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Connected vertices and graph, components

Definition 1 (Connected vertices)

Two vertices u and v in a graph G are if u=v,orif u+# vandthere
exists a path in G that links v and v

(For path, see Definition 14 later)

Definition 2 (Connected graph)

A graph is if every two vertices of G are connected; otherwise, G is

p. 1 — Undirected graphs



A necessary condition for connectedness

A connected graph on p vertices has at least p — 1 edges

In other words, a connected graph G of order p has size(G) > p — 1

p. 2 — Undirected graphs



Connectedness is an equivalence relation

Denote x = y the relation “x = y, or x # y and there exists a path in G connecting

x and y”. = is an equivalence relation since
1. x=y [reflexivity]
2.X=y = y=X [symmetry]
3. X=y,y=z — x=2z [transitivity]

Definition 4 (Connected component of a graph)

The classes of the equivalence relation = partition V into connected sub-graphs of
G called (or for short) of G

A connected subgraph H of a graph G is a component of G if H is not contained in
any connected subgraph of G having more vertices or edges than H

p. 3 — Undirected graphs



Vertex deletion & cut vertices

Definition 5 (Vertex deletion)

If v € V(G) is a vertex of G, the graph G — v is the graph formed from G by
removing v and all edges incident with v

Definition 6 (Cut-vertices)

Let G be a connected graph. Then vis a G if G — v is disconnected

p. 4 — Undirected graphs



Edge deletion & bridges

Definition 7 (Edge deletion)

If e is an edge of G, the graph G — e is the graph formed from G by removing e
from G

Definition 8 (Bridge)

An edge e in a connected graph G is a if G — e is disconnected

Theorem 9

Let G be a connected graph. An edge e of G is a bridge of G <= e does not lie
on any cycle of G

(For cycle, see Definition 17 later)

p. 5 — Undirected graphs
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Walk

Definition 10 (Walk)

A in a graph G = (V, E) is a non-empty alternating sequence
Vo€oVie1Va ... ex_1Vk of vertices and edges in G such that e; = {v;, v;, 1} for all
i < k. This walk begins with vy and ends with v,

Definition 11 (Length of a walk)

The of a walk is equal to the number of edges in the walk

Definition 12 (Closed walk)

If vo = v, the walk is

p. 6 — Undirected graphs



Trail and path

Definition 13 (Trail)

If the edges in the walk are all distinct, it defines a inG=(V,E)

Definition 14 (Path)

If the vertices in the walk are all distinct, it defines a in G

The sets of vertices and edges determined by a trail is a subgraph

p. 7 — Undirected graphs



Distance between two vertices

Definition 15 (Distance between two vertices)

The d(u,v)in G = (V, E) between two vertices u and v is the length of
the shortest path linking v and v in G

If no such path exists, we assume d(u, v) = oo

p. 8 — Undirected graphs



Circuit and cycle

Definition 16 (Circuit)

A trail linking u to v, containing at least 3 edges and in which u = v, is a

Definition 17 (Cycle)

A circuit which does not repeat any vertices (except the first and the last) is a
(or )

Definition 18 (Length of a cycle)

The is its number of edges

p. 9 — Undirected graphs



Definition 19 (Eulerian trail)

A walk in an undirected multigraph M that uses each edge exactly once is a
of M

Definition 20 (Traversable graph)

If a graph G has a Eulerian trail, then Gis a

Definition 21 (Eulerian circuit)

A circuit containing all the vertices and edges of a multigraph M is a
of M

Definition 22 (Eulerian graph)

A graph (resp. multigraph) containing an Eulerian circuit is a
(resp. )

p. 10 — Undirected graphs



Remember Euler’s bridges of Kénigsberg?
Cross the 7 bridges in a single walk without recrossing any of them?

p. 11— Undirected graphs



A multigraph M is traversable <= M is connected and has exactly two odd
vertices

Furthermore, any Eulerian trail of M begins at one of the odd vertices and ends at
the other odd vertex

A multigraph M is Eulerian < M is connected and every vertex of M is even

p. 12 — Undirected graphs



Fleury’s algorithm to find a Eulerian trail

For a connected graph with exactly 2 odd vertices

» Start at one of the odd vertices

» Marking your path as you move from vertex to vertex, travel along any edges
you wish, but DO NQOT travel along an edge that is a bridge for the graph
formed by the EDGES THAT HAVE YET TO BE TRAVELED - unless you
have to

» Continue until every edge has been traveled
RESULT: a Eulerian trail

p. 13 — Undirected graphs



Fleury’s algorithm to find a Eulerian circuit

For a connected graph with no odd vertices

» Pick any vertex as a starting point

» Marking your path as you move from vertex to vertex, travel along any edges
you wish, but DO NQOT travel along an edge that is a bridge for the graph
formed by the EDGES THAT HAVE YET TO BE TRAVELED - unless you

have to
» Continue until you return to your starting point
RESULT: a Eulerian circuit

p. 14 — Undirected graphs



Definition 25 (Hamiltonian path)

