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Connected vertices and graph, components

Definition 1 (Connected vertices)

Two vertices u and v in a graph G are connected if u = v , or if u ̸= v and there
exists a path in G that links u and v

(For path, see Definition 14 later)

Definition 2 (Connected graph)

A graph is connected if every two vertices of G are connected; otherwise, G is
disconnected

p. 1 – Undirected graphs



A necessary condition for connectedness

Theorem 3
A connected graph on p vertices has at least p − 1 edges

In other words, a connected graph G of order p has size(G) ≥ p − 1

p. 2 – Undirected graphs



Connectedness is an equivalence relation

Denote x ≡ y the relation “x = y , or x ̸= y and there exists a path in G connecting
x and y ”. ≡ is an equivalence relation since

1. x ≡ y [reflexivity]
2. x ≡ y =⇒ y ≡ x [symmetry]
3. x ≡ y , y ≡ z =⇒ x ≡ z [transitivity]

Definition 4 (Connected component of a graph)

The classes of the equivalence relation ≡ partition V into connected sub-graphs of
G called connected components (or components for short) of G

A connected subgraph H of a graph G is a component of G if H is not contained in
any connected subgraph of G having more vertices or edges than H

p. 3 – Undirected graphs



Vertex deletion & cut vertices

Definition 5 (Vertex deletion)

If v ∈ V (G) is a vertex of G, the graph G − v is the graph formed from G by
removing v and all edges incident with v

Definition 6 (Cut-vertices)

Let G be a connected graph. Then v is a cut-vertex G if G − v is disconnected

p. 4 – Undirected graphs



Edge deletion & bridges

Definition 7 (Edge deletion)

If e is an edge of G, the graph G − e is the graph formed from G by removing e
from G

Definition 8 (Bridge)

An edge e in a connected graph G is a bridge if G − e is disconnected

Theorem 9
Let G be a connected graph. An edge e of G is a bridge of G ⇐⇒ e does not lie
on any cycle of G

(For cycle, see Definition 17 later)

p. 5 – Undirected graphs



Undirected graphs
Connectedness
Walks, trails, paths
Complete, bipartite and other notable graphs
Planar graphs
Graph colouring



Walk

Definition 10 (Walk)

A walk in a graph G = (V ,E) is a non-empty alternating sequence
v0e0v1e1v2 . . . ek−1vk of vertices and edges in G such that ei = {vi , vi+1} for all
i < k . This walk begins with v0 and ends with vk

Definition 11 (Length of a walk)

The length of a walk is equal to the number of edges in the walk

Definition 12 (Closed walk)

If v0 = vk , the walk is closed

p. 6 – Undirected graphs



Trail and path

Definition 13 (Trail)

If the edges in the walk are all distinct, it defines a trail in G = (V ,E)

Definition 14 (Path)

If the vertices in the walk are all distinct, it defines a path in G

The sets of vertices and edges determined by a trail is a subgraph

p. 7 – Undirected graphs



Distance between two vertices

Definition 15 (Distance between two vertices)

The distance d(u, v) in G = (V ,E) between two vertices u and v is the length of
the shortest path linking u and v in G

If no such path exists, we assume d(u, v) = ∞

p. 8 – Undirected graphs



Circuit and cycle

Definition 16 (Circuit)

A trail linking u to v , containing at least 3 edges and in which u = v , is a circuit

Definition 17 (Cycle)

A circuit which does not repeat any vertices (except the first and the last) is a
cycle (or simple circuit)

Definition 18 (Length of a cycle)

The length of a cycle is its number of edges

p. 9 – Undirected graphs



Definition 19 (Eulerian trail)

A walk in an undirected multigraph M that uses each edge exactly once is a
Eulerian trail of M

Definition 20 (Traversable graph)

If a graph G has a Eulerian trail, then G is a traversable graph

Definition 21 (Eulerian circuit)

A circuit containing all the vertices and edges of a multigraph M is a Eulerian
circuit of M

Definition 22 (Eulerian graph)

A graph (resp. multigraph) containing an Eulerian circuit is a Eulerian graph
(resp. Eulerian multigraph)

p. 10 – Undirected graphs



Remember Euler’s bridges of Königsberg?
Cross the 7 bridges in a single walk without recrossing any of them?

Mathematical problem

Is the (multi)graph traversable? Eulerian?

p. 11 – Undirected graphs



Theorem 23
A multigraph M is traversable ⇐⇒ M is connected and has exactly two odd
vertices

Furthermore, any Eulerian trail of M begins at one of the odd vertices and ends at
the other odd vertex

Theorem 24
A multigraph M is Eulerian ⇐⇒ M is connected and every vertex of M is even

p. 12 – Undirected graphs



Fleury’s algorithm to find a Eulerian trail
For a connected graph with exactly 2 odd vertices

▶ Start at one of the odd vertices
▶ Marking your path as you move from vertex to vertex, travel along any edges

you wish, but DO NOT travel along an edge that is a bridge for the graph
formed by the EDGES THAT HAVE YET TO BE TRAVELED – unless you
have to

▶ Continue until every edge has been traveled
RESULT: a Eulerian trail

p. 13 – Undirected graphs



Fleury’s algorithm to find a Eulerian circuit
For a connected graph with no odd vertices

