# Make an identity matrix
Id = diag(dim(GS$Q)[1])

## Error in h(simpleError(msg, call)): error in evaluating the
argument ’x’ in selecting a method for function ’diag’: object ’GS’
not found

# Make the augmented matrix
A = cbind(GS$Q, Id)

## Error: object ’GS’ not found

# Compute the RREF and extract the relevant matrix
P = pracma::rref(A)[,(dim(GS$Q)[2]+1):dim(A)[2]]

## Error: object ’A’ not found

X.new = X %*% t(P)

## Error: object ’X’ not found
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Use built-in functions

Use the built in function prcomp or PCA from the FactoMineR package

# data.pca = prcomp(X, center = TRUE, scale = TRUE)
data.pca = PCA(X, scale.unit = TRUE, graph = FALSE)

## Error: object ’X’ not found

summary(data.pca)

## Error in h(simpleError(msg, call)): error in evaluating the
argument ’object’ in selecting a method for function ’summary’:
object ’data.pca’ not found
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Percentage of variance

The “proportion of variance” (or “percentage of variance”) information is actually
the proportion (and then cumulative proportion) represented by the singular value
associated to each principal component

We check this (approximately) by comparing with the singular values we computed

ev$sing_values/(sum(ev$sing_values))

## Error: object ’ev’ not found

cumsum(ev$sing_values)/(sum(ev$sing_values))

## Error: object ’ev’ not found
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Plot results

plot.PCA(data.pca, axes = c(1,2), choix = "ind", habillage = 4)

## Error: object ’data.pca’ not found
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Clustering vs classification

Clustering is partitioning an unlabelled dataset into groups of similar objects

Classification sorts data into specific categories using a labelled dataset
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Clustering

From Wikipedia
Cluster analysis or clustering is the task of grouping a set of objects in
such a way that objects in the same group (called a cluster) are more sim-
ilar (in some sense) to each other than to those in other groups (clusters).

There are a myriad of ways to do clustering, this is an extremely active field of
research and application. See the Wikipedia page for leads

p. 83 – Support vector machines

https://en.wikipedia.org/wiki/Cluster_analysis


Classification

From Wikipedia
In statistics, classification is the problem of identifying which of a set
of categories (sub-populations) an observation (or observations) belongs
to. Examples are assigning a given email to the "spam" or "non-spam"
class, and assigning a diagnosis to a given patient based on observed
characteristics of the patient (sex, blood pressure, presence or absence
of certain symptoms, etc.).
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