A path containing all vertices of a graph G is a of G

Definition 26 (Traceable graph)

If a graph G has an Hamiltonian path, then G is a

Definition 27 (Hamiltonian cycle)

A cycle containing all vertices of a graph Gis a of G

Definition 28 (Hamiltonian graph)

A graph containing a Hamiltonian cycle is a

p. 15 — Undirected graphs



If G is a graph of order p > 3 such that deg(v) > p/2 for every vertex v of G, then
G is Hamiltonian

If G is a graph of order p > 3 such that for all distinct nonadjacent vertices u and v
of G,
deg(u) + deg(v) = p

then G is Hamiltonian

p. 16 — Undirected graphs
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Definition 31 (Complete graph)

A graph is complete if every two of its vertices are adjacent

Definition 32 (n-clique)

A simple, complete graph on n vertices is called an n- and is often denoted
Kn

Note that a complete graph of order pis (p — 1)-regular

p. 17 — Undirected graphs



Bipartite graph

Definition 33 (Bipartite graph)

A graphis if its vertices can be partitioned into two sets V4 and V5, such
that no two vertices in the same set are adjacent. This graph may be written
G= (W, V5, E)

Definition 34 (Complete bipartite graph)

A bipartite graph in which every two vertices from the 2 different partitions are
adjacent is called a

We often denote K), 4 a simple, complete bipartite graph with |V4| = pand |V»| = q

p. 18 — Undirected graphs



Some specific graphs
Definition 35 (Tree)

Any connected graph that has no cycles is a

Definition 36 (Cycle Cy)

For n > 3, the Cy, is a connected graph of order nthat is a cycle on n
vertices

Definition 37 (Path Pp)

The P, is a connected graph that consists of n > 2 vertices and n — 1 edges.
Two vertices of P, have degree 1 and the rest are of degree 2

Definition 38 (Star S,)

The of order nis the complete bipartite graph K ,_1 (1 vertex of degree n — 1
and n — 1 vertices of degree 1)
p. 19 — Undirected graphs
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Planar graph

Definition 39 (Planar graph)

A graph is if it can be drawn in the plane with no crossing edges (except at
the vertices). Otherwise, it is

Definition 40 (Plane graph)

A is a graph that is drawn in the plane with no crossing edges. (This
is only possible if the graph is planar)

(To see the difference, have you ever played this game?)

p. 20 — Undirected graphs


https://www.chiark.greenend.org.uk/~sgtatham/puzzles/js/untangle.html

Let G be a plane graph
» the connected parts of the plane are called

» vertices and edges that are incident with a region R make up a of
R

Theorem 41 (Euler’s formula)

Let G be a connected plane graph with p vertices, q edges, and r regions, then

p—q+r=2

Corollary 42

Let G be a plane graph with p vertices, q edges, r regions, and k connected
components, then
p—q+r=k+1

p. 21 — Undirected graphs



Theorem 43
Let G be a connected planar graph with p vertices and q edges, where p > 3, then

g <3p-6.

(a maximal connected planar graph with p vertices has q = 3p — 6 edges)

Corollary 44

If G is a planar graph, then 5(G) < 5, where 6(G) is the minimal degree of G.
(every planar graph contains a vertex of degree less than 6)

p. 22 — Undirected graphs



Two well-known non-planar graphs

Ks 3 and Ks are nonplanar

Theorem 45 (Kuratowski Theorem)

A graph G is planar <= it contains no subgraph isomorphic to Ks or K3 3 or any
subdivision of Ks or K3 3

Note: If a graph G is nonplanar and G is a subgraph of G/, then G is also
nonplanar

p. 23 — Undirected graphs
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Definition 46 (Colouring of a graph G)

A of a graph G is an assignment of colours to the vertices of G such
that adjacent vertices have different colours

Definition 47 (n-colouring of G)

A is a colouring of G using n colours

Definition 48 (n-colourable)

Gis if there exists a colouring of G that uses n colours

p. 24 — Undirected graphs



Definition 49 (Chromatic number)

The x(G) of a graph G is the minimal value n for which an
n-colouring of G exists

Property 50

» x(G) =1 < G have no edges
> If G= Knm, then x(G) =2
> IfG = Kp, then x(G) =n
» For any graph G,
x(G) <1+ A(G)
where A(G) is the maximum degree of G
» If G is a planar graph, then x(G) < 4

p. 25 — Undirected graphs



“Real life” problem
What is the minimal number of colours to colour all states in the map so that two

adjacent states have different colours?

