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Why characterise a graph

Graphs are everywhere!

To compare graphs, understand their properties, we need ways to describe their
shape and characteristics
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The global air transportation network
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Example of spread of p-H1N1

Role of social networks in shaping disease transmission during a community outbreak of 2009 H1N1 pandemic influenza, Cauchemez et al, PNAS
108(7):2825-2830 (2011)
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Example of spread of MERS

p. 4 — Why characterise graphs?

Topological dynamics of
the 2015 South Korea
MERS-CoV spread-on-
contact networks, Yang &
Jung, Scientific Reports
10:4327 (2020)



More disease transmission trees

Outbreak Trees has an extensive database of disease transmission trees
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https://outbreaktrees.ecology.uga.edu/

Some “measures” concern the vertices, others the graph as a whole

In all that follows, unless otherwise indicated, G = (V, A) is a digraph. If
undirected, we write G = (V, E)

p. 6 — Why characterise graphs?
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R packages for analysing graphs

Two main packages: network and igraph

We will use igraph: if you learn how to use it in R, you can easily do the same in
Python, C/C++ Or Mathematica !

So in the following, | will assume that we have used the command
library(igraph)

p. 7 — AfewR preliminaries


https://cran.r-project.org/web/packages/network/index.html
https://r.igraph.org/
https://igraph.org/index.html

igraph documentation

These days, there is an issue with the igraph documentation site, whereas
normally it is quite good

You can find it here

Do read the R vignette, though, as well as the manual
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https://igraph.org/r/doc/
https://cran.r-project.org/web/packages/igraph/vignettes/igraph.html
https://cran.r-project.org/web/packages/igraph/igraph.pdf

Setting up a graph

There are multiple ways to set up a graph in igraph. Of course, you will need
library(igraph)

Two main mechanisms:
1. Use a function to create a known graph
2. Implement your own graph, describing the vertices and the edges/arcs

p.9 - AfewR preliminaries



Known graphs (a few)

make_lattice
make_ring

make_star

make_tree
make_line_graph
make_full_graph
make_bipartite_graph

vVvvyVvYVvyVvyYyvyy

make_empty_graph
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Degree distribution



Geodesic distance

Definition 1 (Geodesic distance)

For x,y € V, the d(x, y) is the length of the shortest path from
x to y, with d(x, y) = oo if no such path exists
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Eccentricity
Definition 2 (Vertex eccentricity)

The e(x) of vertex x € V'is

e(x) = maxd(x,y)
yev
y#x
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Central points, radius and centre
Definition 3 (Central point)

A of Gis a vertex xp with smallest eccentricity

Definition 4 (Radius)
The of Gis p(G) = e(xp), where X is a centre of G In other words,
p(G) = min e(x)

xeV

Definition 5 (Centre)

The of G is the set of vertices that are central points of G, i.e.,

{xeV.e(x)=p(G)}
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Radius is 3, x» is a central point (the only one) and the centre is {xo}
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Measures specific to vertices
Centre of a graph
Centrality — Betweenness and closeness
Periphery of a graph
Degree distribution



How central is a vertex?

Centrality tries to answer the question: what are the most influent vertices?

We have seen central vertices and vertices on the periphery, let us consider two
other measures of centrality

> Betweenness centrality

» Closeness centrality

Many other forms (we will come back to this, e.g., degree centrality)
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Betweenness

Definition 6 (Betweenness)

G = (V,A) a (di)graph. The ofve Vis
v
bov)= Y V)
sttrvey S
where

» og is number of shortest geodesic paths from sto t
» os(Vv) is number of shortest geodesic paths from s to ¢ through v
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In other words
» For each pair of vertices (s, t), compute the shortest paths between them

» For each pair of vertices (s, t), determine the fraction of shortest paths that
pass through vertex v

» Sum this fraction over all pairs of vertices (s, t)
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Normalising betweenness

Betweenness may be normalized by dividing through the number of pairs of
vertices not including v:

» for directed graphs, (n—1)(n—2)
» for undirected graphs, (n—1)(n—2)/2
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Example of betweenness

distances(G, mode="out")
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Number of shortest paths

Recall we found distances (G, mode="out")

0122 43
101132
3405 2 1

P=1l45103 2
123304
534410

To find the number of shortest paths between pairs of vertices, we can use powers
of the adjacency matrix

Write D = [dj], for a given (i, ) (i # j), if dj = k, then pick the (/, ) in Ak
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We find

o111 11
101111
1101 11
111011
111101
111110

Recall that betweenness of v is

ast(Vv)
bp(v)= >, =
sttrvey S
ost (# shortest paths from s to t) is found in the matrix above
What about o(v), # of those shortest paths that go through v?
We can use all_shortest_paths(G, from = s, to = t, mode = "out")
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Example of betweenness

betweenness(G, directed = FALSE, normalized = TRUE)
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Closeness

Definition 7
G=(V,A). The ofve Vis

(V)= —— 3 dp(v.1)

n—1
teV\{v}

i.e., mean geodesic distance between a vertex v and all other vertices it has
access to
Another definition is

cp(v)

