
Clustering & Classification

p. 1

What are clustering and classification ?

Support vector machines

Neural networks (the perceptron)

Clustering vs classification

Clustering is partitioning an unlabelled dataset into groups of similar objects

Classification sorts data into specific categories using a labelled dataset

What are clustering and classification ? p. 2

Clustering

From Wikipedia
Cluster analysis or clustering is the task of grouping a set of objects in such
a way that objects in the same group (called a cluster) are more similar (in
some sense) to each other than to those in other groups (clusters).

There are a myriad of ways to do clustering, this is an extremely active field of research
and application. See the Wikipedia page for leads

What are clustering and classification ? p. 3

https://en.wikipedia.org/wiki/Cluster_analysis

We have done clustering already

We have seen some clustering:

▶ when we sought strongly connected components

▶ when we sought cliques

▶ to some extent, with PCA

What are clustering and classification ? p. 4

Classification

From Wikipedia
In statistics, classification is the problem of identifying which of a set of cate-
gories (sub-populations) an observation (or observations) belongs to. Examples
are assigning a given email to the ”spam” or ”non-spam” class, and assigning
a diagnosis to a given patient based on observed characteristics of the patient
(sex, blood pressure, presence or absence of certain symptoms, etc.).

What are clustering and classification ? p. 5

https://en.wikipedia.org/wiki/Statistical_classification

What are clustering and classification ?

Support vector machines

Neural networks (the perceptron)

Support vector machines (SVM)

We are given a training dataset of n points of the form

(x1, y1), . . . , (xn, yn)

where xi ∈ Rp and yi = {−1, 1}. The value of yi indicates the class to which the point
xi belongs

We want to find a surface S in Rp that divides the group of points into two subgroups

Once we have this surface S, any additional point that is added to the set can then be
classified as belonging to either one of the sets depending on where it is with respect
to the surface S

Support vector machines p. 6

Linear SVM

We are given a training dataset of n points of the form

(x1, y1), . . . , (xn, yn)

where xi ∈ Rp and yi = {−1, 1}. The value of yi indicates the class to which the point
xi belongs

Linear SVM – Find the “maximum-margin hyperplane” that divides the group
of points xi for which yi = 1 from the group of points for which yi = −1,
which is such that the distance between the hyperplane and the nearest point
xi from either group is maximized.

Support vector machines p. 7

Maximum-margin hy-
perplane and margins
for an SVM trained
with samples from two
classes. Samples on the
margin are the support
vectors

Support vector machines p. 8

Any hyperplane can be written as the set of points x satisfying

wTx− b = 0

where w is the (not necessarily normalized) normal vector to the hyperplane (if the
hyperplane has equation a1z1 + · · ·+ apzp = c , then (a1, . . . , an) is normal to the
hyperplane)

The parameter b/∥w∥ determines the offset of the hyperplane from the origin along
the normal vector w

Remark: a hyperplane defined thusly is not a subspace of Rp unless b = 0. We can of
course transform the data so that it is...

Support vector machines p. 9

Linearly separable points

Let X1 and X2 be two sets of points in Rp

Then X1 and X2 are linearly separable if there exist w1,w2, ..,wp, k ∈ R such that

▶ every point x ∈ X1 satisfies
∑p

i=1 wixi > k

▶ every point x ∈ X2 satisfies
∑p

i=1 wixi < k

where xi is the ith component of x

Support vector machines p. 10

Hard-margin SVM

If the training data is linearly separable, we can select two parallel hyperplanes that
separate the two classes of data, so that the distance between them is as large as
possible

The region bounded by these two hyperplanes is called the “margin”, and the
maximum-margin hyperplane is the hyperplane that lies halfway between them

With a normalized or standardized dataset, these hyperplanes can be described by the
equations

▶ wTx− b = 1 (anything on or above this boundary is of one class, with label 1)

▶ wTx− b = −1 (anything on or below this boundary is of the other class, with
label -1)

Support vector machines p. 11

Distance between these two hyperplanes is 2/∥w∥

⇒ to maximize the distance between the planes we want to minimize ∥w∥

The distance is computed using the distance from a point to a plane equation

We must also prevent data points from falling into the margin, so we add the following
constraint: for each i either

wTxi − b ≥ 1 , if yi = 1

or
wTxi − b ≤ −1 , if yi = −1

(Each data point must lie on the correct side of the margin)

Support vector machines p. 12

This can be rewritten as

yi (w
Txi − b) ≥ 1, for all 1 ≤ i ≤ n

or
yi (w

Txi − b)− 1 ≥ 0, for all 1 ≤ i ≤ n

We get the optimization problem:

Minimize ∥w∥ subject to yi (w
Txi − b)− 1 ≥ 0 for i = 1, . . . , n

The w and b that solve this problem determine the classifier, x 7→ sgn(wTx− b) where
sgn(·) is the sign function.

