

Graphs – Introduction (theory) – 4 MATH 2740 – Mathematics of Data Science – Lecture 18

Julien Arino

julien.arino@umanitoba.ca

Department of Mathematics @ University of Manitoba

Fall 202X

The University of Manitoba campuses are located on original lands of Anishinaabeg, Ininew, Anisininew, Dakota and Dene peoples, and on the National Homeland of the Red River Métis. We respect the Treaties that were made on these territories, we acknowledge the harms and mistakes of the past, and we dedicate ourselves to move forward in partnership with Indigenous communities in a spirit of Reconciliation and collaboration.

Outline **Trees**

Trees

Definition 154 (Forest, trees and branches)

- A connected graph with no cycle is a tree
- A tree is a connected acyclic graph, its edges are called branches
- A graph (connected or not) without any cycle is a forest. Each component is a tree

(A forest is a graph whose connected components are trees)

p. 1 - Iree

Is the "Karate graph" a tree?

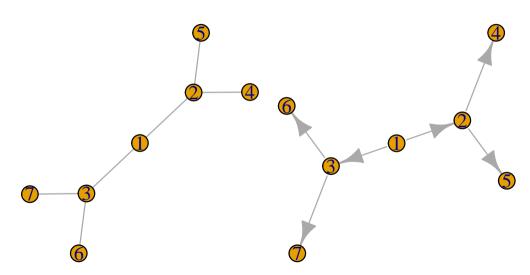
```
is_acyclic(G_Z)
## [1] FALSE
is_tree(G_Z)
## [1] FALSE
```

So we need a friend to play with!

```
G_tu <- make_tree(7, 2, mode = "undirected")
G_td <- make_tree(7, 2)</pre>
```

An undirected tree

An out directed tree



Property 155

- Every edge of a tree is a bridge
- Given two vertices u and v of a tree, there is an unique path linking u to v
- ▶ A tree with p vertices and q edges satisfies q = p 1. Thus, a tree is minimally connected

(First property: the deletion of any edge of a tree diconnects it)

Every edge of a tree is a bridge

```
E(G_tu)
## + 6/6 edges from 8b8dbcb:
## [1] 1--2 1--3 2--4 2--5 3--6 3--7
bridges(G_tu)
## + 6/6 edges from 8b8dbcb:
## [1] 2--4 2--5 1--2 3--6 3--7 1--3
all(sort(E(G_tu)) == sort(bridges(G_tu)))
## [1] TRUE
```

Spanning tree

Definition 156 (Spanning tree)

A **spanning tree** of a connected graph *G* is a subgraph of *G* that contains all the vertices of *G* and is a tree.

A graph may have many spanning trees

Minimal spanning tree

Definition 157 (Value of a spanning tree)

The value of a spanning tree T of order p is

$$\sum_{i=1}^{p-1} f(e_i)$$

where f is the function that maps the edge set into \mathbb{R}

Definition 158 (Minimal spanning tree)

Let G be an undirected network, and let T be a minimal spanning tree of G. Then T is a spanning tree whose the value is minimum

Algorithm to find a minimal spanning tree

Let G = (V(G), E(G)) be an undirected network and T be a minimal spanning tree

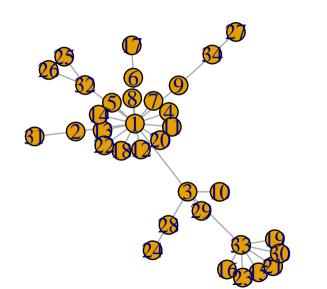
- 1. Sort the edges of *G* in increasing order by value
- 2. $T = (V(G), \emptyset)$
- 3. For each edge *e* in sorted order if the endpoints of *e* are disconnected in *T* add *e* to *T*

Finding a minimal spanning tree of the Karate graph

The function mst finds minimal spanning trees, using distances if no edge weights are provided

```
G_mst = mst(G_Z)
```

A minimal spanning tree of the Karate graph



Minimal connector problem

- Model: a graph G such that edges represent all possible connections, and each edge has a positive value which represents its cost; an undirected network G
- Solution: a minimal spanning tree T of G
 - a spanning tree of G is a subgraph of G that contains all the vertices of G and is a tree.
 - the cost of the spanning tree is the sum of values of the edges of T
 - a spanning tree such that no other spanning tree has a smaller cost is a minimmal spanning tree.