S k

4 color theorem applied to
Europe
W Color1
W Color2
Color 3
B colora

p. 26 — Undirected graphs



“Real life” problem

What is the minimal number of colours to colour all states in the map so that two
adjacent states have different colours?

Mathematical representation:
» vertices correspond to the states

> vertices are adjacent < the two states are adjacent (sharing an isolated
point such as the “Four Corners” does not count)

Mathematical problem

What is the chromatic number of the graph associated to the map?

p. 27 — Undirected graphs



Welch-Powell algorithm for colouring a graph G

1. Order the vertices of G by decreasing degree. (Such an ordering may not be
unigue since some vertices may have the same degree)

2. Use one colour to paint the first vertex and to paint, in sequential order, each
vertex on the list that is not adjacent to a vertex previously painted with this
colour

3. Start again at the top of the list and repeat the process, painting previously
unpainted vertices using a second colour

4. Repeat with additional colours until all vertices have been painted

p. 28 — Undirected graphs
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Definitions
Definition 51 (Digraph)
A directed graph (or ) is a pair G = (V, A) of sets such that
» Visasetofpoints: V = {vq,Vvs,Vv3,..,Vp}

> Ais a set of ordered pairs of V: A= {(v;, v;),(Vi, %), ..., (Vn, Vp)} OF
A={ViVj,ViVk, ..., VaVp}

Definition 52 (Vertex)

The elements of V are the vertices of the digraph G. V or V(G) is the vertex set of
the digraph G

Definition 53 (Arc)

The elements of A are the (directed edges) of the digraph G. A or A(G) is the
arc set of the digraph G

p. 29 - Directed graphs



Digraph and binary relation

A (simple) digraph D can be defined in term of a vertex set V and an irreflexive
relation R over V

The defining relation R of the digraph G need not be symmetric

p. 30 — Directed graphs



Directed network

Definition 54 (Directed network)

A directed network is a digraph together with a function f,
f:A—=R,

which maps the arc set A into the set of real number. The value of the arc uv € A
is f(uv)

p. 31 — Directed graphs



Loops & Multiple arcs

Definition 55 (Loop)

A is an arc with both the same ends; e.g. (u, u) is a loop

Definition 56 (Multiple arcs)

(or multi-arcs) are two or more arcs connecting the same two
vertices

p. 32 — Directed graphs



Multidigraph/Digraph

Definition 57 (Multidigraph)

A is a digraph which allows repetition of arcs or loops

Definition 58 (Digraph)

In a digraph, no more than one arc can join any pair of vertices

p. 33 — Directed graphs



Examples

p. 34 — Directed graphs



Let G = (V, A) be a digraph
Definition 59 (Arc endpoints)

For an arc u = (x, y), vertex x is the , and vertex y is the

Definition 60 (Predecessor - Successor)

If (u,v) € A(G) is an arc of G, then
> uisa of v
> visa of u

Definition 61 (Neighbours of a vertex)

Let x € V be a vertex. The of x is the set ['(x) = I'5(x) UT 5(X),
where '5(x) and [;(x) are, respectively, the set of successors and predecessors
of v

p. 35 — Directed graphs



Sources and sinks

Definition 62 (Directed away - Directed towards)

If a= (u,v) € A(G) is an arc of G, then
» the arc ais said to be from u
» the arc ais said to be v

Definition 63 (Source - Sink)

» Any vertex which has no arcs directed towards it is a
» Any vertex which has no arcs directed away from it is a

p. 36 — Directed graphs



Adjacent arcs

Definition 64 (Adjacent arcs)

Two arcs are if they have at least one endpoint in common

p. 37 — Directed graphs



Arcs incident to a subset of arcs

Definition 65 (Arc incident out of X C A(G))

If the initial endpoint of an arc u belongs to X C A(G) and if the terminal endpoint

of arc u does not belong to X, then u is said to be X; we write
u € wt(X)

Similarly, we define an X and the set w=(X)

Finally, the set of arcs X is denoted

w(X) =wT(X)Uw (X)

p. 38 — Directed graphs



Definition 66 (Subgraph of G generated by A C V)

The of G generated by A is the graph with A as its vertex set and with
all the arcs in G that have both their endpoints in A. If G = (V,TI') is a 1-graph,
then the subgraph generated by A is the 1-graph G4 = (A, 4) where

Fa(x)=T(x)NA (x € A)

Definition 67 (Partial graph of G generated by V c U)

The graph (X, V) whose vertex set is X and whose arc set is V. In other words, it
is graph G without the arcs U — V

Definition 68 (Partial subgraph of G)
A partial subgraph of G is the subgraph of a partial graph of G

p. 39 — Directed graphs
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Degree
Let v be a vertex of a digraph G = (V, A)

