
Matrix methods

p. 1 –

Orthogonality and projections

Least squares problems

Fitting something more complicated

Orthogonal matrices

The QR factorisation

The singular values decomposition (SVD)

Principal component analysis (PCA)

Definition 1 (Orthogonal set of vectors)

The set of vectors {v1, . . . , vk} ∈ Rn is an orthogonal set if

∀i , j = 1, . . . , k , i ̸= j =⇒ vi • vj = 0

Theorem 2

{v1, . . . , vk} ∈ Rn with ∀i , vi ̸= 0, orthogonal set =⇒ {v1, . . . , vk} ∈ Rn linearly
independent

Definition 3 (Orthogonal basis)

Let S be a basis of the subspace W ⊂ Rn composed of an orthogonal set of vectors.
We say S is an orthogonal basis of W

p. 2 – Orthogonality and projections

Proof of Theorem 2
Assume {v1, . . . , vk} orthogonal set with vi ̸= 0 for all i = 1, . . . , k . Recall
{v1, . . . , vk} is LI if

c1v1 + · · ·+ ckvk = 0 ⇐⇒ c1 = · · · = ck = 0

So assume c1, . . . , ck ∈ R are s.t. c1v1 + · · ·+ ckvk = 0. Recall that ∀x ∈ Rk ,
0k • x = 0. So for some vi ∈ {v1, . . . , vk}

0 = 0 • vi
= (c1v1 + · · ·+ ckvk) • vi
= c1v1 • vi + · · ·+ ckvk • vi (1)

As {v1, . . . , vk} orthogonal, vj • vi = 0 when i ̸= j , (1) reduces to

civi • vi = 0 ⇐⇒ ci∥vi∥2 = 0

As vi ̸= 0 for all i , ∥vi∥ ≠ 0 and so ci = 0. This is true for all i , hence the result
p. 3 – Orthogonality and projections

Example – Vectors of the standard basis of R3

For R3, we denote

i =

1
0
0

 , j =

0
1
0

 and k =

0
0
1

(Rk for k > 3, we denote them ei)

Clearly, {i, j}, {i, k}, {j, k} and {i, j, k} orthogonal sets. The standard basis vectors are
also ̸= 0, so the sets are LI. And

{i, j, k}

is an orthogonal basis of R3 since it spans R3 and is LI

c1i+ c2j+ c3k = c1

1
0
0

+ c2

0
1
0

+ c3

0
0
1

 =

c1
c2
c3

p. 4 – Orthogonality and projections

Orthonormal version of things

Definition 4 (Orthonormal set)

The set of vectors {v1, . . . , vk} ∈ Rn is an orthonormal set if it is an orthogonal set
and furthermore

∀i = 1, . . . , k , ∥vi∥ = 1

Definition 5 (Orthonormal basis)

A basis of the subspace W ⊂ Rn is an orthonormal basis if the vectors composing it
are an orthonormal set

{v1, . . . , vk} ∈ Rn is orthonormal if

vi • vj =

{
1 if i = j

0 otherwise

p. 5 – Orthogonality and projections

Projections

Definition 6 (Orthogonal projection onto a subspace)

W ⊂ Rn a subspace and {u1, . . . ,uk} an orthogonal basis of W . ∀v ∈ Rn, the
orthogonal projection of v onto W is

projW (v) =
u1 • v
∥u1∥2

u1 + · · ·+ uk • v
∥uk∥2

uk

Definition 7 (Component orthogonal to a subspace)

W ⊂ Rn a subspace and {u1, . . . ,uk} an orthogonal basis of W . ∀v ∈ Rn, the
component of v orthogonal to W is

perpW (v) = v − projW (v)

p. 6 – Orthogonality and projections

What this aims to do is to construct an orthogonal basis for a subspace W ⊂ Rn

To do this, we use the Gram-Schmidt orthogonalisation process, which turn s a basis of
W into an orthogonal basis of W

p. 7 – Orthogonality and projections

Gram-Schmidt process

Theorem 8

W ⊂ Rn a subset and {x1, . . . , xk} a basis of W . Let

v1 = x1

v2 = x2 −
v1 • x2
∥v1∥2

v1

v3 = x3 −
v1 • x3
∥v1∥2

v1 −
v2 • x3
∥v2∥2

v2

...

vk = xk −
v1 • xk
∥v1∥2

v1 − · · · − vk−1 • xk
∥vk−1∥2

vk−1

and
W1 = span(x1),W2 = span(x1, x2), . . . ,Wk = span(x1, . . . , xk)

Then ∀i = 1, . . . , k , {v1, . . . , vi} orthogonal basis for Wi
p. 8 – Orthogonality and projections

Orthogonality and projections

Least squares problems

Fitting something more complicated

Orthogonal matrices

The QR factorisation

The singular values decomposition (SVD)

Principal component analysis (PCA)

The least squares problem (simplest version)

Definition 9

Given a collection of points (x1, y1), . . . , (xn, yn), find the coefficients a, b of the line
y = a+ bx such that

∥e∥ =
√
ε21 + · · ·+ ε2n =

√
(y1 − ỹ1)2 + · · ·+ (yn − ỹn)2

is minimal, where ỹi = a+ bxi for i = 1, . . . , n

We just saw how to solve this by brute force using a genetic algorith to minimise ∥e∥,
let us now see how to solve this problem “properly”

p. 9 – Least squares problems

For a data point i = 1, . . . , n

εi = yi − ỹi = yi − (a+ bxi)

So if we write this for all data points,

ε1 = y1 − (a+ bx1)

...

