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Markov chain

A Markov chain is a stochastic process in which the evolution through time
depends only on the current state of the system (we say the process is
memoryless)

Markov chains are an interesting combination of matrix theory and graph theory

They form the theoretical foundation for Hidden Markov processes or Markov
Chain Monte Carlo (MCMC) methods, are used in ML
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Basic principle

Conduct an experiment with a set of n possible outcomes

S = {S1, . . . ,Sn}

Experiment repeated t times (with t large, potentially infinite)

Think of t as time

System has no memory: the next state depends only on the present state

Probability of Si occurring at time t + 1 given that Sj occurred at time t is

pij = P(Si |Sj)
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Suppose that Si is the current state, then one of S1, . . . ,Sn must be the next state,
so

p1i + p2i + · · ·+ pni = 1, 1 ≤ i ≤ n

Some of the pij can be zero, all that is needed is that
∑n

k=1 pki = 1 for all
i = 1, . . . ,n
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Definition 90 (Markov chain)

An experiment with finite number of possible outcomes S1, . . . ,Sn is repeated.
The sequence of outcomes is a Markov chain if there is a set of n2 numbers {pij}
such that the conditional probability of outcome Si on any experiment given
outcome Sj on the previous experiment is pij , i.e., for 1 ≤ i , j ≤ n, t = 1, . . .,

pij = P(Si on experiment t + 1 | Sj on experiment t)

Outcomes S1, . . . ,Sn are states and pij are transition probabilities. P = [pij ] the
transition matrix

In the following, we often write

P(Si on experiment t + 1 | Sj on experiment t) as P(Si(t + 1) | Sj(t))
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The matrix

P =


p11 p12 · · · p1r
p21 p22 · · · p2r

pr1 pr2 · · · prr


has
▶ entries that are probabilities, i.e., 0 ≤ pij ≤ 1
▶ column sum 1, which we write

n∑
i=1

pij = 1, j = 1, . . . ,n

or, using the notation 1lT = (1, . . . ,1),

1lT P = 1lT
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The “orange” gene

A cat’s coat color is determined by many genes. The "orange" trait comes from a
specific gene called the orange locus

It has two alleles (versions):
▶ O =⇒ Produces phaeomelanin (red/orange pigment)
▶ o =⇒ Produces eumelanin (black/brown pigment)

This gene is sex-linked. It is located on the X chromosome
▶ This changes the rules of inheritance!
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How sex-linked genes work

Because the gene is on the X chromosome, males and females inherit it differently

Females have two X chromosomes (XX)
▶ They get two alleles for this gene (one from each parent)
▶ Possible genotypes: X OX O, X oX o, or X OX o

Males have one X and one Y chromosome (XY)
▶ They get only one allele for this gene (always from the mother)
▶ Possible genotypes: X OY or X oY
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Genotype vs. phenotype

Males (simple):
▶ X OY =⇒ orange cat
▶ X oY =⇒ non-orange cat (e.g., black)

Females (the special case):
▶ X OX O =⇒ orange cat
▶ X oX o =⇒ non-orange cat (e.g., black)
▶ X OX o =⇒ tortoiseshell cat

A “tortie” isn’t a simple hybrid. Both alleles (O and o) are active in different
patches of skin, creating the orange and black mottled pattern
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Example 1: Orange dad + black Mom

Let’s cross an orange male (X OY ) with a black female (X oX o)

Father

X O Y

Mother X o X OX o X oY

X o X OX o X oY

Results for their offspring:
▶ All females (X OX o) will be tortoiseshell
▶ All males (X oY ) will be black (non-orange)
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Example 2: black dad + tortoiseshell mom
Let’s cross a black male (X oY ) with a tortoiseshell female (X OX o)

Father

X o Y

Mother X O X OX o X OY

X o X oX o X oY

Results for their offspring (1/4 chance for each):
▶ X OX o =⇒ Tortoiseshell Female
▶ X oX o =⇒ Black Female
▶ X OY =⇒ Orange Male
▶ X oY =⇒ Black Male
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Fun fact: what about male tortoiseshells?