▶ Pick any vertex as a starting point
▶ Marking your path as you move from vertex to vertex, travel along any edges

you wish, but DO NOT travel along an edge that is a bridge for the graph
formed by the EDGES THAT HAVE YET TO BE TRAVELED – unless you
have to

▶ Continue until you return to your starting point
RESULT: a Eulerian circuit

p. 14 – Undirected graphs



Definition 25 (Hamiltonian path)

A path containing all vertices of a graph G is a Hamiltonian path of G

Definition 26 (Traceable graph)

If a graph G has an Hamiltonian path, then G is a traceable graph

Definition 27 (Hamiltonian cycle)

A cycle containing all vertices of a graph G is a Hamiltonian cycle of G

Definition 28 (Hamiltonian graph)

A graph containing a Hamiltonian cycle is a Hamiltonian graph

p. 15 – Undirected graphs



Theorem 29 (Dirac’s theorem)

If G is a graph of order p ≥ 3 such that deg(v) ≥ p/2 for every vertex v of G, then
G is Hamiltonian

Theorem 30 (Ore’s theorem)

If G is a graph of order p ≥ 3 such that for all distinct nonadjacent vertices u and v
of G,

deg(u) + deg(v) ≥ p

then G is Hamiltonian

p. 16 – Undirected graphs
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Definition 31 (Complete graph)

A graph is complete if every two of its vertices are adjacent

Definition 32 (n-clique)

A simple, complete graph on n vertices is called an n-clique and is often denoted
Kn

Note that a complete graph of order p is (p − 1)-regular

p. 17 – Undirected graphs



Bipartite graph

Definition 33 (Bipartite graph)

A graph is bipartite if its vertices can be partitioned into two sets V1 and V2, such
that no two vertices in the same set are adjacent. This graph may be written
G = (V1,V2,E)

Definition 34 (Complete bipartite graph)

A bipartite graph in which every two vertices from the 2 different partitions are
adjacent is called a complete bipartite graph

We often denote Kp,q a simple, complete bipartite graph with |V1| = p and |V2| = q

p. 18 – Undirected graphs



Some specific graphs
Definition 35 (Tree)

Any connected graph that has no cycles is a tree

Definition 36 (Cycle Cn)

For n ≥ 3, the cycle Cn is a connected graph of order n that is a cycle on n
vertices

Definition 37 (Path Pn)

The path Pn is a connected graph that consists of n ≥ 2 vertices and n − 1 edges.
Two vertices of Pn have degree 1 and the rest are of degree 2

Definition 38 (Star Sn)

The star of order n is the complete bipartite graph K1,n−1 (1 vertex of degree n − 1
and n − 1 vertices of degree 1)

p. 19 – Undirected graphs
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Planar graph

Definition 39 (Planar graph)

A graph is planar if it can be drawn in the plane with no crossing edges (except at
the vertices). Otherwise, it is nonplanar

Definition 40 (Plane graph)

A plane graph is a graph that is drawn in the plane with no crossing edges. (This
is only possible if the graph is planar)

(To see the difference, have you ever played this game?)

p. 20 – Undirected graphs
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Let G be a plane graph
▶ the connected parts of the plane are called regions
▶ vertices and edges that are incident with a region R make up a boundary of

R

Theorem 41 (Euler’s formula)

Let G be a connected plane graph with p vertices, q edges, and r regions, then

p − q + r = 2

Corollary 42

Let G be a plane graph with p vertices, q edges, r regions, and k connected
components, then

p − q + r = k + 1

p. 21 – Undirected graphs



Theorem 43
Let G be a connected planar graph with p vertices and q edges, where p ≥ 3, then

q ≤ 3p − 6.

(a maximal connected planar graph with p vertices has q = 3p − 6 edges)

Corollary 44

If G is a planar graph, then δ(G) ≤ 5, where δ(G) is the minimal degree of G.
(every planar graph contains a vertex of degree less than 6)

p. 22 – Undirected graphs



Two well-known non-planar graphs

K3,3 and K5 are nonplanar

Theorem 45 (Kuratowski Theorem)

A graph G is planar ⇐⇒ it contains no subgraph isomorphic to K5 or K3,3 or any
subdivision of K5 or K3,3

Note: If a graph G is nonplanar and G is a subgraph of G′, then G′ is also
nonplanar

p. 23 – Undirected graphs
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Definition 46 (Colouring of a graph G)

A colouring of a graph G is an assignment of colours to the vertices of G such
that adjacent vertices have different colours

Definition 47 (n-colouring of G)

A n-colouring is a colouring of G using n colours

Definition 48 (n-colourable)

G is n-colourable if there exists a colouring of G that uses n colours

p. 24 – Undirected graphs



Definition 49 (Chromatic number)

The chromatic number χ(G) of a graph G is the minimal value n for which an
n-colouring of G exists

Property 50

▶ χ(G) = 1 ⇐⇒ G have no edges
▶ If G = Kn,m, then χ(G) = 2
▶ If G = Kn, then χ(G) = n
▶ For any graph G,

χ(G) ≤ 1 +∆(G)

where ∆(G) is the maximum degree of G
▶ If G is a planar graph, then χ(G) ≤ 4

p. 25 – Undirected graphs



“Real life” problem
What is the minimal number of colours to colour all states in the map so that two
adjacent states have different colours?

p. 26 – Undirected graphs



“Real life” problem

What is the minimal number of colours to colour all states in the map so that two
adjacent states have different colours?

