
The University of Manitoba campuses are located on original lands of Anishinaabeg, Ininew, Anisininew, Dakota
and Dene peoples, and on the National Homeland of the Red River Métis. We respect the Treaties that were
made on these territories, we acknowledge the harms and mistakes of the past, and we dedicate ourselves to
move forward in partnership with Indigenous communities in a spirit of Reconciliation and collaboration.

Matrix methods – Support vector machines
MATH 2740 – Mathematics of Data Science – Lecture 12

Julien Arino
julien.arino@umanitoba.ca

Department of Mathematics @ University of Manitoba

Fall 202X

julien.arino@umanitoba.ca

Outline

Support vector machines (SVM)

Linear SVM

Guess who’s coming to dinner!

Soft-margin SVM

Support vector machines (SVM)

Linear SVM

Guess who’s coming to dinner!

Soft-margin SVM

Support vector machines (SVM)

We are given a training dataset of n points of the form

(x1, y1), . . . , (xn, yn)

where xi ∈ Rp and yi = {−1,1}. The value of yi indicates the class to which the
point xi belongs

We want to find a surface S in Rp that divides the group of points into two
subgroups

Once we have this surface S, any additional point that is added to the set can then
be classified as belonging to either one of the sets depending on where it is with
respect to the surface S

p. 1 – Support vector machines (SVM)

Support vector machines (SVM)

Linear SVM

Guess who’s coming to dinner!

Soft-margin SVM

Linear SVM

We are given a training dataset of n points of the form

(x1, y1), . . . , (xn, yn)

where xi ∈ Rp and yi = {−1,1}. The value of yi indicates the class to which the
point xi belongs

Linear SVM – Find the “maximum-margin hyperplane” that divides the
group of points xi for which yi = 1 from the group of points for which
yi = −1, which is such that the distance between the hyperplane and the
nearest point xi from either group is maximized.

p. 2 – Linear SVM

Maximum-margin hy-
perplane and margins
for an SVM trained
with samples from two
classes. Samples on
the margin are the
support vectors

p. 3 – Linear SVM

Any hyperplane can be written as the set of points x satisfying

wTx − b = 0

where w is the (not necessarily normalized) normal vector to the hyperplane (if
the hyperplane has equation a1z1 + · · ·+ apzp = c, then (a1, . . . ,an) is normal to
the hyperplane)

The parameter b/∥w∥ determines the offset of the hyperplane from the origin
along the normal vector w

Remark: a hyperplane defined thusly is not a subspace of Rp unless b = 0. We
can of course transform the data so that it is...

p. 4 – Linear SVM

Linearly separable points

Let X1 and X2 be two sets of points in Rp

Then X1 and X2 are linearly separable if there exist w1,w2, ..,wp, k ∈ R such that
▶ every point x ∈ X1 satisfies

∑p
i=1 wixi > k

▶ every point x ∈ X2 satisfies
∑p

i=1 wixi < k
where xi is the i th component of x

p. 5 – Linear SVM

Hard-margin SVM

If the training data is linearly separable, we can select two parallel hyperplanes
that separate the two classes of data, so that the distance between them is as
large as possible

The region bounded by these two hyperplanes is called the “margin”, and the
maximum-margin hyperplane is the hyperplane that lies halfway between them

With a normalized or standardized dataset, these hyperplanes can be described
by the equations
▶ wTx − b = 1 (anything on or above this boundary is of one class, with label 1)
▶ wTx − b = −1 (anything on or below this boundary is of the other class, with

label -1)

p. 6 – Linear SVM

Distance between these two hyperplanes is 2/∥w∥

⇒ to maximize the distance between the planes we want to minimize ∥w∥

The distance is computed using the distance from a point to a plane equation

We must also prevent data points from falling into the margin, so we add the
following constraint: for each i either

wTxi − b ≥ 1 , if yi = 1

or
wTxi − b ≤ −1 , if yi = −1

(Each data point must lie on the correct side of the margin)

p. 7 – Linear SVM

This can be rewritten as

yi(wTxi − b) ≥ 1, for all 1 ≤ i ≤ n

or
yi(wTxi − b)− 1 ≥ 0, for all 1 ≤ i ≤ n

We get the optimization problem:
Minimize ∥w∥ subject to yi(wTxi − b)− 1 ≥ 0 for i = 1, . . . ,n

The w and b that solve this problem determine the classifier, x 7→ sgn(wTx − b)
where sgn(·) is the sign function.

p. 8 – Linear SVM

The maximum-margin hyperplane is completely determined by those xi that lie
nearest to it

These xi are the support vectors

p. 9 – Linear SVM

Support vector machines (SVM)

Linear SVM

Guess who’s coming to dinner!

