

# Graphs – Introduction (theory) – 1 MATH 2740 – Mathematics of Data Science – Lecture 15

#### Julien Arino

julien.arino@umanitoba.ca

# Department of Mathematics @ University of Manitoba

#### **Fall 202X**

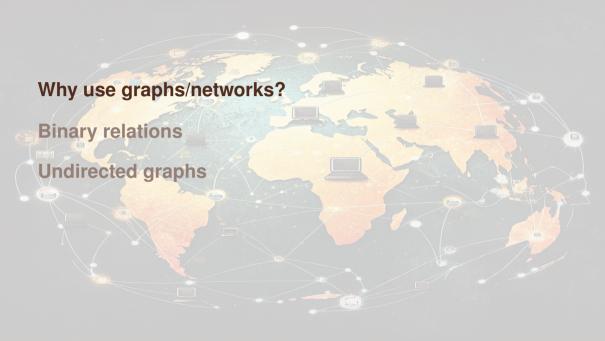
The University of Manitoba campuses are located on original lands of Anishinaabeg, Ininew, Anisininew, Dakota and Dene peoples, and on the National Homeland of the Red River Métis. We respect the Treaties that were made on these territories, we acknowledge the harms and mistakes of the past, and we dedicate ourselves to move forward in partnership with Indigenous communities in a spirit of Reconciliation and collaboration.

# **Outline**

Why use graphs/networks?

**Binary relations** 

**Undirected graphs** 



# Graphs versus networks

Mostly a terminology difference:

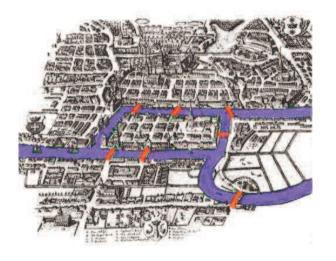
- graphs in the mathematical world
- networks elsewhere

I will mostly say graphs (this is a math course) but might oscillate

Beware: language is not consistent, so make sure you read the definitions at the start of whatever source you are using

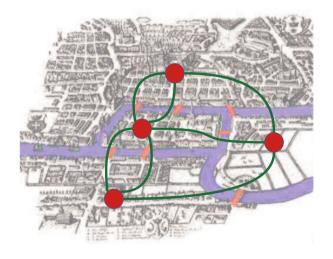
# The genesis of graphs – Euler's bridges of Königsberg

Cross the 7 bridges in a single walk without recrossing any of them?



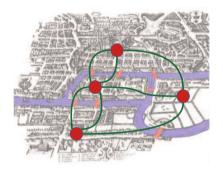
# The genesis of graphs – Euler's bridges of Königsberg

Cross the 7 bridges in a single walk without recrossing any of them?



# The genesis of graphs – Euler's bridges of Königsberg

Cross the 7 bridges in a single walk without recrossing any of them?



### Mathematical problem

Is it possible to find a trail containing all edges of the graph?

# Finding a cycle with all vertices

Salesperson must visit some cities (vertices) for their job. Can they plan a round trip using trains enabling them to visit each specified city exactly once?



2 vertices are connected iff a line connects the cities and does not pass through any other city

### Mathematical problem

Is it possible to find a cycle containing all graph vertices?

# How far is it to "train" through *n* cities?

What is the minimal length of train travel needed to visit *n* cities (vertices)?



▶ all cities are connected; each edge has a value assigned to it (the distance)

### Mathematical problem

What is the minimal spanning tree associated to the graph?

# Graphs/networks encode relations

Graphs are used in a variety of contexts because they encode *relations* between objects

Many objects in the world have relations... so graphs are quite easy to find

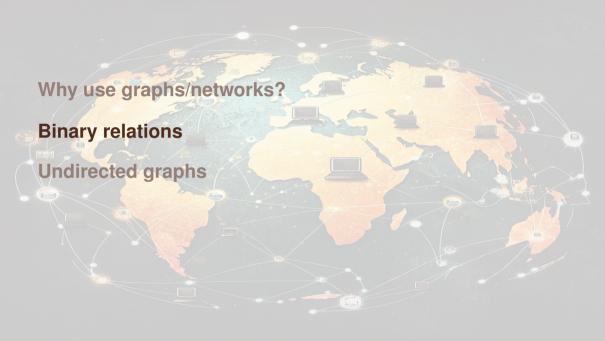
We will see many examples later, for now we cover the mathematical background

