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Support vector machines (SVM)

We are given a training dataset of n points of the form

(x1, y1), . . . , (xn, yn)

where xi ∈ Rp and yi = {−1,1}. The value of yi indicates the class to which the
point xi belongs

We want to find a surface S in Rp that divides the group of points into two
subgroups

Once we have this surface S, any additional point that is added to the set can then
be classified as belonging to either one of the sets depending on where it is with
respect to the surface S
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Linear SVM

We are given a training dataset of n points of the form

(x1, y1), . . . , (xn, yn)

where xi ∈ Rp and yi = {−1,1}. The value of yi indicates the class to which the
point xi belongs

Linear SVM – Find the “maximum-margin hyperplane” that divides the
group of points xi for which yi = 1 from the group of points for which
yi = −1, which is such that the distance between the hyperplane and the
nearest point xi from either group is maximized.
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Maximum-margin hy-
perplane and margins
for an SVM trained
with samples from two
classes. Samples on
the margin are the
support vectors
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Any hyperplane can be written as the set of points x satisfying

wTx − b = 0

where w is the (not necessarily normalized) normal vector to the hyperplane (if
the hyperplane has equation a1z1 + · · ·+ apzp = c, then (a1, . . . ,an) is normal to
the hyperplane)

The parameter b/∥w∥ determines the offset of the hyperplane from the origin
along the normal vector w

Remark: a hyperplane defined thusly is not a subspace of Rp unless b = 0. We
can of course transform the data so that it is...
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Linearly separable points

Let X1 and X2 be two sets of points in Rp

Then X1 and X2 are linearly separable if there exist w1,w2, ..,wp, k ∈ R such that
▶ every point x ∈ X1 satisfies

∑p
i=1 wixi > k

▶ every point x ∈ X2 satisfies
∑p

i=1 wixi < k
where xi is the i th component of x
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Hard-margin SVM

If the training data is linearly separable, we can select two parallel hyperplanes
that separate the two classes of data, so that the distance between them is as
large as possible

The region bounded by these two hyperplanes is called the “margin”, and the
maximum-margin hyperplane is the hyperplane that lies halfway between them

With a normalized or standardized dataset, these hyperplanes can be described
by the equations
▶ wTx − b = 1 (anything on or above this boundary is of one class, with label 1)
▶ wTx − b = −1 (anything on or below this boundary is of the other class, with

label -1)
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Distance between these two hyperplanes is 2/∥w∥

⇒ to maximize the distance between the planes we want to minimize ∥w∥

The distance is computed using the distance from a point to a plane equation

We must also prevent data points from falling into the margin, so we add the
following constraint: for each i either

wTxi − b ≥ 1 , if yi = 1

or
wTxi − b ≤ −1 , if yi = −1

(Each data point must lie on the correct side of the margin)
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This can be rewritten as

yi(wTxi − b) ≥ 1, for all 1 ≤ i ≤ n

or
yi(wTxi − b)− 1 ≥ 0, for all 1 ≤ i ≤ n

We get the optimization problem:
Minimize ∥w∥ subject to yi(wTxi − b)− 1 ≥ 0 for i = 1, . . . ,n

The w and b that solve this problem determine the classifier, x 7→ sgn(wTx − b)
where sgn(·) is the sign function.
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The maximum-margin hyperplane is completely determined by those xi that lie
nearest to it

These xi are the support vectors
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Writing the goal in terms of Lagrange multipliers

Recall that our goal is to
minimize ∥w∥ subject to yi(wTxi − b)− 1 ≥ 0 for i = 1, . . . ,n

Using Lagrange multipliers λ1, . . . , λn, we have the function

LP := F (w ,bλ1, . . . , λn) =
1
2
∥w∥2 −

n∑
i=1

λiyi(xiw + b) +
n∑

i=1

λi

Note that we have as many Lagrange multipliers as there are data points. Indeed,
there are that many inequalities that must be satisfied

The aim is to minimise Lp with respect to w and b while the derivatives of Lp w.r.t.
λi vanish and the λi ≥ 0, i = 1, . . . ,n
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Lagrange multipliers

We have already seen Lagrange multipliers, when we were studying PCA
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Maximisation using Lagrange multipliers (V1.0)

We want the max of f (x1, . . . , xn) under the constraint g(x1, . . . , xn) = k
1. Solve

∇f (x1, . . . , xn) = λ∇g(x1, . . . , xn)

g(x1, . . . , xn) = k

where ∇ = ( ∂
∂x1

, . . . , ∂
∂xn

) is the gradient operator
2. Plug all solutions into f (x1, . . . , xn) and find maximum values (provided values

exist and ∇g ̸= 0 there)

λ is the Lagrange multiplier
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The gradient

f : Rn → R function of several variables, ∇ =
(

∂
∂x1

, . . . , ∂
∂xn

)
the gradient operator

Then

∇f =
(

∂

∂x1
f , . . . ,

∂

∂xn
f
)