Definition 69 (Outdegree of a vertex)
The number of arcs directed away from a vertex v, in a digraph is called the
of v and is written d(v)
Definition 70 (Indegree of a vertex)
The number of arcs directed towards a vertex v, in a digraph is called the
of v and is written d (v)
Definition 71 (Degree)

For any vertex v in a digraph, the of v is defined as
dg(v) = dg(v) +dg(v)

p. 40 — Directed graphs



For any (di)graph, the sum of the degrees of the vertices equals twice the number
of edges (arcs)

In any (di)graph, the sum of the degrees of the vertices is a nonnegative even
integer

If G is a digraph with vertex set V(G) = {v1,...,Vp} and q arcs, then

dg(vi) = Zdé(vi) =q

i=1 i=1

p. 41 — Directed graphs



Definition 75 (Regular digraph)
A digraph G is r-regular if d£(v) = dg(v) = rforall v € V(G)

p. 42 — Directed graphs



Symmetric/antisymmetric digraphs
Definition 76 (Symmetric digraph)

Let G = (V, A) be a digraph with associated binary relation R. If R is symmetric,
the digraph is symmetric

Definition 77 (Anti-symmetric digraph)
Let G = (V, A) be a digraph with associated binary relation R. The digraph G is
if
xRy — yRx

Definition 78 (Symmetric multidigraph)

Let G = (V, A) be a multidigraph. G is symmetric if Vx, y € V(G), the number of
arcs from x to y equals the number of arcs from y to x

p. 43 — Directed graphs
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Walks

Let G = (V, A) be a digraph.
Definition 79 (Directed walk)

A in a digraph G is a non-empty alternating sequence
VodoViai Ve ... ax_1 vk of vertices and arcs in G such that a; = (v;, v;4) for all
i < k. This walk begins with vy and ends with v

Definition 80 (Length of a directed walk)

The length of a directed walk is equal to the number of arcs in the directed walk

Definition 81 (Closed walk)

If vo = vk, the walk is closed

p. 44 — Directed graphs



Trails

Let G = (V, A) be a digraph.
Definition 82 (Directed trail)

A directed walk in G in which all arcs are distinct is a in G

Definition 83 (Directed path)

A directed walk in G in which all vertices are distinct is a in G

Definition 84 (Directed cycle)

A closed walk is a if it contains at least three vertices and all its
vertices are distinct except for vy = vk

p. 45 — Directed graphs



Examples of directed cycles

Cycles:
> u' =(1,6,2) = [abcd]
» u?=(1,6,3) = [abca]
> p®=(2,3) = [acq]
> p*=(1,4,5,2) = [abdca]
» 1® = (6,5,4) = [acdb]
» 18 =(1,4,5,3) = [abdca]

p. 46 — Directed graphs
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Definitions
Definition 85 (Underlying graph)
Given a digraph, the undirected graph with each arc replaced by an edge is called
the
Definition 86 (Weakly connected digraph)
If the underlying graph is a connected graph, then the digraph is

Definition 87 (Strongly connected digraph)

A digraph G is if for every two distinct vertices u and v of G,
there exists a directed path from u to v

Definition 88 (Disconnected digraph)

A digraph is said to be if it is not weakly connected

p. 47 — Directed graphs



Strong connectedness is an equivalence relation

Denote x = y the relation “x = y, or x # y and there exists a directed path in G

from x to y”. = is an equivalence relation since
1. x=y [reflexivity]
2.X=y = y=X [symmetry]
3. x=y,y=z = x=2z [transitivity]

Definition 89 (Connected component of a graph)

Sets of the form
Axo) ={x:xe V,x =x0}

are equivalence classes. They partition V into strongly connected sub-digraphs of
G called (or )of G

A strong component in G is a maximal strongly connected subdigraph of G

p. 48 — Directed graphs



Theorem 90 (Properties)

Let G= (V,A) be a digraph
» If G is strongly connected, it has only one strongly connected component

» The strongly connected components partition the vertices V(G), with every
vertex in exactly one strongly connected component

p. 49 — Directed graphs



Algorithm for determining strongly connected components in
G= (VA

» Determine the strongly connected component C(v) containing the vertex v; if
V — C(v) is non-empty, re-do the same operation on the sub-digraph
G =(V-C(v),A)

» To determine C(v), the strongly connected component containing v: let v be
a vertex of a digraph , which is not already in any strongly connected
component

1. Mark the vertex v with +
2. Mark with + all successors (not already marked with +) of a vertex marked with

_|_
3. Mark with — all predecessors (not already marked with —) of a vertex marked

with —
4. Repeat until no more possible marking with 4 or —
All vertices marked with + belong to the same strongly connected component
C(v) containing the vertex v

p. 50 — Directed graphs



Condensation of a digraph

Definition 91 (Condensation of a digraph)