Mathematical representation:
▶ vertices correspond to the states
▶ vertices are adjacent ⇐⇒ the two states are adjacent (sharing an isolated

point such as the “Four Corners” does not count)

Mathematical problem

What is the chromatic number of the graph associated to the map?

p. 27 – Undirected graphs



Welch-Powell algorithm for colouring a graph G

1. Order the vertices of G by decreasing degree. (Such an ordering may not be
unique since some vertices may have the same degree)

2. Use one colour to paint the first vertex and to paint, in sequential order, each
vertex on the list that is not adjacent to a vertex previously painted with this
colour

3. Start again at the top of the list and repeat the process, painting previously
unpainted vertices using a second colour

4. Repeat with additional colours until all vertices have been painted

p. 28 – Undirected graphs
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Definitions
Definition 51 (Digraph)

A directed graph (or digraph) is a pair G = (V ,A) of sets such that
▶ V is a set of points: V = {v1, v2, v3, .., vp}
▶ A is a set of ordered pairs of V : A = {(vi , vj), (vi , vk ), . . . , (vn, vp)} or

A = {vivj , vivk , . . . , vnvp}

Definition 52 (Vertex)

The elements of V are the vertices of the digraph G. V or V (G) is the vertex set of
the digraph G

Definition 53 (Arc)

The elements of A are the arcs (directed edges) of the digraph G. A or A(G) is the
arc set of the digraph G

p. 29 – Directed graphs



Digraph and binary relation

A (simple) digraph D can be defined in term of a vertex set V and an irreflexive
relation R over V

The defining relation R of the digraph G need not be symmetric

p. 30 – Directed graphs



Directed network

Definition 54 (Directed network)

A directed network is a digraph together with a function f ,

f : A → R,

which maps the arc set A into the set of real number. The value of the arc uv ∈ A
is f (uv)

p. 31 – Directed graphs



Loops & Multiple arcs

Definition 55 (Loop)

A loop is an arc with both the same ends; e.g. (u,u) is a loop

Definition 56 (Multiple arcs)

Multiple arcs (or multi-arcs) are two or more arcs connecting the same two
vertices

p. 32 – Directed graphs



Multidigraph/Digraph

Definition 57 (Multidigraph)

A multidigraph is a digraph which allows repetition of arcs or loops

Definition 58 (Digraph)

In a digraph, no more than one arc can join any pair of vertices

p. 33 – Directed graphs
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Let G = (V ,A) be a digraph

Definition 59 (Arc endpoints)

For an arc u = (x , y), vertex x is the initial endpoint, and vertex y is the terminal
endpoint

Definition 60 (Predecessor - Successor)

If (u, v) ∈ A(G) is an arc of G, then
▶ u is a predecessor of v
▶ v is a successor of u

Definition 61 (Neighbours of a vertex)

Let x ∈ V be a vertex. The neighbours of x is the set Γ(x) = Γ+G(x) ∪ Γ−G(x),
where Γ+G(x) and Γ−G(x) are, respectively, the set of successors and predecessors
of v

p. 35 – Directed graphs



Sources and sinks

Definition 62 (Directed away - Directed towards)

If a = (u, v) ∈ A(G) is an arc of G, then
▶ the arc a is said to be directed away from u
▶ the arc a is said to be directed towards v

Definition 63 (Source - Sink)

▶ Any vertex which has no arcs directed towards it is a source
▶ Any vertex which has no arcs directed away from it is a sink

p. 36 – Directed graphs



Adjacent arcs

Definition 64 (Adjacent arcs)

Two arcs are adjacent if they have at least one endpoint in common

p. 37 – Directed graphs



Arcs incident to a subset of arcs

Definition 65 (Arc incident out of X ⊂ A(G))

If the initial endpoint of an arc u belongs to X ⊂ A(G) and if the terminal endpoint
of arc u does not belong to X , then u is said to be incident out of X ; we write
u ∈ ω+(X )

Similarly, we define an arc incident into X and the set ω−(X )

Finally, the set of arcs incident to X is denoted

ω(X ) = ω+(X ) ∪ ω−(X )

p. 38 – Directed graphs



Definition 66 (Subgraph of G generated by A ⊂ V )

The subgraph of G generated by A is the graph with A as its vertex set and with
all the arcs in G that have both their endpoints in A. If G = (V , Γ) is a 1-graph,
then the subgraph generated by A is the 1-graph GA = (A, ΓA) where

ΓA(x) = Γ(x) ∩ A (x ∈ A)

Definition 67 (Partial graph of G generated by V ⊂ U)

The graph (X ,V ) whose vertex set is X and whose arc set is V . In other words, it
is graph G without the arcs U − V

Definition 68 (Partial subgraph of G)

A partial subgraph of G is the subgraph of a partial graph of G

p. 39 – Directed graphs
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Degree
Let v be a vertex of a digraph G = (V ,A)

Definition 69 (Outdegree of a vertex)

The number of arcs directed away from a vertex v , in a digraph is called the
outdegree of v and is written d+

G (v)

Definition 70 (Indegree of a vertex)

The number of arcs directed towards a vertex v , in a digraph is called the
indegree of v and is written d−

G (v)

Definition 71 (Degree)