Support vector machines p. 13

The maximum-margin hyperplane is completely determined by those xi that lie nearest
to it

These xi are the support vectors

Support vector machines p. 14

Writing the goal in terms of Lagrange multipliers

Recall that our goal is to

minimize ∥w∥ subject to yi (w
Txi − b)− 1 ≥ 0 for i = 1, . . . , n

Using Lagrange multipliers λ1, . . . , λn, we have the function

LP := F (w, bλ1, . . . , λn) =
1

2
∥w∥2 −

n∑
i=1

λiyi (xiw + b) +
n∑

i=1

λi

Note that we have as many Lagrange multipliers as there are data points. Indeed,
there are that many inequalities that must be satisfied

The aim is to minimise Lp with respect to w and b while the derivatives of Lp w.r.t. λi

vanish and the λi ≥ 0, i = 1, . . . , n

Support vector machines p. 15

Lagrange multipliers

We have already seen Lagrange multipliers, when we were studying PCA

Support vector machines p. 16

Maximisation using Lagrange multipliers (V1.0)

We want the max of f (x1, . . . , xn) under the constraint g(x1, . . . , xn) = k

1. Solve

∇f (x1, . . . , xn) = λ∇g(x1, . . . , xn)

g(x1, . . . , xn) = k

where ∇ = (∂
∂x1

, . . . , ∂
∂xn

) is the gradient operator

2. Plug all solutions into f (x1, . . . , xn) and find maximum values (provided values
exist and ∇g ̸= 0 there)

λ is the Lagrange multiplier

Support vector machines p. 17

The gradient

f : Rn → R function of several variables, ∇ =
(

∂
∂x1

, . . . , ∂
∂xn

)
the gradient operator

Then

∇f =

(
∂

∂x1
f , . . . ,

∂

∂xn
f

)

So ∇f is a vector-valued function, ∇f : Rn → Rn; also written as

∇f = fx1(x1, . . . , xn)e1 + · · · fxn(x1, . . . , xn)en

where fxi is the partial derivative of f with respect to xi and {e1, . . . , en} is the
standard basis of Rn

Support vector machines p. 18

Lagrange multipliers (V2.0)

However, the problem we were considering then involved a single multiplier λ

Here we want λ1, . . . , λn

Support vector machines p. 19

Lagrange multiplier theorem

Theorem 1

Let f : Rn → R be the objective function, g : Rn → Rc be the constraints function,
both being C 1. Consider the optimisation problem

maximize f (x)

subject to g(x) = 0

Let x∗ be an optimal solution to the optimization problem, such that
rank(Dg(x∗)) = c < n, where Dg(x∗) denotes the matrix of partial derivatives

[∂gj/∂xk]

Then there exists a unique Lagrange multiplier λ∗ ∈ Rc such that

Df (x∗) = λ∗TDg(x∗)

Support vector machines p. 20

Lagrange multipliers (V3.0)

Here we want λ1, . . . , λn

But we also are looking for λi ≥ 0

So we need to consider the so-called Karush-Kuhn-Tucker (KKT) conditions

Support vector machines p. 21

Karush-Kuhn-Tucker (KKT) conditions
Consider the optimisation problem

maximize f (x)

subject to gi (x) ≤ 0

hi (x) = 0

Form the Lagrangian

L(x, µ, λ) = f (x) + µTg(x) + λTh(x)

Theorem 2

If (x∗, µ∗) is a saddle point of L(x, µ) in x ∈ X, µ ≥ 0, then x∗ is an optimal vector for
the above optimization problem. Suppose that f (x) and gi (x), i = 1, . . . ,m, are
convex in x and that there exists x0 ∈ X such that g(x0) < 0. Then with an optimal
vector x∗ for the above optimization problem there is associated a non-negative vector
µ∗ such that L(x∗, µ∗) is a saddle point of L(x, µ)

