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Trees

Definition 154 (Forest, trees and branches)

▶ A connected graph with no cycle is a tree
▶ A tree is a connected acyclic graph, its edges are called branches
▶ A graph (connected or not) without any cycle is a forest. Each component is

a tree

(A forest is a graph whose connected components are trees)
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Is the “Karate graph” a tree?

is_acyclic(G_Z)

## [1] FALSE

is_tree(G_Z)

## [1] FALSE

So we need a friend to play with!

G_tu <- make_tree(7, 2, mode = "undirected")
G_td <- make_tree(7, 2)
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An undirected tree
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Property 155

▶ Every edge of a tree is a bridge
▶ Given two vertices u and v of a tree, there is an unique path linking u to v
▶ A tree with p vertices and q edges satisfies q = p − 1. Thus, a tree is

minimally connected

(First property: the deletion of any edge of a tree diconnects it)
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Every edge of a tree is a bridge

E(G_tu)

## + 6/6 edges from 8b8dbcb:
## [1] 1--2 1--3 2--4 2--5 3--6 3--7

bridges(G_tu)

## + 6/6 edges from 8b8dbcb:
## [1] 2--4 2--5 1--2 3--6 3--7 1--3

all(sort(E(G_tu)) == sort(bridges(G_tu)))

## [1] TRUE
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Spanning tree

Definition 156 (Spanning tree)

A spanning tree of a connected graph G is a subgraph of G that contains all the
vertices of G and is a tree.

A graph may have many spanning trees
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Minimal spanning tree

Definition 157 (Value of a spanning tree)

The value of a spanning tree T of order p is

p−1∑
i=1

f (ei)

where f is the function that maps the edge set into R

Definition 158 (Minimal spanning tree)

Let G be an undirected network, and let T be a minimal spanning tree of G.
Then T is a spanning tree whose the value is minimum
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Algorithm to find a minimal spanning tree

Let G = (V (G),E(G)) be an undirected network and T be a minimal spanning tree

1. Sort the edges of G in increasing order by value
2. T = (V (G), ∅)
3. For each edge e in sorted order if the endpoints of e are disconnected in T

add e to T
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Finding a minimal spanning tree of the Karate graph

The function mst finds minimal spanning trees, using distances if no edge weights
are provided

G_mst = mst(G_Z)
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A minimal spanning tree of the Karate graph
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Minimal connector problem

▶ Model: a graph G such that edges represent all possible connections, and
each edge has a positive value which represents its cost; an undirected
network G

▶ Solution: a minimal spanning tree T of G
▶ a spanning tree of G is a subgraph of G that contains all the vertices of G and is

a tree.
▶ the cost of the spanning tree is the sum of values of the edges of T
▶ a spanning tree such that no other spanning tree has a smaller cost is a

minimmal spanning tree.

p. 11 – Trees



Theorem 159 (Characterisation of trees)

H = (V ,U) a graph of order |V | = n > 2. The following are equivalent and all
characterise a tree :

1. H connected and has no cycles
2. H has n − 1 arcs and no cycles
3. H connected and has exactly n − 1 arcs
4. H has no cycles, and if an arc is added to H, exactly one cycle is created
5. H connected, and if any arc is removed, the remaining graph is not connected
6. Every pair of vertices of H is connected by one and only one chain
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Definition 160 (Pendant vertex)

A vertex is pendant if it is adjacent to exactly one other vertex

Theorem 161
A tree of order n ≥ 2 has at least two pendant vertices
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Theorem 162
A graph G = (V ,U) has a partial graph that is a tree ⇐⇒ G connected

(A partial graph is a graph generated by a subset of the arcs)
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Spanning tree

Can build a spanning tree as follows:
▶ Consider any arc u0

▶ Find arc u1 that does not form a cycle with u0

▶ Find arc u2 that does not form a cycle with {u0,u1}
▶ Continue
▶ When you cannot continue anymore, you have a spanning tree
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Definition 163 (Minimally connected graph)

G is minimally connected if it is strongly connected and removal of any arc
destroys strong-connectedness

A minimally connected graph is 1-graph without loops

Definition 164 (Contraction)

G = (V ,U). The contraction of the set A ⊂ V of vertices consists in replacing A
by a single vertex a and replacing each arc into (resp. out of) A by an arc with
same index into (resp. out of) a
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Theorem 165
G minimally connected, A ⊂ V generating a strongly connected subgraph of G.
Then the contraction of A gives a minimally connected graph
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Arborescences

Definition 166 (Root)

Vertex a ∈ V in G = (V ,U) is a root if all vertices of G can be reached by paths
starting from a

Not all graphs have roots

Definition 167 (Quasi-strong connectedness)

G is quasi-strongly connected if ∀x , y ∈ V , exists z ∈ V (denoted z(x , y) to
emphasize dependence on x , y ) from which there is a path to x and a path to y

Strongly connected =⇒ quasi-strongly connected (take z(x , y) = x); converse
not true
Quasi-strongly connected =⇒ connected
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Arborescence

Definition 168 (Arborescence)

An arborescence is a tree that has a root

Lemma 169
G = (V ,U) has a root ⇐⇒ G quasi-strongly connected
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Theorem 170
H graph of order n > 1. TFAE (and all characterise an arborescence)

1. H quasi-strongly connected without cycles
2. H quasi-strongly connected with n − 1 arcs
3. H tree having a root a
4. ∃a ∈ V s.t. all other vertices are connected with a by 1 and only 1 path from a
5. H quasi-strongly connected and loses quasi-strong connectedness if any arc

is removed
6. H quasi-strongly connected and ∃a ∈ V s.t.

d−
H (a) = 0 and d−

H (x) = 1, ∀x ̸= a

7. H has no cycles and ∃a ∈ V s.t.

d−
H (a) = 0 and d−

H (x) = 1, ∀x ̸= a
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Theorem 171
G has a partial graph that is an arborescence ⇐⇒ G quasi-strongly connected

Theorem 172
G = (V ,E) simple connected graph and x1 ∈ V. It is possible to direct all edges of
E so that the resulting graph G0 = (V ,U) has a spanning tree H s.t.

1. H is an arborescence with root x1

2. The cycles associated with H are circuits
3. The only elementary circuits of G0 are the cycles associated with H
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Counting trees
Proposition 173

X a set with n distinct objects, n1, . . . ,np nonnegative integers s.t.
n1 + · · ·+ np = n. The number of ways to place the n objects into p boxes
X1, . . . ,Xp containing n1, . . . ,np objects respectively is(

n
n1, . . . ,np

)
=

n!
n1! · · · np!

Proposition 174 (Multinomial formula)

Let a1, . . . ,ap ∈ R be p real numbers, then

(a1 + · · ·+ ap)
n =

∑
n1,...,np≥0

(
n

n1, . . . ,np

)
(a1)

n1 · · · (ap)
np
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Theorem 175
Denote T (n;d1, . . . ,dn) the number of distinct trees H with vertices x1, . . . , xn and
with degrees dH(x1) = d1, . . . ,dH(xn) = dn. Then

T (n;d1, . . . ,dn) =

(
n − 2

d1 − 1, . . . ,dn − 1

)

Theorem 176
The number of different trees with vertices x1, . . . , xn is nn−2

There is a whole industry of similar results (as well as for arborescences), but we
will stop here. The main point is that we are talking about a large number of
possibilities..
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