The condensation G* of a digraph G is a digraph having as vertices the strongly
connected components (SCC) of G and such that there exists an arc in G* from a
SCC C; to another SCC C; if there is an arc in G from some vertex of S; to a vertex
of Sj

p. 51 — Directed graphs



Definition 92 (Articulation set)

For a connected graph, a set X of vertices is called an (ora
) if the subgraph of G generated by V — X is not connected

Definition 93 (Stable set)

A set S of vertices is called a if no arc joins two distinct vertices in S

p. 52 — Directed graphs
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Orientation

Definition 94 (Orienting a graph)

Given a connected graph, we describe the act of assigning a direction to each
edge (edge — arc) as

Definition 95 (Strong orientation)

If the digraph resulting from orienting a graph is strongly connected, the orientation
is a

p. 53 — Directed graphs



Orientable graph

Definition 96 (Orientable graph)

A connected graph G is if it admits a strong orientation

Theorem 97
A connected graph G = (V, E) is orientable <— G contains no bridges

(in other words, iff every edge is contained in a cycle)

p. 54 — Directed graphs



Matrices associated to a graph/digraph

There are multiple matrices associated to a graph/digraph

The branch of graph theory that studies the properties of matrices derived from
graphs and uses of these matrices in determining graph properties is spectral
graph theory

Graphs greatly simplify some problems in linear algebra and vice versa

p. 55 — Matrices associated to a graph/digraph
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Adjacency matrix (undirected case)

Let G = (V, E) be a graph of order p and size g, with vertices vy, ..., vp and edges
e1 g ey eq

Definition 98 (Adjacency matrix)

The is
Ma = Ma(G) = [mjj]

is a p x p matrix in which

e — 1 if v; and v} are adjacent
10 otherwise

p. 56 — Matrices associated to a graph/digraph



Theorem 99 (Adjacency matrix and degree)

The sum of the entries in row i of the adjacency matrix is the degree of v; in the
graph

We often write A(G) and, reciprocally, if A is an adjacency matrix, G(A) the
corresponding graph

G undirected = A(G) symmetric

A(G) has nonzero diagonal entries if G is not simple

p. 57 — Matrices associated to a graph/digraph



Adjacency matrix (directed case)

Let G = (V, A) be a digraph of order p with vertices vy,..., v,
Definition 100 (Adjacency matrix)

The M = M(G) = [mj] is a p x p matrix in which

— 1 ifarc vy, € A
Y71 0 otherwise

p. 58 — Matrices associated to a graph/digraph



Theorem 101 (Properties)

» M is not necessarily symmetric

» The sum of any column of M is equal to the number of arcs directed towards
i

» The sum of the entries in row i is equal to the number of arcs directed away
from vertex v;

» The (i,j)—entry of M" is equal to the number of walks of length n from vertex
v; to Vj

p. 59 — Matrices associated to a graph/digraph



Definition 102 (Multiplicity of a pair)

The of a pair x, y is the number m{(x, y) of arcs with initial endpoint x
and terminal endpoint y. Let

mg(x,y) = mg(y, x)

ma(x,y) = m§(x,y) + mg(x,y)

If x # y, then mg(x, y) is number of arcs with both x and y as endpoints. If x = y,
then mg(x, y) equals twice the number of loops attached to vertex x. If A,B C V,
A £ B, let

mE(AB)={u:uec U u=(x,y),xcAyecB}

p. 60 — Matrices associated to a graph/digraph



Adjacency matrix of a multigraph
Definition 103 (Matrix associated with G)

If G has vertices xq, xo, ..., xp, then the with G is

aj = mg(x, X))

Definition 104 (Adjacency matrix)

The matrix a; + aji is the associated with G

p. 61 — Matrices associated to a graph/digraph



Adjacency matrix (multigraph case)

Definition 105 (Adjacency matrix of a multigraph)

G an (-graph, then the adjacency matrix My = [m;] is defined as follows

k if arc there are k arcs (i,j) € U
= ;
0 otherwise

with k < ¢

G undirected = Mj(G) symmetric

Ma(G) has nonzero diagonal entries if G is not simple.

p. 62 — Matrices associated to a graph/digraph



Weighted adjacency matrices

Sometimes, adjacency matrices (typically for 1-graphs) have real entries, usually
positive

This means that the arcs/edges have been given a weight

p. 63 — Matrices associated to a graph/digraph



Theorem 106 (Number of walks of length n)

Let A be the adjacency matrix of a graph G = (V(G), E(G)), where
V(G) = {v1,Vs,...,Vp}. Then the (i,j)—entry of A", n > 1, is the number of
different walks linking v; to v; of length n in G.