Support vector machines p. 22

KKT conditions

∂

∂wν
LP = wν −

n∑
i

λiyixiν = 0 ν = 1, . . . , p

∂

∂b
LP = −

n∑
i=1

λiyi = 0

yi (x
T
i w + b)− 1 ≥ 0 i = 1, . . . , n

λi ≥ 0 i = 1, . . . , n

λi (yi (x
T
i w + b)− 1) = 0 i = 1, . . . , n

Support vector machines p. 23

Soft-margin SVM

To extend SVM to cases in which the data are not linearly separable, the hinge loss
function is helpful

max
(
0, 1− yi (w

Txi − b)
)

yi is the ith target (i.e., in this case, 1 or -1), and wTxi − b is the i-th output

This function is zero if the constraint is satisfied, in other words, if xi lies on the
correct side of the margin

For data on the wrong side of the margin, the function’s value is proportional to the
distance from the margin

Support vector machines p. 24

The goal of the optimization then is to minimize

λ∥w∥2 +

[
1

n

n∑
i=1

max
(
0, 1− yi (w

Txi − b)
)]

where the parameter λ > 0 determines the trade-off between increasing the margin size
and ensuring that the xi lie on the correct side of the margin

Thus, for sufficiently small values of λ, it will behave similar to the hard-margin SVM,
if the input data are linearly classifiable, but will still learn if a classification rule is
viable or not

Support vector machines p. 25

What are clustering and classification ?

Support vector machines

Neural networks (the perceptron)

Artificial neural network (ANN) - from Wikipedia

Artificial neural networks (ANNs) are computing systems inspired by the
biological neural networks that constitute animal brains
An ANN is based on a collection of connected units or nodes called artificial
neurons, which loosely model the neurons in a biological brain. Each con-
nection, like the synapses in a biological brain, can transmit a signal to other
neurons. An artificial neuron receives signals then processes them and can
signal neurons connected to it. The “signal” at a connection is a real number,
and the output of each neuron is computed by some non-linear function of
the sum of its inputs. The connections are called edges. Neurons and edges
typically have a weight that adjusts as learning proceeds. The weight increases
or decreases the strength of the signal at a connection. Neurons may have a
threshold such that a signal is sent only if the aggregate signal crosses that
threshold.

Neural networks (the perceptron) p. 26

https://en.wikipedia.org/wiki/Artificial_neural_network

The perceptron

One of the first neural networks (invented 1943, implemented 1957), made for simple
classification tasks, for example recognising letters or numbers

Two layers: the input layer (the retina) and the output layer

Inputs are 0 or 1, so are outputs

Neural networks (the perceptron) p. 27

0 ∨ 1

0 ∨ 1

0 ∨ 1

0 ∨ 1

∑

∑

∑

0 ∨ 1

0 ∨ 1

0 ∨ 1

Connections

Retina Output layer

The connections into the output layer are called synapses, they are modifiable
Neural networks (the perceptron) p. 28

The activation function

x0

x1

xi

xℓ

aj
∑I

i=1 wijxi

w1j

w2j

wij

wIj

oj = f (aj)

Here,

f (aj) =

{
0 if aj ≤ 0

1 if aj > 0

Neural networks (the perceptron) p. 29

The activation function

We have I input neurons taking values 0 or 1, O output neurons taking values 0 or 1,
weights W = [wij] ∈ MIO and a threshold function f

More generally, use a threshold θj for each output neuron

oj =

{
0 if aj ≤ θj

1 if aj > θj

The thresholds (or response bias) and the weights are modifiable by learning. To do
that easily for the threshold, consider an input neuron that is always on, say neuron 0,
and set weights w0j = −θj , making the weights matrix an (I + 1)× O-matrix

Neural networks (the perceptron) p. 30

Another way to write the activation is

oj =

{
0 if aj + w0j ≤ 0

1 if aj + w0j > 0

where w0j = −θj

Neural networks (the perceptron) p. 31

Learning something simple

The aim is to adjust the synaptic weights so that the proper response is provided to a
given stimulus

Let us first do a simple example: the OR truth table

0 0 7→ 0
1 0 7→ 1
0 1 7→ 1
1 1 7→ 1

So we have two neurons in the retina and a single output neuron

Neural networks (the perceptron) p. 32

Supervised learning

(From R. Rojas)

