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Graphs versus networks

Mostly a terminology difference:
▶ graphs in the mathematical world
▶ networks elsewhere

I will mostly say graphs (this is a math course) but might oscillate

Beware: language is not consistent, so make sure you read the definitions at the
start of whatever source you are using
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The genesis of graphs – Euler’s bridges of Königsberg
Cross the 7 bridges in a single walk without recrossing any of them?
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The genesis of graphs – Euler’s bridges of Königsberg
Cross the 7 bridges in a single walk without recrossing any of them?

Mathematical problem

Is it possible to find a trail containing all edges of the graph?
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Finding a cycle with all vertices
Salesperson must visit some cities (vertices) for their job. Can they plan a round
trip using trains enabling them to visit each specified city exactly once?

▶ 2 vertices are connected iff a line connects the cities and does not pass
through any other city

Mathematical problem

Is it possible to find a cycle containing all graph vertices?
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How far is it to “train” through n cities?
What is the minimal length of train travel needed to visit n cities (vertices)?

▶ all cities are connected; each edge has a value assigned to it (the distance)

Mathematical problem

What is the minimal spanning tree associated to the graph?
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Graphs/networks encode relations

Graphs are used in a variety of contexts because they encode relations between
objects

Many objects in the world have relations... so graphs are quite easy to find

We will see many examples later, for now we cover the mathematical background
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Graphs vs digraphs vs multigraphs vs multidigraphs vs ...

Name-wise and notation-wise, this domain is a bit of a mess

▶ The vertex set V is essentially the only constant
▶ Undirected graph G = (V ,E), where E are the edges
▶ Undirected multigraph GM = (V ,E)

▶ Directed graph (or digraph) G = (V ,A), where A are the arcs
▶ Directed multigraph (or multidigraph) GM = (V ,A)
▶ Any of the above is called a graph and is denoted G = (V ,X ), when we seek

generality

And just to confuse the whole thing more: we often say graph for unoriented graph
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Binary relation

Definition 1 (Binary relation)

▶ A binary relation is an arbitrary association of elements of one set with
elements of another (maybe the same) set

▶ A binary relation over the sets X and Y is defined as a subset of the
Cartesian product X × Y = {(x , y)|x ∈ X , y ∈ Y}

▶ (x , y) ∈ R is read “x is R-related to y ” and is denoted xRy
▶ If (x , y) ̸∈ R, we write “not xRy ” or x��Ry

p. 9 – Binary relations



Definition 2 (Properties of binary relations)

A binary relation R over a set X is
▶ Reflexive if ∀x ∈ X , xRx
▶ Irreflexive if there does not exist x ∈ X such that xRx
▶ Symmetric if xRy ⇒ yRx
▶ Asymmetric if xRy ⇒ y��Rx
▶ Antisymmetric if xRy and yRx ⇒ x = y
▶ Transitive if xRy and yRz ⇒ xRz
▶ Total (or complete) if ∀x , y ∈ X , xRy or yRx

p. 10 – Binary relations



Definition 3 (Equivalence relation)

A relation that is reflexive (∀x ∈ X , xRx), symmetric (xRy ⇒ yRx) and transitive
(xRy and yRz ⇒ xRz) is an equivalence relation

Definition 4 (Partial order)

A relation that is reflexive (∀x ∈ X , xRx), antisymmetric (xRy and yRx ⇒ x = y )
and transitive (xRy and yRz ⇒ xRz) is a partial order

Definition 5 (Total order)

A partial order that is total (∀x , y ∈ X , xRy or yRx) is a total order

p. 11 – Binary relations
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The igraph library

Throughout these slides, we use the package igraph

I illustrate the functions that can be used to study some of the mathematical
notions I introduce

I use mostly examples from the igraph documentation

p. 12 – Undirected graphs



Undirected graphs
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Graph

Intuitively: a graph is a set of points, and a set of relations between the points

The points are called the vertices of the graph and the relations are the edges of
the graph

We can also think of the relations as being one directional, in which case the
relations are the arcs of the digraph (a contraction of “directed graph”)
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Graph, vertex and edge
Definition 6 (Graph)

An undirected graph is a pair G = (V ,E) of sets such that
▶ V is a set of points: V = {v1, . . . , vp}
▶ E is a set of 2-element subsets of V : E = {{vi , vj}, {vi , vk}, . . . , {vn, vp}} or

E = {vivj , vivk , . . . , vnvp}

Definition 7 (Vertex)

The elements of V are the vertices (or nodes, or points) of the graph G. V (or
V (G)) is the vertex set of the graph G

Definition 8 (Edge)

The elements of E are the edges (or lines) of the graph G. E (or E(G)) is the
edge set of the graph G

p. 14 – Undirected graphs



Setting up graphs in igraph

G <- make_empty_graph()
G <- make_graph(edges = c(1, 2, 1, 5), n = 10,

directed = FALSE)
G <- make_graph("Zachary")
plot(G, main = "Data on a Karate club")
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Order and Size