# Graphs vs digraphs vs multigraphs vs multidigraphs vs ...

Name-wise and notation-wise, this domain is a bit of a mess

- The vertex set V is essentially the only constant
- ▶ Undirected graph G = (V, E), where E are the edges
- ▶ Undirected multigraph  $G_M = (V, E)$
- ▶ Directed graph (or digraph) G = (V, A), where A are the arcs
- ▶ Directed multigraph (or multidigraph)  $G_M = (V, A)$
- ▶ Any of the above is called a *graph* and is denoted G = (V, X), when we seek generality

And just to confuse the whole thing more: we often say graph for unoriented graph



# Binary relation

### Definition 1 (Binary relation)

- ► A binary relation is an arbitrary association of elements of one set with elements of another (maybe the same) set
- A binary relation over the sets X and Y is defined as a subset of the Cartesian product  $X \times Y = \{(x, y) | x \in X, y \in Y\}$
- $(x,y) \in R$  is read "x is R-related to y" and is denoted xRy
- ▶ If  $(x, y) \notin R$ , we write "not xRy" or  $x\cancel{R}y$

### Definition 2 (Properties of binary relations)

A binary relation R over a set X is

- **Reflexive** if  $\forall x \in X$ , xRx
- Irreflexive if there does not exist x ∈ X such that xRx
- **Symmetric** if  $xRy \Rightarrow yRx$
- **Asymmetric** if  $xRy \Rightarrow y\cancel{R}x$
- ▶ Antisymmetric if xRy and  $yRx \Rightarrow x = y$
- ▶ Transitive if xRy and  $yRz \Rightarrow xRz$
- ▶ Total (or complete) if  $\forall x, y \in X$ , xRy or yRx

### Definition 3 (Equivalence relation)

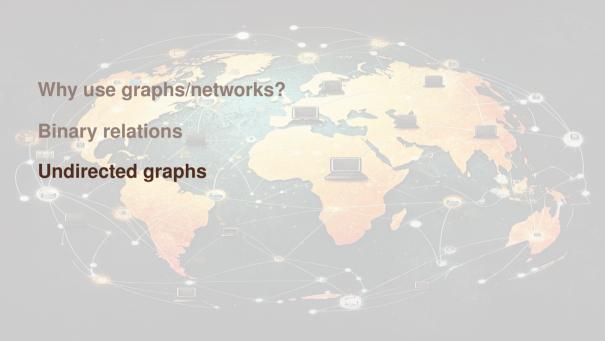
A relation that is reflexive  $(\forall x \in X, xRx)$ , symmetric  $(xRy \Rightarrow yRx)$  and transitive  $(xRy \text{ and } yRz \Rightarrow xRz)$  is an equivalence relation

#### Definition 4 (Partial order)

A relation that is reflexive ( $\forall x \in X, xRx$ ), antisymmetric (xRy and  $yRx \Rightarrow x = y$ ) and transitive (xRy and  $yRz \Rightarrow xRz$ ) is a partial order

#### Definition 5 (Total order)

A partial order that is total  $(\forall x, y \in X, xRy \text{ or } yRx)$  is a total order

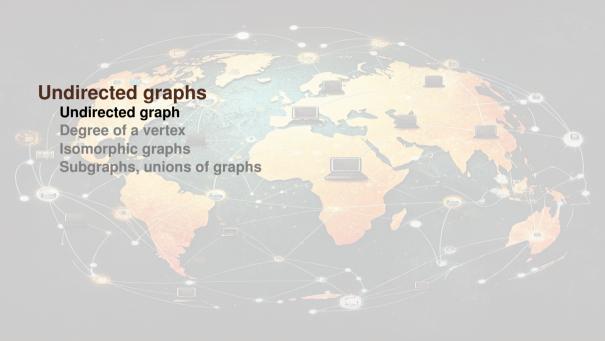


# The igraph library

Throughout these slides, we use the package igraph

I illustrate the functions that can be used to study some of the mathematical notions I introduce

I use mostly examples from the igraph documentation



# Graph

Intuitively: a graph is a set of points, and a set of relations between the points

The points are called the *vertices* of the graph and the relations are the *edges* of the graph

We can also think of the relations as being one directional, in which case the relations are the *arcs* of the digraph (a contraction of "directed graph")

# Graph, vertex and edge

### Definition 6 (Graph)

An undirected graph is a pair G = (V, E) of sets such that

- ▶ V is a set of points:  $V = \{v_1, \dots, v_p\}$
- ▶ *E* is a set of 2-element subsets of *V*:  $E = \{\{v_i, v_j\}, \{v_i, v_k\}, \dots, \{v_n, v_p\}\}$  or  $E = \{v_i v_j, v_i v_k, \dots, v_n v_p\}$