εn = yn − (a+ bxn)

In matrix form
e = b− Ax

with

e =

ε1
...
εn

 ,A =

1 x1
...

...
1 xn

 , x =

(
a
b

)
and b =

y1
...
yn

p. 10 – Least squares problems

The least squares problem (reformulated)

Definition 10 (Least squares solutions)

Consider a collection of points (x1, y1), . . . , (xn, yn), a matrix A ∈ Mmn, b ∈ Rm. A
least squares solution of Ax = b is a vector x̃ ∈ Rn s.t.

∀x ∈ Rn, ∥b− Ax̃∥ ≤ ∥b− Ax∥

p. 11 – Least squares problems

Needed to solve the problem

Definition 11 (Best approximation)

Let V be a vector space, W ⊂ V and v ∈ V . The best approximation to v in W is
ṽ ∈ W s.t.

∀w ∈ W ,w ̸= ṽ, ∥v − ṽ∥ < ∥v −w∥

Theorem 12 (Best approximation theorem)

Let V be a vector space with an inner product, W ⊂ V and v ∈ V . Then projW (v) is
the best approximation to v in W

p. 12 – Least squares problems

Let us find the least squares solution

∀xRn, Ax is a vector in the column space of A (the space spanned by the vectors
making up the columns of A)

Since x ∈ Rn, Ax ∈ col(A)

=⇒ least squares solution of Ax = b is a vector ỹ ∈ col(A) s.t.

∀y ∈ col(A), ∥b− ỹ∥ ≤ ∥b− y∥

This looks very much like Best approximation and Best approximation theorem

p. 13 – Least squares problems

Putting things together

We just stated: The least squares solution of Ax = b is a vector ỹ ∈ col(A) s.t.

∀y ∈ col(A), ∥b− ỹ∥ ≤ ∥b− y∥

We know (reformulating a tad):

Theorem 13 (Best approximation theorem)

Let V be a vector space with an inner product, W ⊂ V and v ∈ V . Then
projW (v) ∈ W is the best approximation to v in W, i.e.,

∀w ∈ W ,w ̸= projW (v), ∥v − projW (v)∥ < ∥v −w∥

=⇒ W = col(A), v = b and ỹ = projcol(A)(b)

p. 14 – Least squares problems

So if x̃ is a least squares solution of Ax = b, then

ỹ = Ax̃ = projcol(A)(b)

We have
b− Ax̃ = b− projcol(A)(b) = perpcol(A)(b)

and it is easy to show that
perpcol(A)(b) ⊥ col(A)

So for all columns ai of A
ai · (b− Ax̃) = 0

which we can also write as aTi (b− Ax̃) = 0

p. 15 – Least squares problems

For all columns ai of A,
aTi (b− Ax̃) = 0

This is equivalent to saying that

AT (b− Ax̃) = 0

We have

AT (b− Ax̃) = 0 ⇐⇒ ATb− ATAx̃ = 0

⇐⇒ ATb = ATAx̃

⇐⇒ ATAx̃ = ATb

The latter system constitutes the normal equations for x̃

p. 16 – Least squares problems

Least squares theorem

Theorem 14 (Least squares theorem)

A ∈ Mmn, b ∈ Rm. Then

1. Ax = b always has at least one least squares solution x̃

2. x̃ least squares solution to Ax = b ⇐⇒ x̃ is a solution to the normal equations
ATAx̃ = ATb

3. A has linearly independent columns ⇐⇒ ATA invertible.
In this case, the least squares solution is unique and

x̃ =
(
ATA

)−1
ATb

We have seen 1 and 2, we will not show 3 (it is not hard)

p. 17 – Least squares problems

Orthogonality and projections

Least squares problems

Fitting something more complicated

Orthogonal matrices

The QR factorisation

The singular values decomposition (SVD)

Principal component analysis (PCA)

Suppose we want to fit something a bit more complicated..

For instance, instead of the affine function

y = a+ bx

suppose we want to do the quadratic

y = a0 + a1x + a2x
2

or even
y = k0e

k1x

How do we proceed?

p. 18 – Fitting something more complicated

Fitting the quadratic

We have the data points (x1, y1), (x2, y2), . . . , (xn, yn) and want to fit

y = a0 + a1x + a2x
2

At (x1, y1),
ỹ1 = a0 + a1x1 + a2x

2
1

...
At (xn, yn),

ỹn = a0 + a1xn + a2x
2
n

p. 19 – Fitting something more complicated

In terms of the error

ε1 = y1 − ỹ1 = y1 − (a0 + a1x1 + a2x
2
1)

...

εn = yn − ỹn = yn − (a0 + a1xn + a2x
2
n)

i.e.,
e = b− Ax

where

e =

ε1
...
εn

 ,A =

1 x1 x21
...

...
...