Definition 9 (Order of a graph)

The number of vertices in G is the order of G. Using the notation |V (G)| for the
cardinality of V (G),

|V (G)| = order of G

Definition 10 (Size of a graph)

The number of edges in G is the size of G,

|E(G)| = size of G

▶ A graph having order p and size q is called a (p,q)−graph
▶ A graph is finite if |V (G)| < ∞
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Some simple measures

V(G)

## + 34/34 vertices, from b79af2b:
## [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
## [26] 26 27 28 29 30 31 32 33 34

head(E(G))

## + 6/78 edges from b79af2b:
## [1] 1--2 1--3 1--4 1--5 1--6 1--7

gorder(G)

## [1] 34

gsize(G)

## [1] 78
p. 18 – Undirected graphs



Incident – Adjacent

Definition 11 (Incident)

▶ A vertex v is incident with an edge e if v ∈ e; then e is an edge at v
▶ If e = uv ∈ E(G), then u and v are each incident with e
▶ The two vertices incident with an edge are its ends
▶ An edge e = uv is incident with both vertices u and v

Definition 12 (Adjacent)

▶ Two vertices u and v are adjacent in a graph G if uv ∈ E(G)

▶ If uv and uw are distinct edges (i.e. v ̸= w) of a graph G, then uv and uw are
adjacent edges
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Incident vertices

incident(G, 1)

## + 16/78 edges from b79af2b:
## [1] 1-- 2 1-- 3 1-- 4 1-- 5 1-- 6 1-- 7 1-- 8 1-- 9 1--11 1--12 1--13 1--14
## [13] 1--18 1--20 1--22 1--32

incident_edges(G, c(1, 2))

## [[1]]
## + 16/78 edges from b79af2b:
## [1] 1-- 2 1-- 3 1-- 4 1-- 5 1-- 6 1-- 7 1-- 8 1-- 9 1--11 1--12 1--13 1--14
## [13] 1--18 1--20 1--22 1--32
##
## [[2]]
## + 9/78 edges from b79af2b:
## [1] 1-- 2 2-- 3 2-- 4 2-- 8 2--14 2--18 2--20 2--22 2--31
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Adjacent vertices

adjacent_vertices(G, v = 1)

## [[1]]
## + 16/34 vertices, from b79af2b:
## [1] 2 3 4 5 6 7 8 9 11 12 13 14 18 20 22 32

adjacent_vertices(G, v = c(1, 2))

## [[1]]
## + 16/34 vertices, from b79af2b:
## [1] 2 3 4 5 6 7 8 9 11 12 13 14 18 20 22 32
##
## [[2]]
## + 9/34 vertices, from b79af2b:
## [1] 1 3 4 8 14 18 20 22 31
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Definition 13 (Multiple edge)

Multiple edges are two or more edges connecting the same two vertices within a
multigraph

Definition 14 (Loop)

A loop is an edge with both the same ends; e.g. {u,u} is a loop

Definition 15 (Simple graph)

A simple graph is a graph which contains no loops or multiple edges

Definition 16 (Multigraph)

A multigraph is a graph which can contain multiple edges or loops
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Testing for these properties

any_multiple(G)

## [1] FALSE

any_loop(G)

## [1] FALSE

is_simple(G)

## [1] TRUE

p. 23 – Undirected graphs



Graph and binary relations

A simple graph G can be defined in term of a vertex set V and a binary relation
over V that is
▶ irreflexive (∀u ∈ V , u��Ru)
▶ symmetric (∀u, v ∈ V , uRv =⇒ vRu)

The set of edges E(G) is the set of symmetric pairs in R

If R is not irreflexive, the graph is not simple
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Definition 17 (Degree of a vertex)

Let v be a vertex of G = (V ,E).
▶ The number of edges of G incident with v is the degree of v in G
▶ The number of edges of G at v is the degree of v in G
▶ The degree of v in G is noted dG(v) or degG(v)

Theorem 18
Let G be a (p,q)−graph with vertices v1, . . . , vp, then

p∑
i=1

dG(vi) = 2q

p. 25 – Undirected graphs



Degree

degree(G)

## [1] 16 9 10 6 3 4 4 4 5 2 3 1 2 5 2 2 2 2 2 3 2 2 2 5 3
## [26] 3 2 4 3 4 4 6 12 17

degree_distribution(G)

## [1] 0.00000000 0.02941176 0.32352941 0.17647059 0.17647059 0.08823529
## [7] 0.05882353 0.00000000 0.00000000 0.02941176 0.02941176 0.00000000
## [13] 0.02941176 0.00000000 0.00000000 0.00000000 0.02941176 0.02941176

plot(degree_distribution(G),
type = "b",
xlab = "Degree", ylab = "Frequency",
main = "Degree distribution of the Karate graph")

p. 26 – Undirected graphs



5 10 15

0.
00

0.
10

0.
20

0.
30

Degree distribution of the Karate graph

Degree

F
re

qu
en

cy



Definition 19 (Odd vertex)