#### Definition 7 (Vertex)

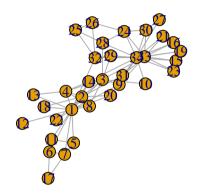
The elements of V are the vertices (or nodes, or points) of the graph G. V (or V(G)) is the vertex set of the graph G

# Definition 8 (Edge)

The elements of E are the edges (or lines) of the graph G. E (or E(G)) is the edge set of the graph G

# Setting up graphs in igraph

### Data on a Karate club



### Order and Size

### Definition 9 (Order of a graph)

The number of vertices in G is the order of G. Using the notation |V(G)| for the cardinality of V(G),

$$|V(G)| = \text{order of G}$$

### Definition 10 (Size of a graph)

The number of edges in G is the size of G,

$$|E(G)| = \text{size of G}$$

- A graph having order p and size q is called a (p, q)-graph
- ▶ A graph is finite if  $|V(G)| < \infty$

# Some simple measures

```
V(G)
## + 34/34 vertices, from b79af2b:
       1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
## [26] 26 27 28 29 30 31 32 33 34
head(E(G))
## + 6/78 edges from b79af2b:
## [1] 1--2 1--3 1--4 1--5 1--6 1--7
gorder(G)
## [1] 34
gsize(G)
```

p. 18 - Undirected graphs

# Incident – Adjacent

### Definition 11 (Incident)

- A vertex v is incident with an edge e if  $v \in e$ ; then e is an edge at v
- ▶ If  $e = uv \in E(G)$ , then u and v are each incident with e
- ▶ The two vertices incident with an edge are its ends
- ▶ An edge e = uv is incident with both vertices u and v

#### Definition 12 (Adjacent)

- ▶ Two vertices u and v are adjacent in a graph G if  $uv \in E(G)$
- ▶ If uv and uw are distinct edges (i.e.  $v \neq w$ ) of a graph G, then uv and uw are adjacent edges

# Incident vertices

```
incident(G, 1)
## + 16/78 edges from b79af2b:
## [1] 1-- 2 1-- 3 1-- 4 1-- 5 1-- 6 1-- 7 1-- 8 1-- 9 1--11 1--12 1--13 1-
## [13] 1--18 1--20 1--22 1--32
incident_edges(G, c(1, 2))
## [[1]]
## + 16/78 edges from b79af2b:
## [1] 1-- 2 1-- 3 1-- 4 1-- 5 1-- 6 1-- 7 1-- 8 1-- 9 1--11 1--12 1--13 1-
## [13] 1--18 1--20 1--22 1--32
```

## [1] 1-- 2 2-- 3 2-- 4 2-- 8 2--14 2--18 2--20 2--22 2--31 p. 20 - Undirected graphs

## + 9/78 edges from b79af2b:

##

## [[2]]

# Adjacent vertices

```
adjacent_vertices(G, v = 1)
## [[1]]
## + 16/34 vertices. from b79af2b:
       2 3 4 5 6 7 8 9 11 12 13 14 18 20 22 32
##
adjacent_vertices(G, v = c(1, 2))
## [[1]]
## + 16/34 vertices, from b79af2b:
## [1] 2 3 4 5 6 7 8 9 11 12 13 14 18 20 22 32
##
## [[2]]
## + 9/34 vertices. from b79af2b:
## [1] 1 3 4 8 14 18 20 22 31
```

### Definition 13 (Multiple edge)

Multiple edges are two or more edges connecting the same two vertices within a multigraph

### Definition 14 (Loop)

A loop is an edge with both the same ends; e.g.  $\{u, u\}$  is a loop

## Definition 15 (Simple graph)

A simple graph is a graph which contains no loops or multiple edges

### Definition 16 (Multigraph)

A multigraph is a graph which can contain multiple edges or loops

# Testing for these properties

```
any_multiple(G)
## [1] FALSE
any_loop(G)
## [1] FALSE
is_simple(G)
## [1] TRUE
```

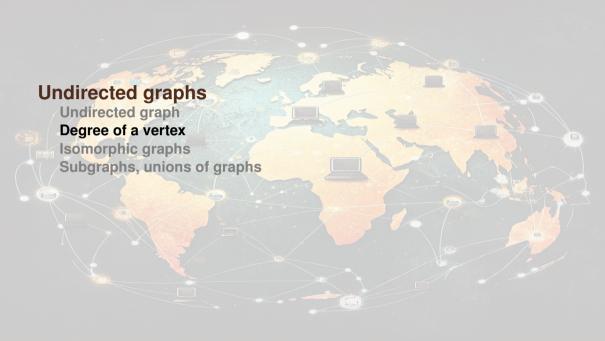
# Graph and binary relations

A simple graph G can be defined in term of a vertex set V and a binary relation over V that is

- ▶ irreflexive ( $\forall u \in V, u \not R u$ )
- ▶ symmetric ( $\forall u, v \in V, uRv \implies vRu$ )

The set of edges E(G) is the set of symmetric pairs in R

If *R* is not irreflexive, the graph is not simple



### Definition 17 (Degree of a vertex)

Let v be a vertex of G = (V, E).