For any vertex v in a digraph, the degree of v is defined as

dG(v) = d+
G (v) + d−

G (v)

p. 40 – Directed graphs



Theorem 72
For any (di)graph, the sum of the degrees of the vertices equals twice the number
of edges (arcs)

Corollary 73

In any (di)graph, the sum of the degrees of the vertices is a nonnegative even
integer

Theorem 74
If G is a digraph with vertex set V (G) = {v1, . . . , vp} and q arcs, then

p∑
i=1

d+
G (vi) =

p∑
i=1

d−
G (vi) = q

p. 41 – Directed graphs



Definition 75 (Regular digraph)

A digraph G is r -regular if d+
G (v) = d−

G (v) = r for all v ∈ V (G)

p. 42 – Directed graphs



Symmetric/antisymmetric digraphs

Definition 76 (Symmetric digraph)

Let G = (V ,A) be a digraph with associated binary relation R. If R is symmetric,
the digraph is symmetric

Definition 77 (Anti-symmetric digraph)

Let G = (V ,A) be a digraph with associated binary relation R. The digraph G is
anti-symmetric if

xRy =⇒ y��Rx

Definition 78 (Symmetric multidigraph)

Let G = (V ,A) be a multidigraph. G is symmetric if ∀x , y ∈ V (G), the number of
arcs from x to y equals the number of arcs from y to x

p. 43 – Directed graphs
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Walks

Let G = (V ,A) be a digraph.

Definition 79 (Directed walk)

A directed walk in a digraph G is a non-empty alternating sequence
v0a0v1a1v2 . . . ak−1vk of vertices and arcs in G such that ai = (vi , vi+1) for all
i < k . This walk begins with v0 and ends with vk

Definition 80 (Length of a directed walk)

The length of a directed walk is equal to the number of arcs in the directed walk

Definition 81 (Closed walk)

If v0 = vk , the walk is closed

p. 44 – Directed graphs



Trails

Let G = (V ,A) be a digraph.

Definition 82 (Directed trail)

A directed walk in G in which all arcs are distinct is a directed trail in G

Definition 83 (Directed path)

A directed walk in G in which all vertices are distinct is a directed path in G

Definition 84 (Directed cycle)

A closed walk is a directed cycle if it contains at least three vertices and all its
vertices are distinct except for v0 = vk

p. 45 – Directed graphs



Examples of directed cycles

a b

c d

1

2 6 43

5 Cycles:
▶ µ1 = (1,6,2) = [abca]
▶ µ2 = (1,6,3) = [abca]
▶ µ3 = (2,3) = [aca]
▶ µ4 = (1,4,5,2) = [abdca]
▶ µ5 = (6,5,4) = [acdb]
▶ µ6 = (1,4,5,3) = [abdca]

p. 46 – Directed graphs
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Definitions
Definition 85 (Underlying graph)

Given a digraph, the undirected graph with each arc replaced by an edge is called
the underlying graph

Definition 86 (Weakly connected digraph)

If the underlying graph is a connected graph, then the digraph is weakly
connected

Definition 87 (Strongly connected digraph)

A digraph G is strongly connected if for every two distinct vertices u and v of G,
there exists a directed path from u to v

Definition 88 (Disconnected digraph)

A digraph is said to be disconnected if it is not weakly connected
p. 47 – Directed graphs



Strong connectedness is an equivalence relation

Denote x ≡ y the relation “x = y , or x ̸= y and there exists a directed path in G
from x to y ”. ≡ is an equivalence relation since

1. x ≡ y [reflexivity]
2. x ≡ y =⇒ y ≡ x [symmetry]
3. x ≡ y , y ≡ z =⇒ x ≡ z [transitivity]

Definition 89 (Connected component of a graph)

Sets of the form
A(x0) = {x : x ∈ V , x ≡ x0}

are equivalence classes. They partition V into strongly connected sub-digraphs of
G called strongly connected components (or strong components) of G

A strong component in G is a maximal strongly connected subdigraph of G

p. 48 – Directed graphs



Theorem 90 (Properties)

Let G = (V ,A) be a digraph
▶ If G is strongly connected, it has only one strongly connected component
▶ The strongly connected components partition the vertices V (G), with every

vertex in exactly one strongly connected component

p. 49 – Directed graphs



Algorithm for determining strongly connected components in
G = (V ,A)

▶ Determine the strongly connected component C(v) containing the vertex v ; if
V − C(v) is non-empty, re-do the same operation on the sub-digraph
G′ = (V − C(v),A′)

▶ To determine C(v), the strongly connected component containing v : let v be
a vertex of a digraph , which is not already in any strongly connected
component

1. Mark the vertex v with ±
2. Mark with + all successors (not already marked with +) of a vertex marked with

+
3. Mark with − all predecessors (not already marked with −) of a vertex marked

with −
4. Repeat until no more possible marking with + or −

All vertices marked with ± belong to the same strongly connected component
C(v) containing the vertex v

p. 50 – Directed graphs



Condensation of a digraph

Definition 91 (Condensation of a digraph)

The condensation G∗ of a digraph G is a digraph having as vertices the strongly
connected components (SCC) of G and such that there exists an arc in G∗ from a
SCC Ci to another SCC Cj if there is an arc in G from some vertex of Si to a vertex
of Sj

p. 51 – Directed graphs



Definition 92 (Articulation set)

