\
b\ University
@ «Manitoba

Clustering & Classification using ANNs

Julien Arino
University of Manitoba
julien.arino@umanitoba.ca

The University of Manitoba campuses are located on original lands of Anishinaabeg, Ininew, Anisininew, Dakota
and Dene peoples, and on the National Homeland of the Red River Métis. We respect the Treaties that were
made on these territories, we acknowledge the harms and mistakes of the past, and we dedicate ourselves to
move forward in partnership with Indigenous communities in a spirit of Reconciliation and collaboration.

julien.arino@umanitoba.ca

Outline

Neural networks (the perceptron)

Neural networks (the perceptron)

Artificial neural network (ANN) - from Wikipedia

Artificial neural networks (ANNs) are computing systems inspired by the
biological neural networks that constitute animal brains

An ANN is based on a collection of connected units or nodes called artifi-
cial neurons, which loosely model the neurons in a biological brain. Each
connection, like the synapses in a biological brain, can transmit a signal to
other neurons. An artificial neuron receives signals then processes them
and can signal neurons connected to it. The “signal” at a connection is
a real number, and the output of each neuron is computed by some non-
linear function of the sum of its inputs. The connections are called edges.
Neurons and edges typically have a weight that adjusts as learning pro-
ceeds. The weight increases or decreases the strength of the signal at a
connection. Neurons may have a threshold such that a signal is sent only
if the aggregate signal crosses that threshold.

p. 1 — Neural networks (the perceptron)

https://en.wikipedia.org/wiki/Artificial_neural_network

The perceptron

One of the first neural networks (invented 1943, implemented 1957), made for
simple classification tasks, for example recognising letters or numbers

Two layers: the input layer (the retina) and the output layer

Inputs are 0 or 1, so are outputs

p. 2 — Neural networks (the perceptron)

Retina Output layer

Connections

The connections into the output layer are called synapses, they are modifiable

p. 3 — Neural networks (the perceptron)

The activation function

Here,

0 ifg<o0
f(a)) = L
1 ifg >0

p. 4 — Neural networks (the perceptron)

The activation function

We have / input neurons taking values 0 or 1, O output neurons taking values 0 or
1, weights W = [w;] € Mo and a threshold function f

More generally, use a threshold ¢; for each output neuron

0 — 0 ifajgej
T ifg >

The thresholds (or response bias) and the weights are modifiable by learning. To
do that easily for the threshold, consider an input neuron that is always on, say
neuron 0, and set weights wy; = —6;, making the weights matrix an

(I+ 1) x O-matrix

p. 5 — Neural networks (the perceptron)

Another way to write the activation is

0 — 0 ifaj-l-WojSO
"1 ifai+wy >0

where wy; = —0;

p. 6 — Neural networks (the perceptron)

Learning something simple

The aim is to adjust the synaptic weights so that the proper response is provided
to a given stimulus

Let us first do a simple example: the OR truth table

0 0 —~ O
1 0 —~ 1
01 — 1
1 1 - 1

So we have two neurons in the retina and a single output neuron

p. 7 — Neural networks (the perceptron)

Supervised learning

(From R. Rojas)
Supervised learning: method in which some input vectors are collected
and presented to the network. The output computed by the network is
observed and the deviation from the expected answer is measured

The weights are corrected according to the magnitude of the error in the
way defined by the learning algorithm

Also called learning with a teacher, since a control process knows the
correct answer for the set of selected input vectors

p. 8 — Neural networks (the perceptron)

Further distinctions in supervised learning methods

Methods with reinforcement or error correction

» Reinforcement learning: used when after each presentation of an
input-output example, we only know whether the network produces the
desired result or not. Weights are updated based on this information (i.e., the
Boolean values true or false), so only the input vector can be used for weight
correction

» In learning with error correction, the magnitude of the error, together with the
input vector, determines the magnitude of the corrections to the weights. In
many cases, we try to eliminate the error in a single correction step

p. 9 — Neural networks (the perceptron)

A first learning algorithm
Suppose the training set consists of two sets of points P and N
> start: Generate random weight vector wy; sett := 0