- ▶ The number of edges of *G* incident with *v* is the degree of *v* in *G*
- ▶ The number of edges of *G* at *v* is the degree of *v* in *G*
- ▶ The degree of v in G is noted  $d_G(v)$  or  $deg_G(v)$

#### Theorem 18

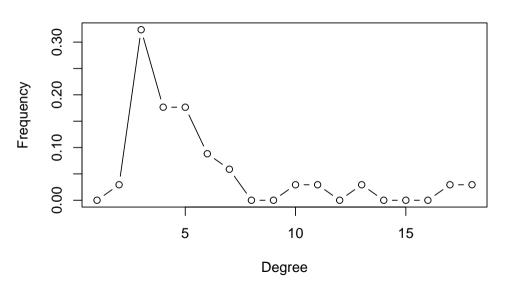
Let G be a (p,q)-graph with vertices  $v_1, \ldots, v_p$ , then

$$\sum_{i=1}^p d_G(v_i) = 2q$$

# Degree

```
degree(G)
   [1] 16 9 10 6 3 4 4 4 5 2 3 1 2 5 2 2 2 2 2 3 2 2 3
##
  [26] 3 2 4 3 4 4 6 12 17
degree_distribution(G)
##
   [1] 0.00000000 0.02941176 0.32352941 0.17647059 0.17647059 0.08823529
##
    [7] 0.05882353 0.00000000 0.00000000 0.02941176 0.02941176 0.00000000
## [13] 0.02941176 0.00000000 0.00000000 0.00000000 0.02941176 0.02941176
plot(degree_distribution(G),
    type = "b",
    xlab = "Degree", ylab = "Frequency",
    main = "Degree distribution of the Karate graph")
```

### Degree distribution of the Karate graph



# Definition 19 (Odd vertex)

A vertex is an odd vertex is its degree is odd

### Definition 20 (Even vertex)

A vertex is called even vertex is its degree is even

#### Theorem 21

Every graph contains an even number of odd vertices

### Illustration of recent results

Theorem 18 states that a (p,q)-graph has  $\sum_{i=1}^{p} d_G(v_i) = 2q$ 

```
sum(degree(G)) == 2*length(E(G))
## [1] TRUE
```

Theorem 21 states that every graph contains an even number of odd vertices

```
sum(pracma::mod(degree(G),2))
## [1] 12
```

(mode(x,2) returns 1 if x is odd so sum counts how many are odd)

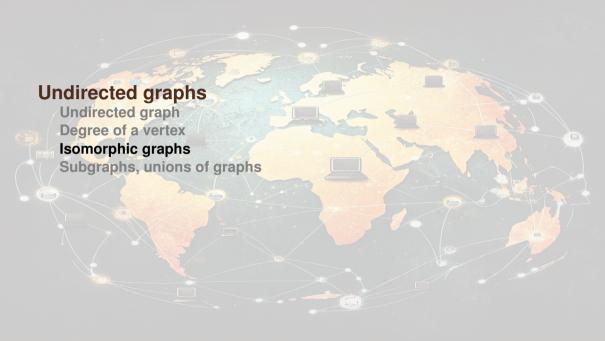
### Regular graph

#### Definition 22 (Regular graph)

If all the vertices of G have the same degree k, then the graph G is k-regular

```
length(unique(degree(G))) == 1
## [1] FALSE
```

p. 30 - Undirected graphs



### Isomorphic graphs

#### Definition 23 (Isomorphic graphs)

Let  $G_1=(V(G_1),E(G_1))$  and  $G_2=(V(G_2),E(G_2))$  be two graphs.  $G_1$  and  $G_2$  are **isomorphic** if there exists an isomorphism  $\phi$  from  $G_1$  to  $G_2$ , that is defined as an injective mapping  $\phi: V(G_1) \to V(G_2)$  such that two vertices  $u_1$  and  $v_1$  are adjacent in  $G_1 \iff$  the vertices  $\phi(u_1)$  and  $\phi(v_1)$  are adjacent in  $G_2$ 

p. 31 – Undirected graphs

If  $\phi$  is an isomorphism from  $G_1$  to  $G_2$ , then the inverse mapping  $\phi^{-1}$  from  $V(G_2)$  to  $V(G_1)$  also satisfies the definition of an isomorphism. As a consequence, if  $G_1$  and  $G_2$  are isomorphic graphs, then