1 xn x2n

 , x =

a0
a1
a2

 and b =

y1
...
yn

Theorem 14 applies, with here A ∈ Mn3 and b ∈ Rn

p. 20 – Fitting something more complicated

Fitting the exponential

Things are a bit more complicated here

If we proceed as before, we get the system

y1 = k0e
k1x1

...

yn = k0e
k1xn

ek1xi is a nonlinear term, it cannot be put in a matrix

However: take the ln of both sides of the equation

ln(yi) = ln(k0e
k1xi) = ln(k0) + ln(ek1xi) = ln(k0) + k1xi

If yi , k0 > 0, then their ln are defined and we’re in business..

p. 21 – Fitting something more complicated

ln(yi) = ln(k0) + k1xi

So the system is

y = Ax+ b

with

A =

x1
...
xn

 , x =
(
k1
)
,b =

(
ln(k0)

)
and y =

ln(y1)
...

ln(yn)

p. 22 – Fitting something more complicated

Orthogonality and projections

Least squares problems

Fitting something more complicated

Orthogonal matrices

The QR factorisation

The singular values decomposition (SVD)

Principal component analysis (PCA)

Theorem 15

Let Q ∈ Mmn. The columns of Q form an orthonormal set if and only if

QTQ = In

Definition 16 (Orthogonal matrix)

Q ∈ Mn is an orthogonal matrix if its columns form an orthonormal set

So Q ∈ Mn orthogonal if QTQ = I, i.e., QT = Q−1

Theorem 17 (NSC for orthogonality)

Q ∈ Mn orthogonal ⇐⇒ Q−1 = QT

p. 23 – Orthogonal matrices

Theorem 18 (Orthogonal matrices “encode” isometries)

Let Q ∈ Mn. TFAE

1. Q orthogonal

2. ∀x ∈ Rn, ∥Qx∥ = ∥x∥
3. ∀x, y ∈ Rn, Qx • Qy = x • y

Theorem 19

Let Q ∈ Mn be orthogonal. Then

1. The rows of Q form an orthonormal set

2. Q−1 orthogonal

3. detQ = ±1

4. ∀λ ∈ σ(Q), |λ| = 1

5. If Q2 ∈ Mn also orthogonal, then QQ2 orthogonal

p. 24 – Orthogonal matrices

Proof of 4 in Theorem 19

All statements in Theorem 19 are easy, but let’s focus on 4

Let λ be an eigenvalue of Q ∈ Mn orthogonal, i.e., ∃Rn ∋ x ̸= 0 s.t.

Qx = λx

Take the norm on both sides
∥Qx∥ = ∥λx∥

From 2 in Theorem 18, ∥Qx∥ = ∥x∥ and from the properties of norms,
∥λx∥ = |λ| ∥x∥, so we have

∥Qx∥ = ∥λx∥ ⇐⇒ ∥x∥ = |λ| ∥x∥ ⇐⇒ 1 = |λ|

(we can divide by ∥x∥ since x ̸= 0 as an eigenvector)

p. 25 – Orthogonal matrices

Orthogonality and projections

Least squares problems

Fitting something more complicated

Orthogonal matrices

The QR factorisation

The singular values decomposition (SVD)

Principal component analysis (PCA)

Matrix factorisations

Matrix factorisations are popular because they allow to perform some computations
more easily

There are several different types of factorisations. Here, we study just the QR
factorisation, which is useful for many least squares problems

p. 26 – The QR factorisation

The QR factorisation

Theorem 20

Let A ∈ Mmn with LI columns. Then A can be factored as

A = QR

where Q ∈ Mmn has orthonormal columns and R ∈ Mn is nonsingular upper triangular

p. 27 – The QR factorisation

Back to least squares

So what was the point of all that..?

Theorem 21 (Least squares with QR factorisation)

A ∈ Mmn with LI columns, b ∈ Rm. If A = QR is a QR factorisation of A, then the
unique least squares solution x̃ of Ax = b is

x̃ = R−1QTb

p. 28 – The QR factorisation

Proof of Theorem 21
A has LI columns so

▶ least squares Ax = b has unique solution x̃ = (ATA)−1ATb

▶ by Theorem 20, A can be written as A = QR with Q ∈ Mmn with orthonormal
columns and R ∈ Mn nonsingular and upper triangular

So

ATAx̃ = ATb =⇒ (QR)TQR x̃ = (QR)Tb

=⇒ RTQTQR x̃ = RTQTb

=⇒ RT InR x̃ = RTQTb

=⇒ RTR x̃ = RTQTb

=⇒ (RT)−1R x̃ = (RT)−1RTQTb

=⇒ R x̃ = QTb

=⇒ x̃ = R−1QTb

p. 29 – The QR factorisation

Orthogonality and projections

Least squares problems

Fitting something more complicated

Orthogonal matrices

The QR factorisation

The singular values decomposition (SVD)

Principal component analysis (PCA)

Matrix factorisations (continued)

The singular value decomposition (known mostly by its acronym, SVD) is yet another
type of factorisation/decomposition..

p. 30 – The singular values decomposition (SVD)

Singular values

Definition 22 (Singular value)

Let A ∈ Mmn(R). The singular values of A are the real numbers

σ1 ≥ σ2 ≥ · · ·σn ≥ 0

that are the square roots of the eigenvalues of ATA

p. 31 – The singular values decomposition (SVD)

Singular values are real and nonnegative?