Soft-margin SVM

Our goal

Recall that our goal is

Minimize ∥w∥ subject to yi(wTxi − b)− 1 ≥ 0 for i = 1, . . . ,n

p. 10 – Guess who’s coming to dinner!

Writing the goal in terms of Lagrange multipliers

Using Lagrange multipliers λ1, . . . , λn, we have the function

LP := F (w ,bλ1, . . . , λn) =
1
2
∥w∥2 −

n∑
i=1

λiyi(xiw + b) +
n∑

i=1

λi

We have as many Lagrange multipliers as there are data points: there are that
many inequalities that must be satisfied

The aim is to minimise Lp with respect to w and b while the derivatives of Lp w.r.t.
λi vanish and the λi ≥ 0, i = 1, . . . ,n

p. 11 – Guess who’s coming to dinner!

Lagrange multipliers

We have already seen Lagrange multipliers

▶ in the intro math slides

▶ when we were studying PCA

p. 12 – Guess who’s coming to dinner!

Maximisation using Lagrange multipliers (V1.0)

We want the max of f (x1, . . . , xn) under the constraint g(x1, . . . , xn) = k
1. Solve

∇f (x1, . . . , xn) = λ∇g(x1, . . . , xn)

g(x1, . . . , xn) = k

where ∇ = (∂
∂x1

, . . . , ∂
∂xn

) is the gradient operator
2. Plug all solutions into f (x1, . . . , xn) and find maximum values (provided values

exist and ∇g ̸= 0 there)

λ is the Lagrange multiplier

p. 13 – Guess who’s coming to dinner!

The gradient

f : Rn → R function of several variables, ∇ =
(

∂
∂x1

, . . . , ∂
∂xn

)
the gradient operator

Then

∇f =
(

∂

∂x1
f , . . . ,

∂

∂xn
f
)

So ∇f is a vector-valued function, ∇f : Rn → Rn; also written as

∇f = fx1(x1, . . . , xn)e1 + · · · fxn(x1, . . . , xn)en

where fxi is the partial derivative of f with respect to xi and {e1, . . . ,en} is the
standard basis of Rn

p. 14 – Guess who’s coming to dinner!

Lagrange multipliers (V2.0)

However, the problem we were considering then involved a single multiplier λ

Here we want λ1, . . . , λn

p. 15 – Guess who’s coming to dinner!

Theorem 88 (Lagrange multiplier theorem)

Let f : Rn → R be the objective function, g : Rn → Rc be the constraints function,
both being C1. Consider the optimisation problem

maximize f (x)
subject to g(x) = 0

Let x∗ be an optimal solution to the optimization problem, such that
rank(Dg(x∗)) = c < n, where Dg(x∗) denotes the matrix of partial derivatives[

∂gj/∂xk
]

Then there exists a unique Lagrange multiplier λ∗ ∈ Rc such that

Df (x∗) = λ∗T Dg(x∗)

p. 16 – Guess who’s coming to dinner!

Lagrange multipliers (V3.0)

Here we want λ1, . . . , λn

But we also are looking for λi ≥ 0

So we need to consider the so-called Karush-Kuhn-Tucker (KKT) conditions

p. 17 – Guess who’s coming to dinner!

Karush-Kuhn-Tucker (KKT) conditions

Consider the optimisation problem

maximize f (x)
subject to gi(x) ≤ 0

hi(x) = 0

Form the Lagrangian

L(x , µ, λ) = f (x) + µT g(x) + λT h(x)

p. 18 – Guess who’s coming to dinner!

Theorem 89
If (x∗, µ∗) is a saddle point of L(x, µ) in x ∈ X, µ ≥ 0, then x∗ is an optimal vector
for the above optimization problem

Suppose that f (x) and gi(x), i = 1, . . . ,m, are convex in x and that there exists
x0 ∈ X such that g(x0) < 0

Then with an optimal vector x∗ for the above optimization problem there is
associated a non-negative vector µ∗ such that L(x∗, µ∗) is a saddle point of L(x, µ)

p. 19 – Guess who’s coming to dinner!

KKT conditions

∂

∂wν
LP = wν −

n∑
i

λiyixiν = 0 ν = 1, . . . ,p

∂

∂b
LP = −

n∑
i=1

λiyi = 0

yi(xT
i w + b)− 1 ≥ 0 i = 1, . . . ,n

λi ≥ 0 i = 1, . . . ,n

λi(yi(xT
i w + b)− 1) = 0 i = 1, . . . ,n

p. 20 – Guess who’s coming to dinner!