(two walks of the same length are equal if their edges occur in exactly the same
order)

Example: let A be the adjacency matrix of a graph G = (V(G), E(G)).
» the (i, i)—entry of A? is equal to the degree of v;.
> the (i, /))—entry of A% is equal to twice the number of Cz containing v;.

p. 64 — Matrices associated to a graph/digraph
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Incidence matrix (undirected case)
Let G = (V, E) be a graph of order p, and size q, with vertices vy, ..., v,, and
edges ey,...,€q

Definition 107 (Incidence matrix)

The incidence matrix is
B = B(G) = [bj]

is that p x g matrix in which

b — 1 if v; is incident with g;
10 otherwise

Theorem 108 (Incidence matrix and degrees)

The sum of the entries in row i of the incidence matrix is the degree of v; in the
graph

p. 65 — Matrices associated to a graph/digraph



Incidence matrix (directed case)

Let G = (V, A) be a digraph of order p and size g, with vertices vy, ..., v, and arcs
a1 g ey aq

Definition 109 (Incidence matrix)
The B = B(G) = [bj] is a p x q matrix in which

—1 if arc g; is directed towards a vertex V;

1 if arc g; is directed away from a vertex v;
bj =
0 otherwise

p. 66 — Matrices associated to a graph/digraph



Spectrum of a graph

We will come back to this later, but for now..

Definition 110 (Spectrum of a graph)

The of a graph G is the spectrum (set of eigenvalues) of its associated
adjacency matrix M(G)

This is regardless of the type of adjacency matrix or graph

p. 67 — Matrices associated to a graph/digraph



Degree matrix

Definition 111 (Degree matrix)

The matrix D = [dj] for Gis a n x n diagonal matrix defined as
da(vi) ifi=j
dj = _
0 otherwise

In an undirected graph, this means that each loop increases the degree of a vertex
by two

In a directed graph, the term “degree” may refer either to indegree (the number of
incoming edges at each vertex) or outdegree (the number of outgoing edges at
each vertex)

p. 68 — Matrices associated to a graph/digraph



Laplacian matrix

Definition 112 (Laplacian matrix)

G = (V,A) a simple graph with n vertices. The matrix is
L= D(G) - M(G)

where D(G) is the degree matrix and M(G) is the adjacency matrix
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Laplacian matrix (continued)
G simple graph = M(G) only contains 1 or 0 and its diagonal elements are all 0

For directed graphs, either the indegree or outdegree is used, depending on the
application

Elements of L are given by

dG(V,') if / :j
L=< —1 if i # j and v; is adjacent to v;
0 otherwise
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Distance matrix

Let G be a graph of order p with vertices vy,..., v

Definition 113 (Distance matrix)

The distance matrix A(G) = [dj] is a p x p matrix in which
djj = da(Vi, V)

Note 6 =0fori=1,....p

p. 71— Matrices associated to a graph/digraph



Property 114

» M is not necessarily symmetric
» The sum of any column of M is equal to the number of arcs directed towards
V.
i
» The sum of the entries in row i is equal to the number of arcs directed away
from vertex v;

» The (i,j)—entry of M" is equal to the number of walks of length n from vertex
v; to Vj
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Matrices associated to a graph/digraph
Adjacency matrices
Other matrices associated to a graph/digraph
Linking graphs and linear algebra



Counting paths

Theorem 115

G a digraph and Mx(G) its adjacency matrix. Denote P = [p;] the matrix P = MA}.
Then pj; is the number of distinct paths of length k from i to j in G

Definition 116 (Irreducible matrix)

A matrix A€ M, is if 3P € M, permutation matrix, s.t. PT AP can be
written in block triangular form. If no such P exists, A is

Theorem 117
A irreducible <— G(A) strongly connected
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Theorem 118

Let A be the adjacency matrix of a graph G on p vertices. A graph G on p vertices
is connected <

I+ A+ A+ .+ AT =C

has no zero entries

Theorem 119

Let M be the adjacency matrix of a digraph D on p vertices. A digraph D on p
vertices is strongly connected <—

I+ M4+ M ... MP' =C

has no zero entries
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Nonnegative matrix

A = [agj] € Mp(R) nonnegative if a; > 0Vi,j=1,...,n;, v € R" nonnegative if
vi>0Vi=1,...,n. Spectral radius of A

A) = A
p(A) = max, (1N}

Sp(A) the spectrum of A
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Perron-Frobenius (PF) theorem

0<Ae MpR). Then3Iv >0 s.t.

Av = p(A)v

Let0 < A € My(R) irreducible. Then3v > 0 s.t.
Av = p(A)v

p(A) > 0 and with algebraic multiplicity 1. No nonnegative eigenvector is
associated to any other eigenvalue of A
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Primitive matrices

Definition 122
0 < Aec MyR) (with k € N%) if 3k € N* s.t.