Recall that ∀A ∈ Mmn, A
TA is symmetric

Claim 1. Real symmetric matrices have real eigenvalues

Proof. A ∈ Mn(R) symmetric and (λ, v) eigenpair of A, i.e, Av = λv. Taking the
complex conjugate, Av = λv

Since A ∈ Mn(R), A = A (z = z̄ ⇐⇒ z ∈ R)

So
Av̄ = Av̄ = Av = λv = λv̄

i.e., if (λ, v) eigenpair, (λ̄, v̄) also eigenpair

p. 32 – The singular values decomposition (SVD)

Still assuming A ∈ Mn(R) symmetric and (λ, v) eigenpair of A and using what we just
proved (that (λ̄, v̄) also eigenpair), take transposes

Av̄ = λ̄v̄ ⇐⇒ (Av̄)T = (λ̄v̄)T

⇐⇒ v̄TAT = λ̄v̄T

⇐⇒ v̄TA = λ̄v̄T [A symmetric]

Let us now compute λ(v̄ • v). We have

λ(v̄ • v) = λv̄Tv = v̄T (λv)

= v̄T (Av) = (v̄TA)v

= (λ̄v̄T)v = λ̄(v̄ • v)
⇐⇒ (λ− λ̄)(v̄ • v) = 0

p. 33 – The singular values decomposition (SVD)

We have shown
(λ− λ̄)(v̄ • v) = 0

Let

v =

a1 + ib1
...

an + ibn

Then

v̄ =

a1 − ib1
...

an − ibn

So

v̄ • v = (a21 + b21) + · · ·+ (a2n + b2n)

But v eigenvector is ̸= 0, so v̄ • v ̸= 0, so

(λ− λ̄)(v̄ • v) = 0 ⇐⇒ λ− λ̄ = 0 ⇐⇒ λ = λ̄ ⇐⇒ λ ∈ R

p. 34 – The singular values decomposition (SVD)

Claim 2. For A ∈ Mmn(R), the eigenvalues of ATA are real and nonnegative

Proof. We know that for A ∈ Mmn, A
TA symmetric and from previous claim, if

A ∈ Mmn(R), then ATA is symmetric and real and with real eigenvalues

Let (λ, v) be an eigenpair of ATA, with v chosen so that ∥v∥ = 1

Norms are functions V → R+, so ∥Av∥ and ∥Av∥2 are ≥ 0 and thus

0 ≤ ∥Av∥2 = (Av) • (Av) = (Av)T (Av)

= vTATAv = vT (ATAv) = vT (λv)

= λ(vTv) = λ(v • v) = λ∥v∥2

= λ

p. 35 – The singular values decomposition (SVD)

Claim 3. For A ∈ Mmn(R), the nonzero eigenvalues of ATA and AAT are the same

Proof. Let (λ, v) be an eigenpair of ATA with λ ̸= 0. Then v ̸= 0 and

ATAv = λv ̸= 0

Left multiply by A
AATAv = λAv

Let w = Av, we thus have AATw = λw; in other words, Av is an eigenvector of AAT

corresponding to the (nonzero) eigenvalue λ

The reverse works the same way..

p. 36 – The singular values decomposition (SVD)

The singular value decomposition (SVD)

Theorem 23 (SVD)

A ∈ Mmn with singular values σ1 ≥ · · · ≥ σr > 0 and σr+1 = · · · = σn = 0

Then there exists U ∈ Mm orthogonal, V ∈ Mn orthogonal and a block matrix
Σ ∈ Mmn taking the form

Σ =

(
D 0r ,n−r

0m−r ,r 0m−r ,n−r

)
where

D = diag(σ1, . . . , σr) ∈ Mr

such that
A = UΣV T

p. 37 – The singular values decomposition (SVD)

Definition 24

We call a factorisation as in Theorem 23 the singular value decomposition of A. The
columns of U and V are, respectively, the left and right singular vectors of A

U and V T are rotation or reflection matrices, Σ is a scaling matrix

U ∈ Mm orthogonal matrix with columns the eigenvectors of AAT

V ∈ Mn orthogonal matrix with columns the eigenvectors of ATA

p. 38 – The singular values decomposition (SVD)

Outer product form of the SVD

Theorem 25 (Outer product form of the SVD)

A ∈ Mmn with singular values σ1 ≥ · · · ≥ σr > 0 and σr+1 = · · · = σn = 0, u1, . . . ,ur
and v1, . . . , vr , respectively, left and right singular vectors of A corresponding to these
singular values

Then
A = σ1u1v

T
1 + · · ·+ σrurv

T
r

p. 39 – The singular values decomposition (SVD)

Computing the SVD (case of ̸= eigenvalues)

To compute the SVD, we use the following result

Theorem 26

Let A ∈ Mn symmetric, (λ1,u1) and (λ2,u2) be eigenpairs, λ1 ̸= λ2. Then u1 •u2 = 0

p. 40 – The singular values decomposition (SVD)

Proof of Theorem 26

A ∈ Mn symmetric, (λ1,u1) and (λ2,u2) eigenpairs with λ1 ̸= λ2

λ1(v1 • v2) = (λ1v1) • v2
= Av1 • v2
= (Av1)

Tv2

= vT1 A
Tv2

= vT1 (Av2) [A symmetric so AT = A]

= vT1 (λ2v2)

= λ2(v
T
1 v2)

= λ2(v1 • v2)

So (λ1 − λ2)(v1 • v2) = 0. But λ1 ̸= λ2, so v1 • v2 = 0

p. 41 – The singular values decomposition (SVD)

Computing the SVD (case of ̸= eigenvalues)

If all eigenvalues of ATA (or AAT) are distinct, we can use Theorem 26

1. Compute ATA ∈ Mn

2. Compute eigenvalues λ1, . . . , λn of ATA; order them as λ1 > · · · > λn ≥ 0 (> not
≥ since ̸=)

3. Compute singular values σ1 =
√
λ1, . . . , σn =

√
λn

4. Diagonal matrix D in Σ is either in Mn (if σn > 0) or in Mn−1 (if σn = 0)

p. 42 – The singular values decomposition (SVD)