Numerical example

Example from here

set.seed(10111)
x = matrix(rnorm(40), 20, 2)
y = rep(c(-1, 1), c(10, 10))
x[y == 1,] = x[y == 1,] + 1
plot(x, col = y + 3, pch = 19)

p. 21 – Guess who’s coming to dinner!

https://www.datacamp.com/tutorial/support-vector-machines-r

−1 0 1 2

−
0.

5
0.

5
1.

5

x[,1]

x[
,2

]

Linear SVM in matrix form (doing things “by hand”)

Let X ∈ Rn×p have rows xT
i and labels y ∈ {−1,1}n

Soft-margin (hinge-loss) primal objective in vector/matrix form:

min
w ,b

λ ∥w∥2 +
1
n

n∑
i=1

max
(
0, 1 − yi(xT

i w − b)
)

We optimize this with a simple subgradient descent using base R

p. 23 – Guess who’s coming to dinner!

Fit SVM via hinge-loss gradient descent

X <- x
Y <- as.numeric(y)
n <- nrow(X); p <- ncol(X)

Initialize parameters
w <- rep(0, p)
b <- 0
lambda <- 0.05 # Regularization strength
lr <- 0.1 # learning rate
epochs <- 5000

p. 24 – Guess who’s coming to dinner!

for (t in 1:epochs) {
margins <- Y * (as.vector(X %*% w) - b)
active <- margins < 1 # points violating margin
if (any(active)) {

grad_w <- 2 * lambda * w -
colSums((Y[active] * X[active, , drop = FALSE])) / n

grad_b <- sum(Y[active]) / n
} else {

grad_w <- 2 * lambda * w
grad_b <- 0

}
parameter update
w <- w - lr * grad_w
b <- b - lr * grad_b
mild decay for stability
if (t %% 1000 == 0) lr <- lr * 0.9

}

p. 25 – Guess who’s coming to dinner!

cat("w:", paste(round(w, 3), collapse = ", "),
" b:", round(b, 3), "\n")

w: 0.421, 1.205 b: 1.101

−1 0 1 2

−
0.

5
0.

5
1.

5

X[,1]

X
[,2

]

p. 27 – Guess who’s coming to dinner!

dat = data.frame(x, y = as.factor(y))
svmfit = svm(y ~ ., data = dat, kernel = "linear", cost = 10,

scale = FALSE)
print(svmfit)

##
Call:
svm(formula = y ~ ., data = dat, kernel = "linear", cost = 10, scale = FALSE)
##
##
Parameters:
SVM-Type: C-classification
SVM-Kernel: linear
cost: 10
##
Number of Support Vectors: 6

plot(svmfit, dat)
p. 28 – Guess who’s coming to dinner!

−
1

1

−0.5 0.0 0.5 1.0 1.5 2.0

−1

0

1

2

o
o

o
o

o

o

o

o

o

o

o

o

o

o

x
x

x

x

x

x

SVM classification plot

X2

X
1

make.grid = function(x, n = 75) {
grange = apply(x, 2, range)
x1 = seq(from = grange[1,1], to = grange[2,1], length = n)
x2 = seq(from = grange[1,2], to = grange[2,2], length = n)
expand.grid(X1 = x1, X2 = x2)

}
xgrid = make.grid(x)
ygrid = predict(svmfit, xgrid)
plot(xgrid, col = c("red","blue")[as.numeric(ygrid)], pch = 20, cex = .2)
points(x, col = y + 3, pch = 19)
points(x[svmfit$index,], pch = 5, cex = 2)

p. 30 – Guess who’s coming to dinner!

−1 0 1 2

−
0.

5
0.

5
1.

5

X1

X
2

beta = drop(t(svmfit$coefs)%*%x[svmfit$index,])
beta0 = svmfit$rho
plot(xgrid, col = c("red", "blue")[as.numeric(ygrid)], pch = 20, cex = .2)
points(x, col = y + 3, pch = 19)
points(x[svmfit$index,], pch = 5, cex = 2)
abline(beta0 / beta[2], -beta[1] / beta[2])
abline((beta0 - 1) / beta[2], -beta[1] / beta[2], lty = 2)
abline((beta0 + 1) / beta[2], -beta[1] / beta[2], lty = 2)

p. 32 – Guess who’s coming to dinner!

−1 0 1 2

−
0.

5
0.

5
1.

5

X1

X
2

Support vector machines (SVM)

Linear SVM

Guess who’s coming to dinner!