▶ As we saw, a male is XY . He can only get X O or X o from his mother, not both

▶ A male tortoiseshell is possible, but extremely rare

▶ It’s a genetic anomaly where the cat has an extra X chromosome: XXY

▶ This genotype (e.g., X OX oY ) allows the cat to be male (Y ) but also express
both orange and non-orange alleles (X OX o), just like a female
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Deriving the update equation

For 1 ≤ i ≤ n, let pi(t) be probability that state Si occurs at time t , which we also
write pi(t) = P(Si(t))

Since one of the states Si must occur on the t th repetition, we must have

p1(t) + p2(t) + · · ·+ pn(t) = 1

We want to use this information to derive pi(t + 1), the probability that state Si
occurs at time t + 1
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How do we get to Si?
List all possible (n) ways to be in state Si at time t + 1:

1. We were in S1, which happened with probability p1(t), then moved from S1 to
Si , which has probability pi1. Thus,

P(Si(t + 1) |S1(t)) = P(Si(t + 1) |S1(t)) P(S1(t)) = pi1p1(t)

2. Likewise, if we were in S2 at time t , then

P(Si(t + 1) |S2(t)) = P(Si(t + 1) |S2(t))P(S2(t)) = pi2p2(t)

..

n. Finally, if we were in Sn,

P(Si(t + 1) |Sn(t)) = P(Si(t + 1) |Sn(t))P(Sn(t)) = pinpn(t)
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Sum things up

So, for a given state i = 1, . . . ,n,

pi(t + 1) = P(Si(t + 1) |S1(t)) + · · ·+ P(Si(t + 1) |Sn(t))
= pi1p1(t) + · · ·+ pinpn(t)

Therefore, since this must be true for all states i = 1, . . . ,n

p1(t + 1) = p11p1(t) + p12p2(t) + · · ·+ p1npn(t)
...

pn(t + 1) = pn1p1(t) + pn2p2(t) + · · ·+ pnnpn(t)
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In matrix form
p(t + 1) = Pp(t), n = 1,2,3, . . .

where p(t) = (p1(t),p2(t), . . . ,pn(t))T is a probability vector and P = (pij) is an
n × n transition matrix,

P =


p11 p12 · · · p1r
p21 p22 · · · p2r

pr1 pr2 · · · prr


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So p1(t + 1)
· · ·

pn(t + 1)

 =


p11 p12 · · · p1r
p21 p22 · · · p2r

pr1 pr2 · · · prr


p1(t)

· · ·
pn(t)



Easy to check that this gives the same expression as before
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Stochastic matrices

Definition 91 (Stochastic matrix)

The nonnegative n × n matrix M is row-stochastic (resp. column-stochastic) if∑n
j=1 aij = 1 for all i = 1, . . . ,n (resp.

∑n
i=1 aij = 1 for all j = 1, . . . ,n)

We often say stochastic and let the context determine whether we mean row- or
column-stochastic

If it is both row- and column-stochastic, the matrix is doubly stochastic

Theorem 92
Let M ∈ Mn be a stochastic matrix. Then all eigenvalues λ of M are such that
|λ| ≤ 1.
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Theorem 93
Let M ∈ Mn be a stochastic matrix. λ = 1 is an eigenvalue of M. If M is
row-stochastic, the eigenvalue 1 is associated to the column vector of ones (a right
eigenvector of M); if M is column-stochastic, the eigenvalue 1 is associated to the
row vector of ones (a left eigenvector of M)
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Proof of Theorem 93

Suppose M ∈ Mn is row-stochastic. One way to write the requirement that each
row sum equals 1 is as

M1 = 1 (1)

where 1 = (1, . . . ,1) ∈ Cn is a column vector

If M ∈ Mn, then the eigenpair equation takes the form

Mv = λv , v ̸= 0

So, in (1), v = 1 and λ = 1

This works the same way for a column-stochastic matrix, except that here the
relation is 1M = 1 with 1 a row vector and the (left)eigenpair relation is
vT M = λvT with vT a row vector
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Long time behaviour
Let p(0) be the initial distribution vector. Then

p(1) = Pp(0)
p(2) = Pp(1)

= P (Pp(0))

= P2p(0)