For a connected graph, a set X of vertices is called an articulation set (or a
cutset) if the subgraph of G generated by V − X is not connected

Definition 93 (Stable set)

A set S of vertices is called a stable set if no arc joins two distinct vertices in S

p. 52 – Directed graphs
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Orientation

Definition 94 (Orienting a graph)

Given a connected graph, we describe the act of assigning a direction to each
edge (edge → arc) as orienting the graph

Definition 95 (Strong orientation)

If the digraph resulting from orienting a graph is strongly connected, the orientation
is a strong orientation

p. 53 – Directed graphs



Orientable graph

Definition 96 (Orientable graph)

A connected graph G is orientable if it admits a strong orientation

Theorem 97
A connected graph G = (V ,E) is orientable ⇐⇒ G contains no bridges

(in other words, iff every edge is contained in a cycle)

p. 54 – Directed graphs



Matrices associated to a graph/digraph

There are multiple matrices associated to a graph/digraph

The branch of graph theory that studies the properties of matrices derived from
graphs and uses of these matrices in determining graph properties is spectral
graph theory

Graphs greatly simplify some problems in linear algebra and vice versa

p. 55 – Matrices associated to a graph/digraph



Matrices associated to a graph/digraph
Adjacency matrices
Other matrices associated to a graph/digraph
Linking graphs and linear algebra



Adjacency matrix (undirected case)

Let G = (V ,E) be a graph of order p and size q, with vertices v1, . . . , vp and edges
e1, . . . ,eq

Definition 98 (Adjacency matrix)

The adjacency matrix is
MA = MA(G) = [mij ]

is a p × p matrix in which

mij =

{
1 if vi and vj are adjacent
0 otherwise

p. 56 – Matrices associated to a graph/digraph



Theorem 99 (Adjacency matrix and degree)

The sum of the entries in row i of the adjacency matrix is the degree of vi in the
graph

We often write A(G) and, reciprocally, if A is an adjacency matrix, G(A) the
corresponding graph

G undirected =⇒ A(G) symmetric

A(G) has nonzero diagonal entries if G is not simple

p. 57 – Matrices associated to a graph/digraph



Adjacency matrix (directed case)

Let G = (V ,A) be a digraph of order p with vertices v1, . . . , vp

Definition 100 (Adjacency matrix)

The adjacency matrix M = M(G) = [mij ] is a p × p matrix in which

mij =

{
1 if arc vivj ∈ A
0 otherwise

p. 58 – Matrices associated to a graph/digraph



Theorem 101 (Properties)

▶ M is not necessarily symmetric
▶ The sum of any column of M is equal to the number of arcs directed towards

vj

▶ The sum of the entries in row i is equal to the number of arcs directed away
from vertex vi

▶ The (i , j)−entry of Mn is equal to the number of walks of length n from vertex
vi to vj

p. 59 – Matrices associated to a graph/digraph



Definition 102 (Multiplicity of a pair)

The multiplicity of a pair x , y is the number m+
G(x , y) of arcs with initial endpoint x

and terminal endpoint y . Let

m−
G(x , y) = m+

G(y , x)
mG(x , y) = m+

G(x , y) + m−
G(x , y)

If x ̸= y , then mG(x , y) is number of arcs with both x and y as endpoints. If x = y ,
then mG(x , y) equals twice the number of loops attached to vertex x . If A,B ⊂ V ,
A ̸= B, let

m+
G(A,B) = {u : u ∈ U,u = (x , y), x ∈ A, y ∈ B}

mG(A,B) = m+
G(A,B) + m+

G(A,B)

p. 60 – Matrices associated to a graph/digraph



Adjacency matrix of a multigraph

Definition 103 (Matrix associated with G)

If G has vertices x1, x2, . . . , xn, then the matrix associated with G is

aij = m+
G(xi , xj)

Definition 104 (Adjacency matrix)

The matrix aij + aji is the adjacency matrix associated with G

p. 61 – Matrices associated to a graph/digraph



Adjacency matrix (multigraph case)

Definition 105 (Adjacency matrix of a multigraph)

G an ℓ-graph, then the adjacency matrix MA = [mij ] is defined as follows

mij =

{
k if arc there are k arcs (i , j) ∈ U
0 otherwise

with k ≤ ℓ

G undirected =⇒ MA(G) symmetric

MA(G) has nonzero diagonal entries if G is not simple.

p. 62 – Matrices associated to a graph/digraph



Weighted adjacency matrices

Sometimes, adjacency matrices (typically for 1-graphs) have real entries, usually
positive

This means that the arcs/edges have been given a weight
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Theorem 106 (Number of walks of length n)

Let A be the adjacency matrix of a graph G = (V (G),E(G)), where
V (G) = {v1, v2, . . . , vp}. Then the (i , j)−entry of An, n ≥ 1, is the number of
different walks linking vi to vj of length n in G.