5. Since eigenvalues are distinct, Theorem 26 =⇒ eigenvectors are orthogonal set.
Compute these eigenvectors in the same order as the eigenvalues

6. Normalise them and use them to make the matrix V , i.e., V = [v1 · · · vn]
7. To find the ui , compute, for i = 1, . . . , r ,

ui =
1

σi
Avi

and ensure that ∥ui∥ = 1

p. 43 – The singular values decomposition (SVD)

Computing the SVD (case where some eigenvalues are =)

1. Compute ATA ∈ Mn

2. Compute eigenvalues λ1, . . . , λn of ATA; order them as λ1 ≥ · · · ≥ λn ≥ 0

3. Compute singular values σ1 =
√
λ1, . . . , σn =

√
λn, with r ≤ n the index of the

last positive singular value

4. For eigenvalues that are distinct, proceed as before

5. For eigenvalues with multiplicity > 1, we need to ensure that the resulting
eigenvectors are LI and orthogonal

p. 44 – The singular values decomposition (SVD)

Dealing with eigenvalues with multiplicity > 1

When an eigenvalue has (algebraic) multiplicity > 1, e.g., characteristic polynomial
contains a factor like (λ− 2)2, things can become a little bit more complicated

The proper way to deal with this involves the so-called Jordan Normal Form (another
matrix decomposition)

In short: not all square matrices are diagonalisable, but all square matrices admit a JNF

p. 45 – The singular values decomposition (SVD)

Sometimes, we can find several LI eigenvectors associated to the same eigenvalue.
Check this. If not, need to use the following

Definition 27 (Generalised eigenvectors)

x ̸= 0 generalized eigenvector of rank m of A ∈ Mn corresponding to eigenvalue λ if

(A− λI)mx = 0

but
(A− λI)m−1x ̸= 0

p. 46 – The singular values decomposition (SVD)

Procedure for generalised eigenvectors

A ∈ Mn and assume λ eigenvalue with algebraic multiplicity k

Find v1, “classic” eigenvector, i.e., v1 ̸= 0 s.t. (A− λI)v1 = 0

Find generalised eigenvector v2 of rank 2 by solving for v2 ̸= 0,

(A− λI)v2 = v1

. . .

Find generalised eigenvector vk of rank k by solving for vk ̸= 0,

(A− λI)vk = vk−1

Then {v1, . . . , vk} LI

p. 47 – The singular values decomposition (SVD)

Back to the normal procedure

With the LI eigenvectors {v1, . . . , vk} corresponding to λ

Apply Gram-Schmidt to get orthogonal set

For all eigenvalues with multiplicity > 1, check that you either have LI eigenvectors or
do what we just did

When you are done, be back on your merry way to step 6 in the case where
eigenvalues are all ̸=

I am caricaturing a little here: there can be cases that do not work exactly like this,
but this is general enough..

p. 48 – The singular values decomposition (SVD)

Applications of the SVD

Many applications of the SVD, both theoretical and practical..

1. Obtaining a unique solutions to least squares when ATA singular

2. Image compression

p. 49 – The singular values decomposition (SVD)

Least squares revisited

Theorem 28

Let A ∈ Mmn, x ∈ Rn and b ∈ Rm. The least squares problem Ax = b has a unique
least squares solution x̃ of minimal length (closest to the origin) given by

x̃ = A+b

where A+ is the pseudoinverse of A

p. 50 – The singular values decomposition (SVD)

Definition 29 (Pseudoinverse)

A = UΣV T an SVD for A ∈ Mmn, where

Σ =

(
D 0
0 0

)
, with D = diag(σ1, . . . , σr)

(D contains the nonzero singular values of A ordered as usual)

The pseudoinverse (or Moore-Penrose inverse) of A is A+ ∈ Mnm given by

A+ = VΣ+UT

with

Σ+ =

(
D−1 0
0 0

)
∈ Mnm

p. 51 – The singular values decomposition (SVD)

Compressing images

Consider an image (for simplicity, assume in shades of grey). This can be stored in a
matrix A ∈ Mmn

Take the SVD of A. Then the small singular values carry information about the regions
with little variation and can perhaps be omitted, whereas the large singular values
carry information about more “dynamic” regions of the image

Suppose A has r nonzero singular values. For k ≤ r , let

Ak = σ1u1v
T
1 + · · ·+ σkukv

T
k

(so for k = r we get the usual outer product form)

p. 52 – The singular values decomposition (SVD)

Orthogonality and projections

Least squares problems

Fitting something more complicated

Orthogonal matrices

The QR factorisation

The singular values decomposition (SVD)

Principal component analysis (PCA)

Dimensionality reduction

One of the reasons the SVD is used is for dimensionality reduction. However, SVD has
many many other uses

Now we look at another dimensionality reduction technique, PCA

PCA is often used as a blackbox technique, here we take a look at the math behind it

p. 53 – Principal component analysis (PCA)

What is PCA?

Linear algebraic technique

Helps reduce a complex dataset to a lower dimensional one

Non-parametric method: does not assume anything about data distribution
(distribution from the statistical point of view)

p. 54 – Principal component analysis (PCA)

Brief “review” of some probability concepts

Proper definition of probability requires to use measure theory.. will not get into
details here

A random variable X is a measurable function X : Ω → E , where Ω is a set of
outcomes (sample space) and E is a measurable space

P(X ∈ S ⊆ E) = P(ω ∈ Ω|X (ω) ∈ S)

Distribution function of a r.v., F (x) = P(X ≤ x), describes the distribution of a r.v.