Soft-margin SVM

Soft-margin SVM

To extend SVM to cases in which the data are not linearly separable, the hinge
loss function is helpful

max
(

0,1 − yi(wTxi − b)
)

yi is the i th target (i.e., in this case, 1 or -1), and wTxi − b is the i-th output

This function is zero if the constraint is satisfied, in other words, if xi lies on the
correct side of the margin

For data on the wrong side of the margin, the function’s value is proportional to the
distance from the margin

p. 34 – Soft-margin SVM

The goal of the optimization then is to minimize

λ∥w∥2 +

[
1
n

n∑
i=1

max
(

0,1 − yi(wTxi − b)
)]

where the parameter λ > 0 determines the trade-off between increasing the
margin size and ensuring that the xi lie on the correct side of the margin

Thus, for sufficiently small values of λ, it will behave similar to the hard-margin
SVM, if the input data are linearly classifiable, but will still learn if a classification
rule is viable or not

p. 35 – Soft-margin SVM

Soft-margin: slack variables and primal form

Another common formulation introduces slack variables ξi ≥ 0 to allow violations
of the margin. The soft-margin (primal) problem is:

min
w,b,ξ

1
2
∥w∥2 + C

n∑
i=1

ξi

subject to
yi(wT xi − b) ≥ 1 − ξi , ξi ≥ 0, i = 1, . . . ,n

Here C > 0 controls the penalty for margin violations. Large C — fewer violations
(closer to hard-margin). Small C — wider margin but more violations

p. 36 – Soft-margin SVM

Hinge loss and relation to slack variables

The hinge loss for a single sample is ℓhinge(t) = max(0,1 − t) with t = yi(wT xi − b)

Minimizing the empirical hinge loss plus a regularizer is equivalent to the
slack-variable primal above when the loss is replaced by the constrained slack
formulation. Concretely,

1
n

n∑
i=1

ℓhinge
(
yi(wT xi − b)

)
+ λ∥w∥2

and the primal with C are related: roughly C ≈ 1/(2nλ) (constants depend on
exact formulation)

p. 37 – Soft-margin SVM

Worked R example: soft-margin behaviour

We’ll simulate a slightly noisy two-class dataset and fit linear SVMs with different
cost (C) values to see the effect on the margin and support vectors

p. 38 – Soft-margin SVM

R: simulate data and fit SVMs

set.seed(2025)
library(e1071)
simulate 2D data with some overlap
n = 100
x = matrix(rnorm(2*n), n, 2)
y = ifelse(x[,1] + 0.6*x[,2] + rnorm(n, sd=0.8) > 0, 1, -1)
dat = data.frame(x1 = x[,1], x2 = x[,2], y = as.factor(y))

fit linear SVMs with different cost values
svm_lowC = svm(y ~ ., data = dat, kernel = 'linear', cost = 0.1, scale = FALSE)
svm_medC = svm(y ~ ., data = dat, kernel = 'linear', cost = 1, scale = FALSE)
svm_highC = svm(y ~ ., data = dat, kernel = 'linear', cost = 100, scale = FALSE)

svm_list = list(low = svm_lowC, med = svm_medC, high = svm_highC)

p. 39 – Soft-margin SVM

−2 −1 0 1 2 3

−
2

−
1

0
1

2

cost = 0.1 (soft)

x1

x2

−2 −1 0 1 2 3
−

2
−

1
0

1
2

cost = 1

x1

x2

−2 −1 0 1 2 3

−
2

−
1

0
1

2

cost = 100 (harder)

x1

x2

Interpretation

Observe how smaller cost (left) yields a smoother, wider-margin decision boundary
with more misclassified points but fewer support vectors sometimes; larger cost
(right) fits data more tightly, reducing training error but possibly overfitting

Use cross-validation to select C in practice (next example uses tune())

p. 41 – Soft-margin SVM

R: tuning cost with cross-validation

set.seed(2025)
tune.out = tune(svm, y ~ ., data = dat,

kernel = 'linear',
ranges = list(cost = c(0.01, 0.1, 1, 10, 100)))

print(tune.out)
best = tune.out$best.model

p. 42 – Soft-margin SVM

−
1

1

−1 0 1 2

−2

−1

0

1

2

o
o

o

o

o

o

o

o
o

o
o

o

o

o

o

o

o

o

o

o

o
o

o

o o

o

o

o

o o
o

o

o

o
o

o

o

x

x
x

x

x

x
x

xx
x

x

x

x
xx

x

x
x

xx

x

x

x

x

x
x

xx

x
xxx

x
x

x

x

x

x

xx

x

x

x

x

x

x

x

x
x x

x

x
xx

x
xx x

x

x
x

x

x

SVM classification plot

x2

x1

	Support vector machines (SVM)
	Linear SVM
	Guess who's coming to dinner!
	Soft-margin SVM