1
Y dp(vt)

teV\{v}
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Example of (out) closeness

closeness(G, normalized = TRUE, mode=‘‘out’’)
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Diametre and periphery of a graph

Definition 8 (Diametre of a graph)

The of Gis
0(G) = maxd(x, y) = max e(x)
x,yev xeV
XF£y

J(G) < 0 <= G strongly connected

Definition 9 (Periphery)

The of a graph is the set of vertices whose eccentricity achieves the

diametre, i.e.,
{xeV.e(x)=460G)}
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Diametre is 6(G) = 5 and periphery is {x3, X4 }

Definition 10 (Antipodal vertices)
Vertices x, y € V are antipodal if d(x, y) = §(G)
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Degree distribution

Definition 11 (Arc incident to a vertex)

If a vertex x is the initial endpoint of an arc u, which is not a loop, the arc u is

X

The number of arcs incident out of x plus the number of loops attached to x is
denoted d(x) and is the of x

An arc x and the d; (x) are defined
similarly

Definition 12 (Degree)

The of vertex x is the number of arcs with x as an endpoint, each loop
being counted twice. The degree of x is denoted dg(x) = d(x) + dg (X)

If each vertex has the same degree, the graph is

p. 29 — Measures specific to vertices



Definition 13 (Isolated vertex)

A vertex of degree 0 is

Definition 14 (Average degree of G)
d(G) = v XLvev dega(Vv).

Definition 15 (Minimum degree of G)
d(G) = min{degg(Vv)|v € V}.

Definition 16 (Maximum degree of G)
A(G) = max{degg(Vv)|v € V}.
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Degrees in an undirected graph

3 (3) 2

Here, vertices are la-
belled using the degree
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Degrees in a directed graph

p. 32 — Measures specific to vertices



What to consider about degrees?

Degrees are often considered as a measure of popularity

Often write k(i) (or k;) for “degree of vertex i”, k(i) and k™ (i) for in- and

out-degree

» Minimum and maximum degree

» Minimum and maximum in/out-degree. E.g., if you consider the global air
transportation network and the in/out-degree of airports, in-degree is a
measure of a location’s “popularity” as a travel destination

» Range of degrees in a graph: are there large discrepancies in connectivity
between vertices in the graph?

» Average degree (often denoted (k) because of physicists)

» Average in/out-degree

» Variance of the degrees or in/out-degrees
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» Average (nearest) neighbour degree, to encode for preferential attachment
(one prefers to hang out with popular people)

Z k()

je/\f 0)

or, in terms of the adjacency matrix A = [ay],
_ L Z aik(j)
k(i) F Y

» Excess degree: take nearest neighbour degree but do not consider the
edge/arc followed to get to the neighbour

» Degree, nearest neighbour and excess degree distributions

p. 34 — Measures specific to vertices



Degrees in igraph

» degree gives the degrees of the vertices

» degree_distribution gives numeric vector of the same length as the
maximum degree plus one. The first element is the relative frequency zero
degree vertices, the second vertices with degree one, etc.

> knn calculate the average nearest neighbor degree of the given vertices and
the same quantity in the function of vertex degree

» strength sums up the edge weights of the adjacent edges for each vertex
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Degree from adjacency matrix

Suppose adjacency matrix take the form A = [g;] with a; = 1 if there is an arc
from the vertex indexed i to the vertex indexed j and 0 otherwise. (Could be the
other way round, using A', just make sure)

Lete = (1,...,1)7 be the vector of all ones
Ae = (dj(1),...,d%(1))7 (out-degree)

e"A=(dg(1),...,dg(1)) (in-degree)

p. 36 — Measures specific to vertices
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Measures at the graph level
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k-cores



Circumference

Definition 17 (Circumference)

In an undirected (resp. directed) graph, the total number of edges (resp. arcs) in
the longest cycle of graph G is the of G

Circumference is 6.

p. 37 — Measures at the graph level



Girth

Definition 18 (Girth)

The total number of edges in the shortest cycle of graph G is the a9(G)
Girth is 2.

p. 38 — Measures at the graph level
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Completeness

Definition 19 (Complete undirected graph)

An undirected graph is complete if every two of its vertices are adjacent.
Definition 20 (Complete digraph)

A digraph D(V, A) is complete if Vu,v € V, uv € A.

In case of simple graphs, completeness effectively means that “information” can
be transmitted from every vertex to every other vertex quickly (1 step)

It can be useful to know how far away we are from being complete
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Number of edges/arcs in a complete graph

G = (V, E) undirected and simple of order n has at most

n(n—1)
2

edges, while G = (V, A) directed and simple of order n has at most
n(n—1)

arcs
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Density of a graph

Definition 21 (Density)

The fraction of maximum number of edges or arcs present in the graph is the
of the graph.

