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What makes an important webpage?

In days of yore, the web was a small thing

Alta Vista was the search engine of choice

Google started in 1998, based on an algorithm (PageRank) described in a paper
of Page, Brin, Motwani and Winograd (link)


https://storm.cis.fordham.edu/~gweiss/selected-papers/classic-pagerank-paper.pdf

Overview

Give each page a rating (of its importance), a recursively defined measure
whereby a page becomes important if important pages link to it

Recursive definition: the importance of a page refers back to the importance of
other pages that link to it

Random surfer model: a random surfer on the web follows links from page to
page. Page rank ~ IP random surfer lands on a particular page. Popular page —
higher probability to go there. (P stands for “probability”)

Example of a Markov chain
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Constructing a stochastic matrix from an adjacency matrix

Let A be the adjacency matrix of a simple graph G = (V, E) and D its degree
matrix, i.e., the diagonal matrix D = (dj) with diagonal entries

n n
di = Za,-,- = Za,j
j=1 j=1

(Recall that A symmetric since G nondirected.) Then the matrix AD~' is column
stochastic
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Indeed, write entries in D~ as d; . Of course, d; ' = 1/dj, 1 <i < nand

d; ' =0ifi#]
Then

Za[k a[j , I,j:1,,n
So the sum of column j of AD~ ' is

n n
e i a
> ad =d;" ) a
i=1 i=1
n
_ A1 i
di' D a
i=1

—1
:djj dj/’
=1

and the matrix is column-stochastic
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Eigenvector centrality (undirected graph)

Let x be an eigenvector corresponding to the largest eigenvalue X of the
non-negative adjacency matrix A of the undirected graph G = (V, E)

(We often call A\ the Perron root of A and x a Perron eigenvector)

The eigenvector centrality (or prestige score) of vertex i is the ith component of
the eigenvector x of the (column) stochastic matrix N := AD~" corresponding to

the eigenvalue 1:
Nx =x
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Consider a particular vertex i with its neighbouring vertices N (/):

= > 5= A

JeN(i) J

The eigenvector centrality defined this way depends both on the number of
neighbours |V (/)| and the quality of its connections x;, j € N(/)
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Let A = (a;) be the adjacency matrix of a graph. The eigenvector centrality x; of
vertex i is given by
1
Xi=~ ZK: aki Xk

where X # 0 is a constant. In matrix form

xTA= ) \x"

Hence the centrality vector x is the left eigenvector of the adjacency matrix A
associated with the eigenvalue \
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Power method to solve eigenvector centrality

m(v): signed component of maximal magnitude of vector v; if more than one
maximal component, let m(v) be the first one. E.g., m(-3,3,2) = -3

Let x(%) be an arbitrary vector. For k > 1
> repeatedly compute x(K) = x(k=1) A
» normalize x(K) = x(%) /m(x(¥))

until desired precision is achieved

Then x() converges to the dominant eigenvector of A and m(x(K)) converges to
the dominant eigenvalue of A

If matrix A is sparse, each vector-matrix product can be performed in linear time in
the size of the graph.
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Power method converges when the dominant (largest) and the sub-dominant
(second largest) eigenvalues of A A\ and )\, are separated, i.e., are different in
absolute value, i.e., when |A{| > |\2]

Rate of convergence is rate at which (\2/\1)* goes to 0. Hence, if the
sub-dominant eigenvalue is small compared to the dominant one, the method
converges quickly
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Why use the leading eigenvector?

We want a nonnegative measure, so we want a vector in R

We know from the Perron-Frobenius Theorem that the eigenvector corresponding
to the dominant eigenvalue of a nonnegative matrix is nonnegative

Furthermore, if the graph is strongly connected, the matrix is irreducible and the
eigenvector corresponding to the dominant eigenvalue is positive

p. 10 — Eigenvector centrality
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PageRank

Variant of the Eigenvector centrality measure for directed network

Basic PageRank

» Whenever a vertex i has no outgoing link, we add a self-loop to i such that
k’” ko‘” = 1. Therefore A; = 1 for such vertices in the adjacency matrix

» Let DT be the diagonal matrix of outdegrees where each element D+ kout

> Define a column stochastic matrix N = A(D*)~"

» The PageRank centrality of node i is equal to the eigenvector xi of matrix N
(The leading eigenvalue is 1): x = Nx
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Problem
Given n interlinked webpages, rank them in order of “importance”

Assign the pages importance scores x1, X,...,Xp >0

Key insight: use the existing link structure of the web to determine importance. A
link to a page “is” a vote for its importance

How does this help with web searches?
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First attempt: let xx equal the number of links to page k

Criticism: a link from an “important” page (like Google) should carry more weight
than a link from some random blog!
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Second attempt: let xx equal the sum of the importance scores of all pages linking
to page k

Criticism 1: a webpage gets more “votes” (exerts more influence) if it has many
outgoing links

Criticism 2: this system only has the trivial solution!
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Third attempt (Brin and Page, late 90s): let xx equal the sum of x;/n;, where the
sum is taken over all the pages j that link to page k, and n; is the number of
outgoing links on page j

A page’s number of votes is then its importance score, and gets split evenly
among the pages it links to
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Summary: given a web with n pages, construct an n x n matrix A as

1/n; if page j links to page /
ajj = )
0 otherwise

where n; is number of outgoing links on page j
Sum of jth columnis n;/n; = 1, so A'is a stochastic matrix

The ranking vector x solves Ax = X
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Possible issues: existence of solution with nonnegative entries? Non-unique
solutions?

PF Theorem guarantees a unique steady-state vector if entries of A are strictly
positive or A irreducible. But irreducible = Ay and X\» separated, so make it
primitive

Brin-Page: replace A with

B =0.85A + ?J

where J is the matrix of all ones

B > 0 is primitive = PF Theorem says B has a unique steady-state vector, x.
So x can be used for rankings!
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The Random Surfer

Why Markov chains?

Brin and Page

PageRank can be thought of as a model of user behavior. We assume there is a
“random surfer” who is given a web page at random and keeps clicking on links,
never hitting “back” but eventually gets bored and starts on another random page

Surfer clicks on a link on the current page with probability 0.85; opens up a
random page with probability 0.15

A page’s rank is the probability the random user will end up on that page, OR,
equivalently the fraction of time the random user spends on that page in the long
run
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In practice

Estimates of the number of web pages vary.. 4.77 x 10° to more than 50 x 10°

Computing stationary distribution is hard computationally

Instead, use power method, i.e., an iterative method, starting with initial
distribution (1/n,...,1/n)

p. 19 — PageRank
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