Continuing, we get, for any t ,
p(t) = P tp(0)

Therefore,

lim
t→+∞

p(t) = lim
t→+∞

P tp(0) =
(

lim
t→+∞

P t
)

p(0)

if this limit exists
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The matrix P t

Theorem 94
If M,N are nonsingular stochastic matrices, then MN is a stochastic matrix

Corollary 95

If M is a nonsingular stochastic matrix, then for any k ∈ N, Mk is a stochastic
matrix

So P t is stochastic
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Regular Markov chains

Definition 96 (Regular Markov chain)

A regular Markov chain has Pk (entry-wise) positive for some integer k > 0, i.e.,
Pk has only positive entries

Definition 97 (Primitive matrix)

A nonnegative matrix M is primitive if, and only if, there is an integer k > 0 such
that Mk is positive.

Theorem 98
Markov chain regular ⇐⇒ transition matrix P primitive
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Matrices and graphs

Here and with absorbing chains, there is a lot to gain from using a bit of graph
theory

Matrices and graphs are intimitely linked

Some matrix problems are easier considered with graphs, some graph problems
are easier with matrices

Note that I say graph, but in other contexts, people speak of networks
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What is a directed graph?

Definition 99 (Digraph)

A directed graph (or digraph) G is a pair (V ,A) where:
▶ V is a finite set of elements called vertices or nodes
▶ A ⊆ V × V is a set of ordered pairs of vertices called arcs or directed edges

Definition 100 (Arc)

An arc a = (u, v) ∈ A represents a connection from vertex u to vertex v
▶ u is the tail of the arc
▶ v is the head of the arc
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In the context of Markov chains

▶ Vertices (nodes) represent the states of the system

▶ Arcs represent possible transitions between states

▶ The weights on the arcs represent the probability to make a given transition
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Matrix ↔ Graph

Given a transition matrix P = [pij ], define an induced digraph G = (V ,A)
▶ Vertices V correspond to the states
▶ An arc (j , i) exists in A if and only if pij > 0

Transition matrix

P =

0.5 0.8 0.1
0.5 0 0.2
0 0.2 0.7


Transition graph

S1

S2 S3

0.5

0.5
0.8

0.2
0.1

0.2
0.7
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Definition 101 (Reducible/irrecible matrix)

A matrix M ∈ Mn is reducible if there exists a permutation matrix P such that

PT MP =

(
P Q
0 R

)
,

i.e., M is similar to a block upper triangular matrix. The matrix M is irreducible if
no such matrix exists

Definition 102 (Strongly connected digraph)

A digraph G = (V ,A) is strongly connected if for any pair of vertices u, v ∈ V ,
there is a directed path from u to v

Theorem 103
P ∈ Mn irreducible ⇐⇒ G(P) strongly connected
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A sufficient condition for primitivity

Theorem 104
Let M ∈ Mn be a nonnegative matrix. If G(M) is strongly connected and at least
one of the diagonal entries mii of M is positive, then M is primitive
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Behaviour of a regular MC

Theorem 105
If P is the transition matrix of a regular Markov chain, then

1. the powers P t approach a stochastic matrix W
2. each column of W is the same (column) vector w = (w1, . . . ,wn)

T

3. the components of w are positive

So if the Markov chain is regular

lim
t→+∞

p(t) = lim
t→+∞

P tp(0) = Wp(0)
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Computing W

Recall that since P is a stochastic matrix, 1 is an eigenvalue of P. As P is column
stochastic, 1 is associated to the left (row) eigenvector 1

Now, if p(t) converges, then p(t + 1) = Pp(t) at the limit, so w = limt→∞ p(t) is a
fixed point of the system. Replacing p with its limit, we have

w = Pw

Solving for w thus amounts to finding w as a (right) eigenvector corresponding to
the eigenvalue 1
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Remember to normalise

w might have to be normalized since you want a probability vector

Check that the norm ∥w∥1 defined by

∥w∥1 = |w1|+ · · ·+ |wn| = w1 + · · ·+ wn

(since w ≥ 0) is equal to one

If not, use
w̃ =

w
∥w∥1
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Back to orange cats

Create a chain by tracking the 3 female genotypes:
▶ S1: X OX O (orange)
▶ S2: X oX o (black)
▶ S3: X OX o (tortoiseshell)

To make the chain regular, we mate our female with a male chosen randomly from
a fixed population that is:
▶ 50% orange males (X OY )
▶ 50% black males (X oY )
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State 1: orange female (X OX O)

The mother is X OX O. We pick a father with 50/50 probability.