R.v. can be discrete or continuous or .. other things.

p. 55 – Principal component analysis (PCA)

Definition 30 (Variance)

Let X be a random variable. The variance of X is given by

Var X = E
[
(X − E (X))2

]
where E is the expected value

Definition 31 (Covariance)

Let X ,Y be jointly distributed random variables. The covariance of X and Y is given
by

cov(X ,Y) = E [(X − E (X)) (Y − E (Y))]

Note that cov(X ,X) = E
[
(X − E (X))2

]
= Var X

p. 56 – Principal component analysis (PCA)

In practice: “true law” versus “observation”

In statistics: we reason on the true law of distributions, but we usually have only
access to a sample

We then use estimators to .. estimate the value of a parameter, e.g., the mean,
variance and covariance

p. 57 – Principal component analysis (PCA)

Definition 32 (Unbiased estimators of the mean and variance)

Let x1, . . . , xn be data points (the sample) and

x̄ =
1

n

n∑
i=1

xi

be the mean of the data. An unbiased estimator of the variance of the sample is

σ2 =
1

n − 1

n∑
i=1

(xi − x̄)2

p. 58 – Principal component analysis (PCA)

Definition 33 (Unbiased estimator of the covariance)

Let (x1, y1), . . . , (xn, yn) be data points,

x̄ =
1

n

n∑
i=1

xi and ȳ =
1

n

n∑
i=1

yi

be the means of the data. An estimator of the covariance of the sample is

cov(x , y) =
1

n

n∑
i=1

(xi − x̄)(yi − ȳ)

p. 59 – Principal component analysis (PCA)

What does covariance do?

Variance explains how data disperses around the mean, in a 1-D case

Covariance measures the relationship between two dimensions. E.g., height and weight

More than the exact value, the sign is important:

▶ cov(X ,Y) > 0: both dimensions change in the same “direction”; e.g., larger
height usually means higher weight

▶ cov(X ,Y) < 0: both dimensions change in reverse directions; e.g., time spent on
social media and performance in this class

▶ cov(X ,Y) = 0: the dimensions are independent from one another; e.g.,
sex/gender and “intelligence”

p. 60 – Principal component analysis (PCA)

The covariance matrix
Typically, we consider more than 2 variables..

Definition 34

Suppose p random variables X1, . . . ,Xp. Then the covariance matrix is the symmetric
matrix

cov(X1,X1) cov(X1,X2) · · · cov(X1,Xp)
cov(X2,X1) cov(X2,X2) · · · cov(X2,Xp)

...
...

...
cov(Xp,X1) cov(Xp,X2) · · · cov(Xp,Xp)

i.e., using the properties of covariance,

Var X1 cov(X1,X2) · · · cov(X1,Xp)
cov(X1,X2) Var X2 · · · cov(X2,Xp)

...
...

...
cov(X1,Xp) cov(X2,Xp) · · · Var Xp

p. 61 – Principal component analysis (PCA)

Example of a PCA problem

We collect a bunch of information about a bunch of people.. for instance this data
from Loughborough University

This dataset contains the height, weight and 4 fingerprint measurements
(length, width, area and circumference), collected from 200 participants.

What best describes a participant?

p. 62 – Principal component analysis (PCA)

The variables

Each participant is associated to 11 variables

▶ ”Participant Number”

▶ ”Gender”

▶ ”Age”

▶ ”Dominant Hand”

▶ ”Height (cm) (average of 3 measurements)”

▶ ”Weight (kg) (average of 3 measurements)”

▶ ”Fingertip Temperature (°C)”
▶ ”Fingerprint Height (mm)”

▶ ”Fingerprint Width (mm)”

▶ ”Fingerprint Area (mm2)”

▶ ”Fingerprint Circumference (mm)”

p. 63 – Principal component analysis (PCA)

Nature of variables

Variables have different natures

▶ ”Participant Number”: ∈ N (not interesting)

▶ ”Gender”: categorical

▶ ”Age”: ∈ N
▶ ”Dominant Hand”: categorical

▶ ”Height (cm) (average of 3 measurements)”: ∈ R
▶ ”Weight (kg) (average of 3 measurements)”: ∈ R
▶ ”Fingertip Temperature (°C)”: ∈ R
▶ ”Fingerprint Height (mm)”: ∈ R
▶ ”Fingerprint Width (mm)”: ∈ R
▶ ”Fingerprint Area (mm2)”: ∈ R
▶ ”Fingerprint Circumference (mm)”: ∈ R

p. 64 – Principal component analysis (PCA)

Setting things up

Each participant is a row in the matrix (an observation)

Each variable is a column

So we have an 200× 10 matrix (we discard the “Participant number” column)

We want to find what carries the most information

For this, we are going to project the information in a new basis in which the first
“dimension” will carry most variance, the second dimension will carry a little less, etc.