Ak > 0,

with k the smallest integer for which this is true. A if it is not primitive

A primitive = A irreducible; the converse is false

p. 77 — Matrices associated to a graph/digraph



Theorem 123
A € Mp(R) irreducible and3i =1,...,ns.t. a; >0 = A primitive

Here d is the index of imprimitivity (i.e., the number of eigenvalues that have the
same modulus as \p = p(A)). If d = 1, then A'is primitive. We have that d = gcd
of all the lengths of closed walks in G(A)
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Adjacency matrix

010
A=10 0 1
100

Closed walks in G(A) (lengths): 1 —+1(3),2—-+2(3),2—-2(3) — gcd=3 =
d = 3 (here, all elgenvalues have modulus 1)
110
A=10 0 1
100

Closed walk 1 — 1 has length 1 — gcd of lengths of closed walksis 1 — A

primitive
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Let0 < Aec M,

A primitive => 30 < k < (n— 1)n" such that Ak > 0

If A is primtive and the shortest simple directed cycle in G(A) has length s, then
the primitivity index is < n+s(n—1)

A primitive < AT—2n12 > @

If A is irreducible and has d positive entries on the diagonal, then the primitivity
index<2n—d —1
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Theorem 128

0 < Aec My, A\p = p(A) the Perron root of A, vp and wp the corresponding right
and left Perron vectors of A, respectively, d the index of imprimitivity of A (with
d =1 when A is primitive) and \; € o(A) the spectrum of A, withj =2,...,n
unless otherwise specified (assuming Ay = A\p)

*
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Trees

Definition 129 (Forest, trees and branches)

» A connected graph with no cycle is a
> A tree is a connected acyclic graph, its edges are called

» A graph (connected or not) without any cycle is a . Each component is
atree

(A forest is a graph whose connected components are trees)

p. 82 — Trees



Is the “Karate graph” a tree?

is_acyclic(G)
## Error: object ’G’ not found
is_tree(G)

## Error: object ’G’ not found
So we need friend to play with!

G_tu <- make_tree(7, 2, mode = "undirected")
G_td <- make_tree(7, 2)
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An undirected tree A (out) directed tree

®
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Property 130

» Every edge of a tree is a bridge
> Given two vertices u and v of a tree, there is an unique path linking u to v

> A tree with p vertices and q edges satisfies q = p — 1. Thus, a tree is
minimally connected

(First property: the deletion of any edge of a tree diconnecits it)
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Every edge of a tree is a bridge

E(G_tu)

## + 6/6 edges from bbcf4fl:
## [1] 1--2 1--3 2--4 2--5 3--6 3--7

bridges(G_tu)

## + 6/6 edges from bbcf4fl:
## [1] 2--4 2--5 1--2 3--6 3--7 1--3

all(sort(E(G_tu)) == sort(bridges(G_tu)))

## [1] TRUE
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Spanning tree

Definition 131 (Spanning tree)
A of a connected graph G is a subgraph of G that contains all the
vertices of G and is a tree.

A graph may have many spanning trees
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Minimal spanning tree

Definition 132 (Value of a spanning tree)

The T of order p is

> (e

i=1

where f is the function that maps the edge set into R

Definition 133 (Minimal spanning tree)

Let G be an undirected network, and let T be a of G.
Then T is a spanning tree whose the value is minimum
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Algorithm to find a minimal spanning tree

Let G = (V(G), E(G)) be an undirected network and T be a minimal spanning tree

1. Sort the edges of G in increasing order by value

2. T=(V(G),0)

3. For each edge e in sorted order if the endpoints of e are disconnected in T
addeto T
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Finding a minimal spanning tree of the Karate graph

The function mst finds minimal spanning trees, using distances if no edge weights
are provided

G_mst = mst(G)

## Error: object ’G’ not found

## Error in h(simpleError(msg, call)): error in evaluating the
argument ’x’ in selecting a method for function ’plot’: object
’G_mst’ not found
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A minimal spanning tree of the Karate graph



Minimal connector problem

» Model: a graph G such that edges represent all possible connections, and
each edge has a positive value which represents its cost; an undirected
network G

» Solution: a minimal spanning tree T of G

» a spanning tree of G is a subgraph of G that contains all the vertices of G and is
a tree.