(two walks of the same length are equal if their edges occur in exactly the same
order)
Example: let A be the adjacency matrix of a graph G = (V (G),E(G)).
▶ the (i , i)−entry of A2 is equal to the degree of vi .
▶ the (i , i)−entry of A3 is equal to twice the number of C3 containing vi .
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Incidence matrix (undirected case)
Let G = (V ,E) be a graph of order p, and size q, with vertices v1, . . . , vp, and
edges e1, . . . ,eq

Definition 107 (Incidence matrix)

The incidence matrix is
B = B(G) = [bij ]

is that p × q matrix in which

bij =

{
1 if vi is incident with ej
0 otherwise

Theorem 108 (Incidence matrix and degrees)

The sum of the entries in row i of the incidence matrix is the degree of vi in the
graph

p. 65 – Matrices associated to a graph/digraph



Incidence matrix (directed case)

Let G = (V ,A) be a digraph of order p and size q, with vertices v1, . . . , vp and arcs
a1, . . . ,aq

Definition 109 (Incidence matrix)

The incidence matrix B = B(G) = [bij ] is a p × q matrix in which

bij =


1 if arc aj is directed away from a vertex vi
−1 if arc aj is directed towards a vertex vi
0 otherwise
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Spectrum of a graph

We will come back to this later, but for now..

Definition 110 (Spectrum of a graph)

The spectrum of a graph G is the spectrum (set of eigenvalues) of its associated
adjacency matrix M(G)

This is regardless of the type of adjacency matrix or graph
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Degree matrix

Definition 111 (Degree matrix)

The degree matrix D = [dij ] for G is a n × n diagonal matrix defined as

dij =

{
dG(vi) if i = j
0 otherwise

In an undirected graph, this means that each loop increases the degree of a vertex
by two

In a directed graph, the term “degree” may refer either to indegree (the number of
incoming edges at each vertex) or outdegree (the number of outgoing edges at
each vertex)
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Laplacian matrix

Definition 112 (Laplacian matrix)

G = (V ,A) a simple graph with n vertices. The Laplacian matrix is

L = D(G)− M(G)

where D(G) is the degree matrix and M(G) is the adjacency matrix
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Laplacian matrix (continued)

G simple graph =⇒ M(G) only contains 1 or 0 and its diagonal elements are all 0

For directed graphs, either the indegree or outdegree is used, depending on the
application

Elements of L are given by

ℓij =


dG(vi) if i = j
−1 if i ̸= j and vi is adjacent to vj

0 otherwise
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Distance matrix

Let G be a graph of order p with vertices v1, . . . , vp

Definition 113 (Distance matrix)

The distance matrix ∆(G) = [dij ] is a p × p matrix in which

δij = dG(vi , vj)

Note δii = 0 for i = 1, . . . ,p
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Property 114

▶ M is not necessarily symmetric
▶ The sum of any column of M is equal to the number of arcs directed towards

vj

▶ The sum of the entries in row i is equal to the number of arcs directed away
from vertex vi

▶ The (i , j)−entry of Mn is equal to the number of walks of length n from vertex
vi to vj
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Counting paths

Theorem 115
G a digraph and MA(G) its adjacency matrix. Denote P = [pij ] the matrix P = Mk

A.
Then pij is the number of distinct paths of length k from i to j in G

Definition 116 (Irreducible matrix)

A matrix A ∈ Mn is reducible if ∃P ∈ Mn, permutation matrix, s.t. PT AP can be
written in block triangular form. If no such P exists, A is irreducible

Theorem 117
A irreducible ⇐⇒ G(A) strongly connected
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Theorem 118
Let A be the adjacency matrix of a graph G on p vertices. A graph G on p vertices
is connected ⇐⇒

I + A + A2 + · · ·+ Ap−1 = C

has no zero entries

Theorem 119
Let M be the adjacency matrix of a digraph D on p vertices. A digraph D on p
vertices is strongly connected ⇐⇒

I + M + M2 + · · ·+ Mp−1 = C

has no zero entries
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Nonnegative matrix

A = [aij ] ∈ Mn(R) nonnegative if aij ≥ 0 ∀i , j = 1, . . . ,n; v ∈ Rn nonnegative if
vi ≥ 0 ∀i = 1, . . . ,n. Spectral radius of A

ρ(A) = max
λ∈Sp(A)

{|λ|}

Sp(A) the spectrum of A

p. 75 – Matrices associated to a graph/digraph



Perron-Frobenius (PF) theorem

Theorem 120 (PF – Nonnegative case)

0 ≤ A ∈ Mn(R). Then ∃v ≥ 0 s.t.

Av = ρ(A)v

Theorem 121 (PF – Irreducible case)

Let 0 ≤ A ∈ Mn(R) irreducible. Then ∃v > 0 s.t.

Av = ρ(A)v

ρ(A) > 0 and with algebraic multiplicity 1. No nonnegative eigenvector is
associated to any other eigenvalue of A
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Primitive matrices

Definition 122
0 ≤ A ∈ Mn(R) primitive (with primitivity index k ∈ N∗

+) if ∃k ∈ N∗
+ s.t.