» test: A vector x € PU N is selected randomly

> if x € Pand (w;, x) > 0 go to test
> if x € Pand (w, x) < 0 go to add
> if x € Nand (w;, x) < 0go to test
» if x € Nand (w;, x) > 0 go to subtract

» add: set w; 1 =w; + xand t:=t+ 1, goto test

» subtract: set w;, 1 = w; — x and t :=t + 1, goto test

p. 10 — Neural networks (the perceptron)

Widrow-Hoff learning rule

Need to provide the correct answer, i.e., this is a supervised learning rule

An output cell only learns if it is mistaken

Present random inputs and apply the rule if the output does not match the known
output

p. 11— Neural networks (the perceptron)

Widrow-Hoff learning rule

W,Et—H) = W(t) +n(t — 0j)x; = W,-Y) + Awj (1)
» Awj correction to add to the weight w;

X;: value (0 or 1) of the ith retinal cell

o;: response of the jth output cell

lj target response (correct desired response)

W,E.t): weight of the synapse between the ith retinal cell and jth output cell at
time t. Typically initiated at small random values

> 7: small positive constant, the learning constant

p. 12 — Neural networks (the perceptron)

Learning OR

—~— oo
1111
4 o a0

0
1
0
1 1

Three cells in the retina (two inputs and the “dummy” cell used for the threshold)
and one output cell. So inputs and outputs must be

10 0 — O
11 0 — 1
10 1 —» 1
11 1 - 1

Initialise the 3 x 1 weight matrix W to zero:

e

p. 13 — Neural networks (the perceptron)

Procedure

We choose one random association in

0
0
1
1

1111
R)

0
1
0
1

—_ - .

say, the fourth one. So we present [1, 1, 1] and expect an output of 1. We have

a_ZW,x,_ x0)+(1x0)+(1x0)=0

This being < 0 means that o = 0, giving an error of 1

p. 14 — Neural networks (the perceptron)

Applying the rule

Suppose the learning constant n = 0.1. Then applying (1),

Awp = n(t — 0)x = 0.1 x (1 —0) x 1 = 0.1
Aw;y =n(t— 0)x = 0.1 x (1 —0) x 1 = 0.1
Aws = n(t — 0)x = 0.1 x (1 —0) x 1 = 0.1

Applying the correction, W becomes
0.1
W= {01
0.1

p. 15 — Neural networks (the perceptron)

Trying another input

Suppose we now present the first input [1, 0, 0]. This should produce a result of 0.
Then
a=Y wxi=(1x0.1)+(0x0.1)+ (0 x 0.1) = 0.1
i

which is > 0, so 0 = 1. We compute the correction

Awp =7(t—0)xg=0.1x (0—1) x 1 =—0.1
Awy =n(t—0)xy=01x(0-1)x0=0
Awy =n(t—0)xp =01 x(0-1)x0=0

0
W=|{0.1
0.1

and adjust the weights, giving

p. 16 — Neural networks (the perceptron)

And we are done!

With the weights

0
W=|{0.1
0.1

we are done. Indeed

Input0 Input1 Input?2 a o Should be
1 0 0 0 0 0
1 1 0 0+0.1+0 1 1
1 0 1 0+0+0.1 1 1
1 1 1 0+0.1+0.1 1 1

p. 17 — Neural networks (the perceptron)

Learning XOR
Let us now look at the XOR truth table

0
0
1
1

1111
O = a0

0
1
0
1

This problem is not solvable with a simple perceptron of the type we just used, as
truth table is not linearly separable

Indeed, we would get weights wy > 0, w, > 0 to activate when presenting [1, 0]
and [0, 1], but would require that the sum of the weights when applied to the input
[1,1], give a negative value.

p. 18 — Neural networks (the perceptron)

Linear separability and OR and XOR

Xo X2
® ® ® O
O o—, —© o

A single-layer perceptron can only learn linearly separable problems

p. 19 — Neural networks (the perceptron)

Adding a hidden layer

It is possible to do XOR, but we need to add a hidden layer

p. 20 — Neural networks (the perceptron)