Theorem 159 (Characterisation of trees)

H = (V, U) a graph of order |V| = n > 2. The following are equivalent and all characterise a tree :

- 1. H connected and has no cycles
- 2. H has n-1 arcs and no cycles
- 3. H connected and has exactly n-1 arcs
- 4. H has no cycles, and if an arc is added to H, exactly one cycle is created
- 5. H connected, and if any arc is removed, the remaining graph is not connected
- 6. Every pair of vertices of H is connected by one and only one chain

Definition 160 (Pendant vertex)

A vertex is **pendant** if it is adjacent to exactly one other vertex

Theorem 161

A tree of order $n \ge 2$ has at least two pendant vertices

A graph G = (V, U) has a partial graph that is a tree \iff G connected

(A partial graph is a graph generated by a subset of the arcs)

Spanning tree

Can build a spanning tree as follows:

- ightharpoonup Consider any arc u_0
- Find arc u_1 that does not form a cycle with u_0
- Find arc u_2 that does not form a cycle with $\{u_0, u_1\}$
- Continue
- When you cannot continue anymore, you have a spanning tree

Definition 163 (Minimally connected graph)

G is **minimally connected** if it is strongly connected and removal of any arc destroys strong-connectedness

A minimally connected graph is 1-graph without loops

Definition 164 (Contraction)

G = (V, U). The **contraction** of the set $A \subset V$ of vertices consists in replacing A by a single vertex a and replacing each arc into (resp. out of) A by an arc with same index into (resp. out of) a

G minimally connected, $A \subset V$ generating a strongly connected subgraph of G. Then the contraction of A gives a minimally connected graph

Arborescences

Definition 166 (Root)

Vertex $a \in V$ in G = (V, U) is a root if all vertices of G can be reached by paths starting from a

Not all graphs have roots

Definition 167 (Quasi-strong connectedness)

G is quasi-strongly connected if $\forall x, y \in V$, exists $z \in V$ (denoted z(x, y) to emphasize dependence on x, y) from which there is a path to x and a path to y

Strongly connected \implies quasi-strongly connected (take z(x,y)=x); converse not true

Quasi-strongly connected ⇒ connected

Arborescence

Definition 168 (Arborescence)

An arborescence is a tree that has a root

Lemma 169

$$G = (V, U)$$
 has a root \iff G quasi-strongly connected

H graph of order n > 1. TFAE (and all characterise an arborescence)

- 1. H quasi-strongly connected without cycles
- 2. H quasi-strongly connected with n-1 arcs
- 3. H tree having a root a
- 4. $\exists a \in V \text{ s.t. all other vertices are connected with a by 1 and only 1 path from a$
- 5. H quasi-strongly connected and loses quasi-strong connectedness if any arc is removed
- 6. H quasi-strongly connected and $\exists a \in V$ s.t.

$$d_H^-(a) = 0$$
 and $d_H^-(x) = 1$, $\forall x \neq a$

7. H has no cycles and $\exists a \in V \text{ s.t.}$

$$d_H^-(a) = 0$$
 and $d_H^-(x) = 1$, $\forall x \neq a$

G has a partial graph that is an arborescence ←⇒ G quasi-strongly connected

Theorem 172

G = (V, E) simple connected graph and $x_1 \in V$. It is possible to direct all edges of E so that the resulting graph $G_0 = (V, U)$ has a spanning tree H s.t.

- 1. H is an arborescence with root x_1
- 2. The cycles associated with H are circuits
- 3. The only elementary circuits of G_0 are the cycles associated with H

Counting trees

Proposition 173

X a set with n distinct objects, n_1, \ldots, n_p nonnegative integers s.t. $n_1 + \cdots + n_p = n$. The number of ways to place the n objects into p boxes X_1, \ldots, X_p containing n_1, \ldots, n_p objects respectively is

$$\binom{n}{n_1,\ldots,n_p}=\frac{n!}{n_1!\cdots n_p!}$$

Proposition 174 (Multinomial formula)

Let $a_1, \ldots, a_p \in \mathbb{R}$ be p real numbers, then

$$(a_1 + \cdots + a_p)^n = \sum_{n_1, \dots, n_p > 0} \binom{n}{n_1, \dots, n_p} (a_1)^{n_1} \cdots (a_p)^{n_p}$$

Denote $T(n; d_1, ..., d_n)$ the number of distinct trees H with vertices $x_1, ..., x_n$ and with degrees $d_H(x_1) = d_1, ..., d_H(x_n) = d_n$. Then

$$T(n; d_1, \ldots, d_n) = \binom{n-2}{d_1-1, \ldots, d_n-1}$$

Theorem 176

The number of different trees with vertices x_1, \ldots, x_n is n^{n-2}

There is a whole industry of similar results (as well as for arborescences), but we will stop here. The main point is that we are talking about a large number of possibilities..