A vertex is an odd vertex is its degree is odd

Definition 20 (Even vertex)

A vertex is called even vertex is its degree is even

Theorem 21
Every graph contains an even number of odd vertices

p. 28 – Undirected graphs



Illustration of recent results

Theorem 18 states that a (p,q)−graph has
∑p

i=1 dG(vi) = 2q

sum(degree(G)) == 2*length(E(G))

## [1] TRUE

Theorem 21 states that every graph contains an even number of odd vertices

sum(pracma::mod(degree(G),2))

## [1] 12

(mode(x,2) returns 1 if x is odd so sum counts how many are odd)
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Regular graph

Definition 22 (Regular graph)

If all the vertices of G have the same degree k , then the graph G is k -regular

length(unique(degree(G))) == 1

## [1] FALSE

p. 30 – Undirected graphs



Undirected graphs
Undirected graph
Degree of a vertex
Isomorphic graphs
Subgraphs, unions of graphs



Isomorphic graphs

Definition 23 (Isomorphic graphs)

Let G1 = (V (G1),E(G1)) and G2 = (V (G2),E(G2)) be two graphs. G1 and G2 are
isomorphic if there exists an isomorphism ϕ from G1 to G2, that is defined as an
injective mapping ϕ : V (G1) → V (G2) such that two vertices u1 and v1 are
adjacent in G1 ⇐⇒ the vertices ϕ(u1) and ϕ(v1) are adjacent in G2

p. 31 – Undirected graphs



If ϕ is an isomorphism from G1 to G2, then the inverse mapping ϕ−1 from V (G2) to
V (G1) also satisfies the definition of an isomorphism. As a consequence, if G1
and G2 are isomorphic graphs, then
▶ G1 is isomorphic to G2

▶ G2 is isomorphic to G1

Theorem 24
The relation “is isomorphic to” is an equivalence relation on the set of all graphs

Theorem 25
If G1 and G2 are isomorphic graphs, then the degrees of vertices of G1 are exactly
the degrees of vertices of G2

p. 32 – Undirected graphs



Testing isomorphicity

Create two isomorphic graphs by permuting the vertices of the first, then test if
they are isomorphic

g1 <- sample_pa(30, m = 2, directed = FALSE)
g2 <- permute(g1, sample(vcount(g1)))
# should be TRUE
isomorphic(g1, g2)

## [1] TRUE
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Subgraph

Definition 26 (Subgraph)

Let G = (V ,E) be a graph. A graph H = (V (H),E(H)) is a subgraph of G if
V (H) ⊆ V and E(H) ⊆ E

p. 34 – Undirected graphs



Extracting a subgraph

G_sub = induced_subgraph(G, c(1:5, 11:14))
plot(G_sub, main = "A subgraph of the Karate graph")
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Naming vertices

Note that vertices (and as a consequence, edges) will be relabelled, so G_sub has
vertices labelled 1 to 9

You can name vertices if you want to avoid this

V(G)$name = 1:length(V(G))
G_sub = induced_subgraph(G, c(1:5, 11:14))
plot(G_sub, labels = V(G)$name,

main = "Subgraph of the Karate graph preserving names")

p. 37 – Undirected graphs



Subgraph of the Karate graph preserving names

1

2

3

4

5

11

12

13

14



Let G1 = (V1,E1) and G2 = (V2,E2) be two graphs

Definition 27 (Union of G1 and G2)

G1 ∪ G2 = (V1 ∪ V2,E1 ∪ E2)

Definition 28 (Intersection of G1 and G2)

G1 ∩ G2 = (V1 ∩ V2,E1 ∩ E2)

Definition 29 (Disjoint graphs)

If G1 ∩ G2 = (∅, ∅) = ∅ (empty graph) then G1 and G2 are disjoint

Definition 30 (Complement of G1)

The complement Ḡ1 of G1 is the graph on V1, with the edge set
E(Ḡ1) = [V1]

2\E1 (e ∈ E(Ḡ1) ⇐⇒ e ̸∈ E1)

p. 39 – Undirected graphs



Union

net1 <- graph_from_literal(
D - A:B:F:G, A - C - F - A, B - E - G - B, A - B, F - G,
H - F:G, H - I - J

)
net2 <- graph_from_literal(D - A:F:Y, B - A - X - F - H - Z, F - Y)
print_all(net1 %u% net2)

## IGRAPH 9551db4 UN-- 13 21 --
## + attr: name (v/c)
## + edges from 9551db4 (vertex names):
## [1] I--J H--Z H--I G--H G--E F--X F--Y F--H F--C F--G B--E B--G A--X A--C A--F
## [16] A--B D--Y D--G D--F D--B D--A
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Intersection of two graphs

G_inter = net1 %s% net2
plot(G_inter)
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