If the graph has p edges or arcs, then its density is, respectively,

2p
n(n—1)

or

n(n—1)
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Example of density

X2

p. 42 — Measures at the graph level

Graph has order 6 and
thus a max of 30 arcs.
Here, 8 arcs — den-
sity 0.267

(26.7% of arcs are
present)
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Connectedness

We have already seen connectedness (quasi- or strong in the oriented case)

Connectedness is important in terms of characteristing graph properties, as it
shows the capacity of the graph to convey information to all the members of the
graph (the vertices)
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Definition 22 (Connected graph)

A is a graph that contains a chain p[x, y] for each pair x, y of
distinct vertices

Denote x = y the relation “x = y, or x # y and there exists a chainin G
connecting x and y”. = is an equivalence relation since

1. x=y [reflexivity]
2.X=y = y=xX [symmetry]
3. X=y,y=z — x=z [transitivity]

Definition 23 (Connected component of a graph)

The classes of the equivalence relation = partition V into connected sub-graphs of
G called
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Articulation set

Definition 24 (Articulation set)

For a connected graph, a set A of vertices is called an (ora
) if the subgraph of G generated by V — A is not connected

articulation_points(G) in igraph (assumes the graph is undirected, makes it so
if not)
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Strongly connected graphs

G = (V, U) connected. A is any sequence {x} consisting of a
single vertex x € V

For x,y € V, let x = y be the relation “there is a path u1[x, y] from x to y as well
as a path u[y, x] from y to x”. This is an equivalence relation (it is reflexive,
symmetric and transitive)

Definition 25 (Strong components)

Sets of the form
Axo) ={x:xe V,x=x0}

are equivalence classes; they partition V and are the
of G
Definition 26 (Strongly connected graph)

G if it has a single strong component

p. 46 — Measures at the graph level



Definition 27 (Minimally connected graph)

Gis if it is strongly connected and removal of any arc
destroys strong-connectedness

Definition 28 (Contraction)

G=(V,U). The of the set A C V of vertices consists in replacing A
by a single vertex a and replacing each arc into (resp. out of) A by an arc with
same index into (resp. out of) a
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Quasi-strong connectedness

Definition 29 (Quasi-strong connectedness)

G if Vx,y € V, exists z € V (denoted z(x, y) to
emphasize dependence on x, y) from which there is a path to x and a path to y

Strongly connected — quasi-strongly connected (take z(x, y) = x); converse
not true

Quasi-strongly connected — connected

Lemma 30
G = (V,U) has aroot <= G quasi-strongly connected
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Weak-connectedness

Definition 31 (Weakly connected graph)

G=(V,U) if G = (V, E) connected, where E is obtained from
U by ignoring the direction of arcs

K& -
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Weak components

Define for x, y € V the relation x = y as “x = y or x # y and there is a chain in G
connecting x and y” [like for components in an undirected graph, except the graph
is directed here]

This defines an equivalence relation

Definition 32 (Weak components)

Sets of the form
Axo) ={x:xe V,x =x0}

are equivalence classes partitioning V into the
of G

G = (V, U) is weakly connected if there is a single weak component
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Components in igraph

> is_connected decides whether the graph is weakly or strongly connected

» components finds the maximal (weakly or strongly) connected components of
a graph

> count_components does almost the same as components but returns only the
number of clusters found instead of returning the actual clusters

> component_distribution creates a histogram for the maximal connected
component sizes

» decompose creates a separate graph for each component of a graph

» subcomponent finds all vertices reachable from a given vertex, or the opposite:
all vertices from which a given vertex is reachable via a directed path
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Measures at the graph level
Circumference & Girth
Graph density
Graph connectivity
Cliques
k-cores



Cliques
Definition 33 (Clique in undirected graphs)

G = (V, E) a simple undirected graph. A is a subgraph G’ of G such that all
vertices in G’ are adjacent

Definition 34 (n-clique)

A simple, complete graph on n vertices is called an n- and is often denoted
Kn

Definition 35 (Clique in directed graphs)

G = (V, U) a simple directed graph. A is a subgraph G’ of G such that all
vertices in G’ are mutually adjacent

Definition 36 (Maximal clique)

A is a clique that cannot be extended by adding another adjacent
p. 52 -\/@pd@)Xs at the graph level
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Cliques in igraph

» cliques find all complete subgraphs in the input graph, obeying the size
limitations given in the min and max arguments

» largest_cliques finds all largest cliques in the input graph

» max_cliques finds all maximal cliques in the input graph (The largest cliques
are always maximal, but a maximal clique is not necessarily the largest)

» count_max_cliques counts the maximal cliques
> clique_num calculates the size of the largest clique(s)

p. 54 — Measures at the graph level
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k-core

Definition 37 (k-core of a graph)

G = (V,U) a graph. The k- of G is a maximal subgraph in which each vertex
has degree at least k

Definition 38 (Coreness of a vertex)

G=(V,U)agraph, x € V. The of x is k if x belongs to the k-core of G
but not to the k + 1 core of G

For directed graphs, in-cores or out-cores depending on whether in-degree or
out-degree is used

In igraph: coreness

p. 55 — Measures at the graph level



Coreness in the directed case

X2

)

X6

G has only a 1-in-core and 1-out-core: there is no (maximal) subgraph in which
the in- or out-degree is larger than 1
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In-coreness in the directed case

OBOBO SO
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Coreness in the undirected case

p. 58 — Measures at the graph level
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