Ak > 0,

with k the smallest integer for which this is true. A imprimitive if it is not primitive

A primitive =⇒ A irreducible; the converse is false
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Theorem 123
A ∈ Mn(R) irreducible and ∃i = 1, . . . ,n s.t. aii > 0 =⇒ A primitive

Here d is the index of imprimitivity (i.e., the number of eigenvalues that have the
same modulus as λp = ρ(A)). If d = 1, then A is primitive. We have that d = gcd
of all the lengths of closed walks in G(A)
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1 2

3

Adjacency matrix

A =

0 1 0
0 0 1
1 0 0


Closed walks in G(A) (lengths): 1 → 1 (3), 2 → 2 (3), 2 → 2 (3) =⇒ gcd = 3 =⇒
d = 3 (here, all eigenvalues have modulus 1)

1 2

3

A =

1 1 0
0 0 1
1 0 0



Closed walk 1 → 1 has length 1 =⇒ gcd of lengths of closed walks is 1 =⇒ A
primitive

p. 79 – Matrices associated to a graph/digraph



Let 0 ≤ A ∈ Mn

Theorem 124
A primitive =⇒ ∃ 0 < k ≤ (n − 1)nn such that Ak > 0

Theorem 125
If A is primtive and the shortest simple directed cycle in G(A) has length s, then
the primitivity index is ≤ n + s(n − 1)

Theorem 126
A primitive ⇐⇒ An2−2n+2 > 0

Theorem 127
If A is irreducible and has d positive entries on the diagonal, then the primitivity
index ≤ 2n − d − 1
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Theorem 128
0 ≤ A ∈ Mn, λP = ρ(A) the Perron root of A, vP and wP the corresponding right
and left Perron vectors of A, respectively, d the index of imprimitivity of A (with
d = 1 when A is primitive) and λj ∈ σ(A) the spectrum of A, with j = 2, . . . ,n
unless otherwise specified (assuming λ1 = λP)

NONNEGATIVE

REDUCIBLE

▶ λP ≥ 0
▶ wP ≥ 0
▶ vP ≥ 0
▶ λP ≥ |λj |

IRREDUCIBLEIMPRIMITIVE

▶ λP > 0
▶ wP > 0
▶ vP > 0
▶ λP = |λj |,

j = 2, . . . ,d
▶ λP > |λj |,

j > d

PRIMITIVE

▶ λP > 0
▶ wP > 0
▶ vP > 0
▶ λP > |λj |,

j ̸= P
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Trees

Definition 129 (Forest, trees and branches)

▶ A connected graph with no cycle is a tree
▶ A tree is a connected acyclic graph, its edges are called branches
▶ A graph (connected or not) without any cycle is a forest. Each component is

a tree

(A forest is a graph whose connected components are trees)
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Is the “Karate graph” a tree?

is_acyclic(G)

## Error: object ’G’ not found

is_tree(G)

## Error: object ’G’ not found

So we need friend to play with!

G_tu <- make_tree(7, 2, mode = "undirected")
G_td <- make_tree(7, 2)
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An undirected tree
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A (out) directed tree
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Property 130

▶ Every edge of a tree is a bridge
▶ Given two vertices u and v of a tree, there is an unique path linking u to v
▶ A tree with p vertices and q edges satisfies q = p − 1. Thus, a tree is

minimally connected

(First property: the deletion of any edge of a tree diconnects it)
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Every edge of a tree is a bridge

E(G_tu)

## + 6/6 edges from bbcf4f1:
## [1] 1--2 1--3 2--4 2--5 3--6 3--7

bridges(G_tu)

## + 6/6 edges from bbcf4f1:
## [1] 2--4 2--5 1--2 3--6 3--7 1--3

all(sort(E(G_tu)) == sort(bridges(G_tu)))

## [1] TRUE
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Spanning tree

Definition 131 (Spanning tree)

A spanning tree of a connected graph G is a subgraph of G that contains all the
vertices of G and is a tree.

A graph may have many spanning trees
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Minimal spanning tree

Definition 132 (Value of a spanning tree)

The value of a spanning tree T of order p is

p−1∑
i=1

f (ei)

where f is the function that maps the edge set into R

Definition 133 (Minimal spanning tree)

Let G be an undirected network, and let T be a minimal spanning tree of G.
Then T is a spanning tree whose the value is minimum
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Algorithm to find a minimal spanning tree

Let G = (V (G),E(G)) be an undirected network and T be a minimal spanning tree

1. Sort the edges of G in increasing order by value
2. T = (V (G), ∅)
3. For each edge e in sorted order if the endpoints of e are disconnected in T

add e to T
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Finding a minimal spanning tree of the Karate graph

The function mst finds minimal spanning trees, using distances if no edge weights
are provided

G_mst = mst(G)

## Error: object ’G’ not found
## Error in h(simpleError(msg, call)): error in evaluating the
argument ’x’ in selecting a method for function ’plot’: object
’G_mst’ not found
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A minimal spanning tree of the Karate graph
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Minimal connector problem

▶ Model: a graph G such that edges represent all possible connections, and
each edge has a positive value which represents its cost; an undirected
network G

▶ Solution: a minimal spanning tree T of G
▶ a spanning tree of G is a subgraph of G that contains all the vertices of G and is

a tree.
▶ the cost of the spanning tree is the sum of values of the edges of T
▶ a spanning tree such that no other spanning tree has a smaller cost is a

minimmal spanning tree.
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Theorem 134 (Characterisation of trees)

H = (V ,U) a graph of order |V | = n > 2. The following are equivalent and all
characterise a tree :

1. H connected and has no cycles
2. H has n − 1 arcs and no cycles
3. H connected and has exactly n − 1 arcs
4. H has no cycles, and if an arc is added to H, exactly one cycle is created
5. H connected, and if any arc is removed, the remaining graph is not connected
6. Every pair of vertices of H is connected by one and only one chain
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Definition 135 (Pendant vertex)