» the cost of the spanning tree is the sum of values of the edges of T

» a spanning tree such that no other spanning tree has a smaller cost is a
minimmal spanning tree.
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Theorem 134 (Characterisation of trees)
H = (V,U) a graph of order |V| = n > 2. The following are equivalent and all
characterise a tree :
1. H connected and has no cycles
2. H has n—1 arcs and no cycles
H connected and has exactly n — 1 arcs
H has no cycles, and if an arc is added to H, exactly one cycle is created
H connected, and if any arc is removed, the remaining graph is not connected
Every pair of vertices of H is connected by one and only one chain

o 0k W
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Definition 135 (Pendant vertex)

A vertex is if it is adjacent to exactly one other vertex

Theorem 136
A tree of order n > 2 has at least two pendant vertices
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A graph G = (V, U) has a partial graph that is a tree <= G connected

Recall that a partial graph is a graph generated by a subset of the arcs
(Definition 67 slide 39)
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Spanning tree
The procedure in the proof of Theorem 137 gives a

Can also build a spanning tree as follows:
» Consider any arc ug
Find arc u; that does not form a cycle with ug

Continue

>

» Find arc u, that does not form a cycle with {ug, u; }

>

» When you cannot continue anymore, you have a spanning tree
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G connected graph with > 1 arc. TFAE
1. G strongly connected
2. Every arc lies on a circuit
3. G contains no cocircuits

p. 97 - Trees



G graph with > 1 arc. TFAE
1. G is a graph without circuits
2. Each arc is contained in a cocircuit

If G is a strongly connected graph of order n, then G has a cycle basis of v(G)
circuits
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Definition 141 (Node, anti-node, branch)

G = (V, U) strongly connected without loops and > 1 vertex. For each x € V,
there is a path from it and a path to it so x has at least 2 incident arcs. Specifically,
» x € V with > 2 incident arcs is a
» x € V with 2 incident arcs is an
A path whose only nodes are its endpoints is a
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Definition 142 (Minimally connected graph)

Gis if it is strongly connected and removal of any arc
destroys strong-connectedness

A minimally connected graph is 1-graph without loops

Definition 143 (Contraction)

G=(V,U). The of the set A C V of vertices consists in replacing A
by a single vertex a and replacing each arc into (resp. out of) A by an arc with
same index into (resp. out of) a
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G minimally connected, A C V generating a strongly connected subgraph of G.
Then the contraction of A gives a minimally connected graph
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G a minimally connected graph, G' be the minimally connected graph obtained by
the contraction of an elementary circuit of G. Then

v(G) =v(G) +1

G minimally connected of ordern > 2 — G has > 2 anti-nodes

G = (V, U). Then the graph C' obtained by contracting each strongly connected
component of G contains no circuits
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Arborescences

Definition 148 (Root)

Vertexae VinG=(V,U)isa if all vertices of G can be reached by paths
starting from a

Not all graphs have roots

Definition 149 (Quasi-strong connectedness)

Gis if Vx,y € V, exists z € V (denoted z(x, y) to
emphasize dependence on x, y) from which there is a path to x and a path to y

Strongly connected = quasi-strongly connected (take z(x, y) = x); converse
not true
Quasi-strongly connected —> connected
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Arborescence

Definition 150 (Arborescence)

An is a tree that has a root

Lemma 151
G = (V,U) has a root < G quasi-strongly connected
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Theorem 152
H graph of order n > 1. TFAE (and all characterise an arborescence)

1. H quasi-strongly connected without cycles
2. H quasi-strongly connected with n — 1 arcs
3. H tree having a root a
4. Ja € V s.t. all other vertices are connected with a by 1 and only 1 path from a
5. H quasi-strongly connected and loses quasi-strong connectedness if any arc
is removed
6. H quasi-strongly connected andda € V s.t.
d,(a)=0
dy(x) =1 Vx # a
7. H has no cycles andda € V s.t.
dy(a)=0
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Theorem 153

G has a partial graph that is an arborescence < G quasi-strongly connected

Theorem 154

G = (V, E) simple connected graph and x; € V. It is possible to direct all edges of
E so that the resulting graph Gy = (V, U) has a spanning tree H s.t.

1. H is an arborescence with root x;
2. The cycles associated with H are circuits

3. The only elementary circuits of Gy are the cycles associated with H
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Counting trees
Proposition 155

X a set with n distinct objects, ny, ..., np nonnegative integers s.t.
ny +---+ np = n. The number of ways to place the n objects into p boxes
X1,..., Xp containing ny, . .., Ny objects respectively is

n _ n!
n,...,Np nyl---np!

Proposition 156 (Multinomial formula)

Letay,...,ap € R be p real numbers, then
n
@+ra)r= X (" )@@
1,---57Ip
ny,...,np=>0
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Theorem 157

Denote T(n; d;, ..., dn) the number of distinct trees H with vertices xi, ..., x, and
with degrees dy(x1) = dy, ..., dy(xn) = dn. Then

n—2
T(n:dh,....dh) = (d1—1 dn‘1>

Theorem 158

The number of different trees with vertices x1, . .., X, is n"—2

There is a whole industry of similar results (as well as for arborescences), but we
will stop here. The main point is that we are talking about a large number of
possibilities..
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