Using neuralnet to learn OR

First, create the truth table

OR_table = matrix(c(0, 0, O,
1, 0, 1,
o, 1, 1,
1, 1, 1),

nc = 3, byrow = TRUE)
OR_table = as.data.frame(OR_table)
colnames (OR_table) = c("x1", "x2", "OR")

p. 21— Neural networks (the perceptron)

Now create and train the NN

The “formula” is to find the OR column using the x1 and x2 columns. We use no
hidden layer

nn_OR = neuralnet(OR ~ x1 + x2,
data = OR_table,
act.fct = "logistic",
hidden = O,

linear.output = FALSE)
Plot the result

plot(nn_OR, rep = "best")

p. 22 — Neural networks (the perceptron)

X1

X2

Error

:0.016931 Steps: 56

v

Testing the result

pred = predict(nn_OR, OR_table)
OR_table$result = pred > 0.5
kable(OR_table, "latex", booktabs = TRUE)

x1 x2 OR result

0 O 0 FALSE
1 0 1 TRUE
0o 1 1 TRUE
1 1 1 TRUE

p. 24 — Neural networks (the perceptron)

Now the XOR truth table

XOR_table = matrix(c(0, 0, O,
1, 0, 1,
o, 1, 1,
1, 1, 0),
nc = 3, byrow = TRUE)
XO0R_table = as.data.frame(XOR_table)

colnames (XOR_table) = c("x1", "x2", "XOR")

p. 25 — Neural networks (the perceptron)

Try to learn it without a hidden layer

nn_XOR = neuralnet(XOR ~ x1 + x2,
data = XOR_table,
act.fct = "logistic",
hidden = 0,
linear.output = FALSE)
pred = predict(nn_XOR, XOR_table)
XOR_table$result = pred > 0.5
kable(X0OR_table, "latex", booktabs = TRUE)

x1 x2 XOR result

0 0 FALSE
0 1 FALSE
1
1

1 TRUE

0
1
0
1 0 TRUE

p. 26 — Neural networks (the perceptron)

Now with a hidden layer

nn_XOR = neuralnet(XOR ~ x1 + x2,
data = XOR_table,
act.fct = "tanh",
hidden = 1)
pred = predict(nn_XOR, XOR_table)
XOR_table$result = pred > 0.5
kable(XOR_table, "latex", booktabs = TRUE)

x1 x2 XOR result

0 O 0 FALSE
1 0 1 TRUE
0
1

1 1 TRUE
1 0 TRUE

Should look into options.. :)

p. 27 — Neural networks (the perceptron)

An example from the neuralnet manual — Training vs testing sets

iris is a built-in R dataset detailing physical characteristics of 150 flowers from 3
iris species

train_idx <- sample(nrow(iris), 2/3 * nrow(iris))
iris_train <- iris[train_idx,]
iris_test <- iris[-train_idx,]

Thus we pick at random 2/3 of the data for training and 1/3 for testing. See some
considerations on training, validation and testing on this Wikipedia page

p. 28 — Neural networks (the perceptron)

https://en.wikipedia.org/wiki/Training,_validation,_and_test_data_sets

An example from the neuralnet manual

nn <- neuralnet(Species == "setosa" ~ Petal.Length + Petal.Width,
iris_train, linear.output = FALSE)
pred <- predict(nn, iris_test)

table(iris_test$Species == "setosa", pred[, 1] > 0.5)
##

FALSE TRUE

#it FALSE 32 0

TRUE 0 18

p. 29 — Neural networks (the perceptron)

Another example — multiclass classification

nn <- neuralnet((Species == "setosa") +
(Species == "versicolor") +
(Species == "virginica")

~ Petal.Length + Petal.Width,

iris_train, linear.output = FALSE)
pred <- predict(nn, iris_test)
table(iris_test$Species, apply(pred, 1, which.max))

##
#it 1 2 3
#it setosa 18 0 O

#i versicolor O 13 1
virginica 0 1 17

p. 30 — Neural networks (the perceptron)

	Neural networks (the perceptron)