In order to do so, we need to learn how to change bases

p. 65 – Principal component analysis (PCA)

In the following slide,
[x]B

denotes the coordinates of x in the basis B

The aim of a change of basis is to express vectors in another coordinate system
(another basis)

We do so by finding a matrix allowing to move from one basis to another

p. 66 – Principal component analysis (PCA)

Change of basis

Definition 35 (Change of basis matrix)

B = {u1, . . . ,un} and C = {v1, . . . , vn} bases of vector space V

The change of basis matrix PC←B ∈ Mn,

PC←B = [[u1]C · · · [un]C]

has columns the coordinate vectors [u1]C , . . . , [un]C of the vectors in B with respect to
C

Theorem 36

B = {u1, . . . ,un} and C = {v1, . . . , vn} bases of vector space V and PC←B a change of
basis matrix from B to C
1. ∀x ∈ V , PC←B[x]B = [x]C

2. PC←B s.t. ∀x ∈ V , PC←B[x]B = [x]C is unique

3. PC←B invertible and P−1C←B = PB←C
p. 67 – Principal component analysis (PCA)

Row-reduction method for changing bases

Theorem 37

B = {u1, . . . ,un} and C = {v1, . . . , vn} bases of vector space V . Let E be any basis
for V ,

B = [[u1]E , . . . , [un]E] and C = [[v1]E , . . . , [vn]E]

and let [C |B] be the augmented matrix constructed using C and B. Then

RREF ([C |B]) = [I|PC←B]

If working in Rn, this is quite useful with E the standard basis of Rn (it does not
matter if B = E)

p. 68 – Principal component analysis (PCA)

So the question now becomes
How do we find what new basis to look at our data in?

(Changing the basis does not change the data, just the view you have of it)

(Think of what happens when you do a headstand.. your up becomes down, your right
and left switch, but the world does not change, just your view of it)

(Changes of bases are fundamental operations in Science)

p. 69 – Principal component analysis (PCA)

Setting things up

I will use notation (mostly) as in Joliffe’s Principal Component Analysis (PDF of older
version available for free from UofM Libraries)

x = (x1, . . . , xp) vector of p random variables

p. 70 – Principal component analysis (PCA)

We seek a linear function αT
1 x with maximum variance, where α1 = (α11, . . . , α1p),

i.e.,

αT
1 x =

p∑
j=1

α1jxj

Then we seek a linear function αT
2 x with maximum variance, uncorrelated to αT

1 x

And we continue...

At kth stage, we find a linear function αT
k x with maximum variance, uncorrelated to

αT
1 x, . . . ,α

T
k−1x

αT
i x is the ith principal component (PC)

p. 71 – Principal component analysis (PCA)

Case of known covariance matrix

Suppose we know Σ, covariance matrix of x (i.e., typically: we know x)

Then the kth PC is
zk = αT

k x

where αk is an eigenvector of Σ corresponding to the kth largest eigenvalue λk

If, additionally, ∥αk∥ = αT
k α = 1, then λk = Var zk

p. 72 – Principal component analysis (PCA)

Why is that?

Let us start with
αT

1 x

We want maximum variance, where α1 = (α11, . . . , α1p), i.e.,

αT
1 x =

p∑
j=1

α1jxj

with the constraint that ∥α1∥ = 1

We have
Var αT

1 x = αT
1 Σα1

p. 73 – Principal component analysis (PCA)

Objective

We want to maximise Var αT
1 x, i.e.,

αT
1 Σα1

under the constraint that ∥α1∥ = 1

=⇒ use Lagrange multipliers

p. 74 – Principal component analysis (PCA)

Maximisation using Lagrange multipliers
(A.k.a. super-brief intro to multivariable calculus)

We want the max of f (x1, . . . , xn) under the constraint g(x1, . . . , xn) = k

1. Solve

∇f (x1, . . . , xn) = λ∇g(x1, . . . , xn)

g(x1, . . . , xn) = k

where ∇ = (∂
∂x1

, . . . , ∂
∂xn

) is the gradient operator

2. Plug all solutions into f (x1, . . . , xn) and find maximum values (provided values
exist and ∇g ̸= 0 there)

λ is the Lagrange multiplier

p. 75 – Principal component analysis (PCA)

The gradient
(Continuing our super-brief intro to multivariable calculus)

f : Rn → R function of several variables, ∇ =
(

∂
∂x1

, . . . , ∂
∂xn

)
the gradient operator

Then

∇f =

(
∂

∂x1
f , . . . ,

∂

∂xn
f

)

So ∇f is a vector-valued function, ∇f : Rn → Rn; also written as

∇f = fx1(x1, . . . , xn)e1 + · · · fxn(x1, . . . , xn)en

where fxi is the partial derivative of f with respect to xi and {e1, . . . , en} is the
standard basis of Rn

p. 76 – Principal component analysis (PCA)

Bear with me..
(You may experience a brief period of discomfort)

αT
1 Σα1 and ∥α1∥2 = αT

1 α1 are functions of α1 = (α11, . . . , α1p)

In the notation of the previous slide, we want the max of

f (α11, . . . , α1p) := αT
1 Σα1

under the constraint that

g(α11, . . . , α1p) := αT
1 α1 = 1

and with gradient operator

∇ =

(
∂

∂α11
, . . . ,

∂

∂α1p

)

p. 77 – Principal component analysis (PCA)

Effect of ∇ on g

g is easiest to see:

∇g(α11, . . . , α1p) =

(
∂

∂α11
, . . . ,

∂

∂α1p

)
(α11, . . . , α1p)

α11
...

α1p

=

(
∂

∂α11
, . . . ,

∂

∂α1p

)(
α2
11 + · · ·+ α2

1p

)
= (2α11, . . . , 2α1p)

= 2α1

(And that’s a general result: ∇∥x∥22 = 2x with ∥ · ∥2 the Euclidean norm)

p. 78 – Principal component analysis (PCA)

Effect of ∇ on f
Expand (write Σ = [sij] and do not exploit symmetry)

αT
1 Σα1 = (α11, . . . , α1p)

s11 s12 · · · s1p
s21 s22 · · · s2p
...