A vertex is pendant if it is adjacent to exactly one other vertex

Theorem 136
A tree of order n ≥ 2 has at least two pendant vertices
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Theorem 137
A graph G = (V ,U) has a partial graph that is a tree ⇐⇒ G connected

Recall that a partial graph is a graph generated by a subset of the arcs
(Definition 67 slide 39)
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Spanning tree

The procedure in the proof of Theorem 137 gives a spanning tree

Can also build a spanning tree as follows:
▶ Consider any arc u0

▶ Find arc u1 that does not form a cycle with u0

▶ Find arc u2 that does not form a cycle with {u0,u1}
▶ Continue
▶ When you cannot continue anymore, you have a spanning tree
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Theorem 138
G connected graph with ≥ 1 arc. TFAE

1. G strongly connected
2. Every arc lies on a circuit
3. G contains no cocircuits
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Theorem 139
G graph with ≥ 1 arc. TFAE

1. G is a graph without circuits
2. Each arc is contained in a cocircuit

Theorem 140
If G is a strongly connected graph of order n, then G has a cycle basis of ν(G)
circuits
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Definition 141 (Node, anti-node, branch)

G = (V ,U) strongly connected without loops and > 1 vertex. For each x ∈ V ,
there is a path from it and a path to it so x has at least 2 incident arcs. Specifically,
▶ x ∈ V with > 2 incident arcs is a node
▶ x ∈ V with 2 incident arcs is an anti-node

A path whose only nodes are its endpoints is a branch
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Definition 142 (Minimally connected graph)

G is minimally connected if it is strongly connected and removal of any arc
destroys strong-connectedness

A minimally connected graph is 1-graph without loops

Definition 143 (Contraction)

G = (V ,U). The contraction of the set A ⊂ V of vertices consists in replacing A
by a single vertex a and replacing each arc into (resp. out of) A by an arc with
same index into (resp. out of) a
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Theorem 144
G minimally connected, A ⊂ V generating a strongly connected subgraph of G.
Then the contraction of A gives a minimally connected graph
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Theorem 145
G a minimally connected graph, G′ be the minimally connected graph obtained by
the contraction of an elementary circuit of G. Then

ν(G) = ν(G′) + 1

Theorem 146
G minimally connected of order n ≥ 2 =⇒ G has ≥ 2 anti-nodes

Theorem 147
G = (V ,U). Then the graph C′ obtained by contracting each strongly connected
component of G contains no circuits
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Arborescences

Definition 148 (Root)

Vertex a ∈ V in G = (V ,U) is a root if all vertices of G can be reached by paths
starting from a

Not all graphs have roots

Definition 149 (Quasi-strong connectedness)

G is quasi-strongly connected if ∀x , y ∈ V , exists z ∈ V (denoted z(x , y) to
emphasize dependence on x , y ) from which there is a path to x and a path to y

Strongly connected =⇒ quasi-strongly connected (take z(x , y) = x); converse
not true
Quasi-strongly connected =⇒ connected
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Arborescence

Definition 150 (Arborescence)

An arborescence is a tree that has a root

Lemma 151
G = (V ,U) has a root ⇐⇒ G quasi-strongly connected
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Theorem 152
H graph of order n > 1. TFAE (and all characterise an arborescence)

1. H quasi-strongly connected without cycles
2. H quasi-strongly connected with n − 1 arcs
3. H tree having a root a
4. ∃a ∈ V s.t. all other vertices are connected with a by 1 and only 1 path from a
5. H quasi-strongly connected and loses quasi-strong connectedness if any arc

is removed
6. H quasi-strongly connected and ∃a ∈ V s.t.

d−
H (a) = 0

d−
H (x) = 1 ∀x ̸= a

7. H has no cycles and ∃a ∈ V s.t.

d−
H (a) = 0

d−
H (x) = 1 ∀x ̸= ap. 105 – Trees



Theorem 153
G has a partial graph that is an arborescence ⇐⇒ G quasi-strongly connected

Theorem 154
G = (V ,E) simple connected graph and x1 ∈ V. It is possible to direct all edges of
E so that the resulting graph G0 = (V ,U) has a spanning tree H s.t.

1. H is an arborescence with root x1

2. The cycles associated with H are circuits
3. The only elementary circuits of G0 are the cycles associated with H
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Counting trees
Proposition 155

X a set with n distinct objects, n1, . . . ,np nonnegative integers s.t.
n1 + · · ·+ np = n. The number of ways to place the n objects into p boxes
X1, . . . ,Xp containing n1, . . . ,np objects respectively is(

n
n1, . . . ,np

)
=

n!
n1! · · · np!

Proposition 156 (Multinomial formula)

Let a1, . . . ,ap ∈ R be p real numbers, then

(a1 + · · ·+ ap)
n =

∑
n1,...,np≥0

(
n

n1, . . . ,np

)
(a1)

n1 · · · (ap)
np
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Theorem 157
Denote T (n;d1, . . . ,dn) the number of distinct trees H with vertices x1, . . . , xn and
with degrees dH(x1) = d1, . . . ,dH(xn) = dn. Then

T (n;d1, . . . ,dn) =

(
n − 2

d1 − 1, . . . ,dn − 1

)

Theorem 158
The number of different trees with vertices x1, . . . , xn is nn−2

There is a whole industry of similar results (as well as for arborescences), but we
will stop here. The main point is that we are talking about a large number of
possibilities..
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