Case 1: Father is X OY
X O Y

M
ot

he
r

X O X OX O (S1) Male

X O X OX O (S1) Male

Daughters: 100% S1

Case 2: Father is X oY
X o Y

M
ot

he
r

X O X OX o (S3) Male

X O X OX o (S3) Male

Daughters: 100% S3

Transitions from S1:
▶ P(S1 → S1) = 0.5 × 1.0 = 0.5
▶ P(S1 → S2) = 0
▶ P(S1 → S3) = 0.5 × 1.0 = 0.5
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State 2: black female (X oX o)

The mother is X oX o. We pick a father with 50/50 probability.

Case 1: Father is X OY
X O Y

M
ot

he
r

X o X OX o (S3) Male

X o X OX o (S3) Male

Daughters: 100% S3

Case 2: Father is X oY
X o Y

M
ot

he
r

X o X oX o (S2) Male

X o X oX o (S2) Male

Daughters: 100% S2

Transitions from S2:
▶ P(S2 → S1) = 0
▶ P(S2 → S2) = 0.5 × 1.0 = 0.5
▶ P(S2 → S3) = 0.5 × 1.0 = 0.5
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State 3: tortoiseshell female (X OX o)

The mother is X OX o. We pick a father with 50/50 probability.

Case 1: Father is X OY
X O Y

M
ot

he
r

X O X OX O (S1) Male

X o X OX o (S3) Male

Daughters: 50% S1, 50% S3

Case 2: Father is X oY
X o Y

M
ot

he
r

X O X OX o (S3) Male

X o X oX o (S2) Male

Daughters: 50% S2, 50% S3

Transitions from S3:
▶ P(S3 → S1) = 0.5 × 0.5 = 0.25
▶ P(S3 → S2) = 0.5 × 0.5 = 0.25
▶ P(S3 → S3) = (0.5 × 0.5) + (0.5 × 0.5) = 0.5
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Summary of the orange cat problem

P =

0.5 0 0.25
0 0.5 0.25

0.5 0.5 0.5



X OX O

X oX o X OX o

0.5

0.5
0.5

0.5
0.5

0.25

0.25
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Is this chain regular?

▶ Irreducible? Yes. All states communicate
▶ S1 → S3 → S2 (Path from S1 to S2)
▶ S2 → S3 → S1 (Path from S2 to S1)
▶ All other paths are direct (S1 → S3, S3 → S1, etc.)

▶ Aperiodic? Yes. All states have self-loops (p11,p22,p33 > 0).

Since the chain is irreducible and aperiodic, it is regular.
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We must solve the right eigenvector problem w = Pw , where w = (w1,w2,w3)
Tw1

w2
w3

 =

0.5 0 0.25
0 0.5 0.25

0.5 0.5 0.5

w1
w2
w3


This gives the system of (dependent) equations:

w1 = 0.5w1 + 0.25w3

w2 = 0.5w2 + 0.25w3

w3 = 0.5w1 + 0.5w2 + 0.5w3

From the first two equations:
▶ 0.5w1 = 0.25w3 =⇒ w3 = 2w1
▶ 0.5w2 = 0.25w3 =⇒ w3 = 2w2

This means w1 = w2. Using the constraint w1 + w2 + w3 = 1:

w1 + (w1) + (2w1) = 1 =⇒ 4w1 = 1 =⇒ w1 = 0.25

The stationary distribution is w = (0.25,0.25,0.5)T
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Interpreting the result

We find the stationary distribution w = (0.25,0.25,0.5)T

This means that regardless of initial conditions, if we repeat the process enough
times, we tend to that distribution

This means 25% of the females will be orange, 25% black and 50% tortoiseshell

This is not what is observed in practice, but remember that our setup is quite
specific
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