...
...

sp1 sp2 spp

α11

α12
...

α1p

= (α11, . . . , α1p)

s11α11 + s12α12 + · · ·+ s1pα1p

s21α11 + s22α12 + · · ·+ s2pα1p
...

sp1α11 + sp2α12 + · · ·+ sppα1p

= (s11α11 + s12α12 + · · ·+ s1pα1p)α11

+ (s21α11 + s22α12 + · · ·+ s2pα1p)α12

...

+ (sp1α11 + sp2α12 + · · ·+ sppα1p)α1p

p. 79 – Principal component analysis (PCA)

We have

αT
1 Σα1 = (s11α11 + s12α12 + · · ·+ s1pα1p)α11

+ (s21α11 + s22α12 + · · ·+ s2pα1p)α12

...

+ (sp1α11 + sp2α12 + · · ·+ sppα1p)α1p

So
∂

∂α11
αT

1 Σα1 = (s11α11 + s12α12 + · · ·+ s1pα1p) + s11α11

+ s21α12

...

+ sp1α1p

= s11α11 + s12α12 + · · ·+ s1pα1p

+ s11α11 + s21α12 + · · ·+ sp1α1p

= 2(s11α11 + s12α12 + · · ·+ s1pα1p)

(last equality stems from symmetry of Σ)
p. 80 – Principal component analysis (PCA)

In general, for i = 1, . . . , p,

∂

∂α1i
αT

1 Σα1 = si1α11 + si2α12 + · · ·+ sipα1p

+ si1α11 + s2iα12 + · · ·+ spiα1p

= 2(si1α11 + si2α12 + · · ·+ sipα1p)

(because of symmetry of Σ)

As a consequence,
∇αT

1 Σα1 = 2Σα1

p. 81 – Principal component analysis (PCA)

So solving
∇f (x1, . . . , xn) = λ∇g(x1, . . . , xn)

means solving
2Σα1 = λ2α1

i.e.,
Σα1 = λα1

=⇒ (λ,α1) eigenpair of Σ, with α1 having unit length

p. 82 – Principal component analysis (PCA)

Picking the right eigenvalue

(λ,α1) eigenpair of Σ, with α1 having unit length

But which λ to choose?

Recall that we want Var αT
1 x = αT

1 Σα1 maximal

We have

Var αT
1 x = αT

1 Σα1 = αT
1 (Σα1) = αT

1 (λα1) = λ(αT
1 α1) = λ

=⇒ we pick λ = λ1, the largest eigenvalue (covariance matrix symmetric so
eigenvalues real)

p. 83 – Principal component analysis (PCA)

What we have this far..

The first principal component is αT
1 x and has variance λ1, where λ1 the largest

eigenvalue of Σ and α1 an associated eigenvector with ∥α1∥ = 1

We want the second principal component to be uncorrelated with αT
1 x and to have

maximum variance Var αT
2 x = αT

2 Σα2, under the constraint that ∥α2∥ = 1

αT
2 x uncorrelated to αT

1 x if cov(αT
1 x,α

T
2 x) = 0

p. 84 – Principal component analysis (PCA)

We have

cov(αT
1 x,α

T
2 x) = αT

1 Σα2

= αT
2 Σ

Tα1

= αT
2 Σα1 [Σ symmetric]

= αT
2 (λ1α1)

= λαT
2 α1

So αT
2 x uncorrelated to αT

1 x if α1 ⊥ α2

This is beginning to sound a lot like Gram-Schmidt, no?

p. 85 – Principal component analysis (PCA)

In short

Take whatever covariance matrix is available to you (known Σ or sample SX) – assume
sample from now on for simplicity

For i = 1, . . . , p, the ith principal component is

zi = vTi x

where vi eigenvector of SX associated to the ith largest eigenvalue λi

If vi is normalised, then λi = Var zk

p. 86 – Principal component analysis (PCA)

Covariance matrix

Σ the covariance matrix of the random variable, SX the sample covariance matrix

X ∈ Mmp the data, then the (sample) covariance matrix SX takes the form

SX =
1

n − 1
XTX

where the data is centred!

Sometimes you will see SX = 1/(n − 1)XXT . This is for matrices with observations in
columns and variables in rows. Just remember that you want the covariance matrix to
have size the number of variables, not observations, this will give you the order in
which to take the product

p. 87 – Principal component analysis (PCA)

A smaller 2D example
Hockey players at IIHF world championships 2001-2016

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●
●

●

●

●● ●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●

●

●

●

●
●

●

●

●

●
●

●
●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●
●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●●
●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

● ●

●
●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

170 180 190 200

70
80

90
10

0
11

0

Height (cm)

W
ei

gh
t (

kg
)

p. 88 – Principal component analysis (PCA)

Centre the data
Subtract the mean (our first – simple – change of basis)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●
●

●

●

●● ●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●

●

●

●

●
●

●

●

●

●
●

●
●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●
●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●●
●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

● ●

●
●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

−20 −10 0 10 20

−
20

−
10

0
10

20
30

Height (cm)

W
ei

gh
t (

kg
)

p. 89 – Principal component analysis (PCA)

	Orthogonality and projections
	Least squares problems
	Fitting something more complicated
	Orthogonal matrices
	The QR factorisation
	The singular values decomposition (SVD)
	Principal component analysis (PCA)