- $ightharpoonup G_1$  is isomorphic to  $G_2$
- $ightharpoonup G_2$  is isomorphic to  $G_1$

#### Theorem 24

The relation "is isomorphic to" is an equivalence relation on the set of all graphs

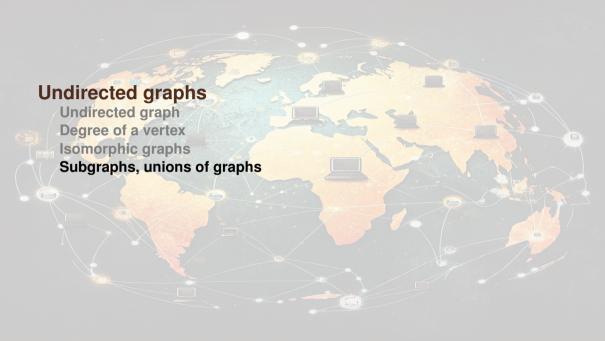
#### Theorem 25

If  $G_1$  and  $G_2$  are isomorphic graphs, then the degrees of vertices of  $G_1$  are exactly the degrees of vertices of  $G_2$ 

## Testing isomorphicity

Create two isomorphic graphs by permuting the vertices of the first, then test if they are isomorphic

```
g1 <- sample_pa(30, m = 2, directed = FALSE)
g2 <- permute(g1, sample(vcount(g1)))
# should be TRUE
isomorphic(g1, g2)
## [1] TRUE</pre>
```



# Subgraph

#### Definition 26 (Subgraph)

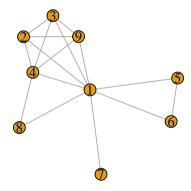
Let G = (V, E) be a graph. A graph H = (V(H), E(H)) is a subgraph of G if  $V(H) \subseteq V$  and  $E(H) \subseteq E$ 

p. 34 - Undirected graphs

## Extracting a subgraph

```
G_sub = induced_subgraph(G, c(1:5, 11:14))
plot(G_sub, main = "A subgraph of the Karate graph")
```

### A subgraph of the Karate graph

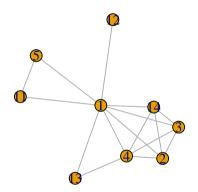


### Naming vertices

Note that vertices (and as a consequence, edges) will be relabelled, so G\_sub has vertices labelled 1 to 9

You can name vertices if you want to avoid this

### Subgraph of the Karate graph preserving names



Let  $G_1 = (V_1, E_1)$  and  $G_2 = (V_2, E_2)$  be two graphs

Definition 27 (Union of  $G_1$  and  $G_2$ )

$$G_1 \cup G_2 = (V_1 \cup V_2, E_1 \cup E_2)$$

Definition 28 (Intersection of  $G_1$  and  $G_2$ )

$$G_1 \cap G_2 = (V_1 \cap V_2, E_1 \cap E_2)$$

Definition 29 (Disjoint graphs)

If  $G_1 \cap G_2 = (\emptyset, \emptyset) = \emptyset$  (empty graph) then  $G_1$  and  $G_2$  are disjoint

Definition 30 (Complement of  $G_1$ )

The **complement**  $\bar{G}_1$  of  $G_1$  is the graph on  $V_1$ , with the edge set  $E(\bar{G}_1) = [V_1]^2 \setminus E_1$  ( $e \in E(\bar{G}_1) \iff e \not\in E_1$ )

#### Union

```
net1 <- graph_from_literal(</pre>
 D - A:B:F:G. A - C - F - A. B - E - G - B. A - B. F - G.
 H - F:G, H - I - J
net2 <- graph_from_literal(D - A:F:Y, B - A - X - F - H - Z, F - Y)
print_all(net1 %u% net2)
## IGRAPH 9551db4 UN-- 13 21 --
## + attr: name (v/c)
## + edges from 9551db4 (vertex names):
   [1] I-J H-Z H-I G-H G-E F-X F-Y F-H F-C F-G B-E B-G A-X A-X
## [16] A--B D--Y D--G D--F D--B D--A
```



# Intersection of two graphs

```
G_inter = net1 %s% net2
plot(G_inter)
```



p. 43 - Undirected graphs