So ∇f is a vector-valued function, ∇f : Rn → Rn; also written as

∇f = fx1(x1, . . . , xn)e1 + · · · fxn(x1, . . . , xn)en

where fxi is the partial derivative of f with respect to xi and {e1, . . . ,en} is the
standard basis of Rn
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Lagrange multipliers (V2.0)

However, the problem we were considering then involved a single multiplier λ

Here we want λ1, . . . , λn
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Lagrange multiplier theorem
Theorem 1
Let f : Rn → R be the objective function, g : Rn → Rc be the constraints function,
both being C1. Consider the optimisation problem

maximize f (x)
subject to g(x) = 0

Let x∗ be an optimal solution to the optimization problem, such that
rank(Dg(x∗)) = c < n, where Dg(x∗) denotes the matrix of partial derivatives[

∂gj/∂xk
]

Then there exists a unique Lagrange multiplier λ∗ ∈ Rc such that

Df (x∗) = λ∗T Dg(x∗)
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Lagrange multipliers (V3.0)

Here we want λ1, . . . , λn

But we also are looking for λi ≥ 0

So we need to consider the so-called Karush-Kuhn-Tucker (KKT) conditions
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Karush-Kuhn-Tucker (KKT) conditions
Consider the optimisation problem

maximize f (x)
subject to gi(x) ≤ 0

hi(x) = 0

Form the Lagrangian

L(x , µ, λ) = f (x) + µT g(x) + λT h(x)

Theorem 2
If (x∗, µ∗) is a saddle point of L(x, µ) in x ∈ X, µ ≥ 0, then x∗ is an optimal vector
for the above optimization problem. Suppose that f (x) and gi(x), i = 1, . . . ,m, are
convex in x and that there exists x0 ∈ X such that g(x0) < 0. Then with an optimal
vector x∗ for the above optimization problem there is associated a non-negative
vector µ∗ such that L(x∗, µ∗) is a saddle point of L(x, µ)
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KKT conditions

∂

∂wν
LP = wν −

n∑
i

λiyixiν = 0 ν = 1, . . . ,p

∂

∂b
LP = −

n∑
i=1

λiyi = 0

yi(xT
i w + b)− 1 ≥ 0 i = 1, . . . ,n

λi ≥ 0 i = 1, . . . ,n

λi(yi(xT
i w + b)− 1) = 0 i = 1, . . . ,n
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Numerical example

Example from here

set.seed(10111)
x = matrix(rnorm(40), 20, 2)
y = rep(c(-1, 1), c(10, 10))
x[y == 1,] = x[y == 1,] + 1
plot(x, col = y + 3, pch = 19)
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dat = data.frame(x, y = as.factor(y))
svmfit = svm(y ~ ., data = dat, kernel = "linear", cost = 10, scale = FALSE)
print(svmfit)

##
## Call:
## svm(formula = y ~ ., data = dat, kernel = "linear", cost = 10, scale = FALSE)
##
##
## Parameters:
## SVM-Type: C-classification
## SVM-Kernel: linear
## cost: 10
##
## Number of Support Vectors: 6

plot(svmfit, dat)
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make.grid = function(x, n = 75) {
grange = apply(x, 2, range)
x1 = seq(from = grange[1,1], to = grange[2,1], length = n)
x2 = seq(from = grange[1,2], to = grange[2,2], length = n)
expand.grid(X1 = x1, X2 = x2)

}
xgrid = make.grid(x)
ygrid = predict(svmfit, xgrid)
plot(xgrid, col = c("red","blue")[as.numeric(ygrid)], pch = 20, cex = .2)
points(x, col = y + 3, pch = 19)
points(x[svmfit$index,], pch = 5, cex = 2)
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beta = drop(t(svmfit$coefs)%*%x[svmfit$index,])
beta0 = svmfit$rho
plot(xgrid, col = c("red", "blue")[as.numeric(ygrid)], pch = 20, cex = .2)
points(x, col = y + 3, pch = 19)
points(x[svmfit$index,], pch = 5, cex = 2)
abline(beta0 / beta[2], -beta[1] / beta[2])
abline((beta0 - 1) / beta[2], -beta[1] / beta[2], lty = 2)
abline((beta0 + 1) / beta[2], -beta[1] / beta[2], lty = 2)
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Soft-margin SVM

To extend SVM to cases in which the data are not linearly separable, the hinge
loss function is helpful

max
(

0,1 − yi(wTxi − b)
)

yi is the i th target (i.e., in this case, 1 or -1), and wTxi − b is the i-th output

This function is zero if the constraint is satisfied, in other words, if xi lies on the
correct side of the margin

For data on the wrong side of the margin, the function’s value is proportional to the
distance from the margin
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The goal of the optimization then is to minimize

λ∥w∥2 +

[
1
n

n∑
i=1

max
(

0,1 − yi(wTxi − b)
)]

where the parameter λ > 0 determines the trade-off between increasing the
margin size and ensuring that the xi lie on the correct side of the margin

Thus, for sufficiently small values of λ, it will behave similar to the hard-margin
SVM, if the input data are linearly classifiable, but will still learn if a classification
rule is viable or not
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