Supervised learning: method in which some input vectors are collected and
presented to the network. The output computed by the network is observed
and the deviation from the expected answer is measured

The weights are corrected according to the magnitude of the error in the way
defined by the learning algorithm

Also called learning with a teacher, since a control process knows the correct
answer for the set of selected input vectors

Neural networks (the perceptron) p. 33

Further distinctions in supervised learning methods

Methods with reinforcement or error correction

▶ Reinforcement learning: used when after each presentation of an input-output
example, we only know whether the network produces the desired result or not.
Weights are updated based on this information (i.e., the Boolean values true or
false), so only the input vector can be used for weight correction

▶ In learning with error correction, the magnitude of the error, together with the
input vector, determines the magnitude of the corrections to the weights. In many
cases, we try to eliminate the error in a single correction step

Neural networks (the perceptron) p. 34

A first learning algorithm

Suppose the training set consists of two sets of points P and N

▶ start: Generate random weight vector w0; set t := 0

▶ test: A vector x ∈ P ∪ N is selected randomly
▶ if x ∈ P and ⟨wt , x⟩ > 0 go to test
▶ if x ∈ P and ⟨wt , x⟩ ≤ 0 go to add
▶ if x ∈ N and ⟨wt , x⟩ < 0 go to test
▶ if x ∈ N and ⟨wt , x⟩ ≥ 0 go to subtract

▶ add: set wt+1 = wt + x and t := t + 1, goto test

▶ subtract: set wt+1 = wt − x and t := t + 1, goto test

Neural networks (the perceptron) p. 35

Widrow-Hoff learning rule

Need to provide the correct answer, i.e., this is a supervised learning rule

An output cell only learns if it is mistaken

Present random inputs and apply the rule if the output does not match the known
output

Neural networks (the perceptron) p. 36

Widrow-Hoff learning rule

w
(t+1)
ij = w

(t)
ij + η(tj − oj)xj = w

(t)
ij +∆wij (1)

with

▶ ∆wij correction to add to the weight wij

▶ xi : value (0 or 1) of the ith retinal cell

▶ oj : response of the jth output cell

▶ tj target response (correct desired response)

▶ w
(t)
ij : weight of the synapse between the ith retinal cell and jth output cell at

time t. Typically initiated at small random values

▶ η: small positive constant, the learning constant

Neural networks (the perceptron) p. 37

Learning OR
0 0 7→ 0
1 0 7→ 1
0 1 7→ 1
1 1 7→ 1

Three cells in the retina (two inputs and the “dummy” cell used for the threshold) and
one output cell. So inputs and outputs must be

1 0 0 7→ 0
1 1 0 7→ 1
1 0 1 7→ 1
1 1 1 7→ 1

Initialise the 3× 1 weight matrix W to zero:

W =

w0 = −θ
w1

w2

 =

0
0
0


Neural networks (the perceptron) p. 38

Procedure

We choose one random association in

1 0 0 7→ 0
1 1 0 7→ 1
1 0 1 7→ 1
1 1 1 7→ 1

say, the fourth one. So we present [1, 1, 1] and expect an output of 1. We have

a =
∑
i

wixi = (1× 0) + (1× 0) + (1× 0) = 0

This being ≤ 0 means that o = 0, giving an error of 1

Neural networks (the perceptron) p. 39

Applying the rule

Suppose the learning constant η = 0.1. Then applying (1),

∆w0 = η(t − o)x0 = 0.1× (1− 0)× 1 = 0.1

∆w1 = η(t − o)x0 = 0.1× (1− 0)× 1 = 0.1

∆w2 = η(t − o)x0 = 0.1× (1− 0)× 1 = 0.1

Applying the correction, W becomes

W =

0.1
0.1
0.1



Neural networks (the perceptron) p. 40

Trying another input

Suppose we now present the first input [1, 0, 0]. This should produce a result of 0.
Then

a =
∑
i

wixi = (1× 0.1) + (0× 0.1) + (0× 0.1) = 0.1

which is > 0, so o = 1. We compute the correction

∆w0 = η(t − o)x0 = 0.1× (0− 1)× 1 = −0.1

∆w1 = η(t − o)x1 = 0.1× (0− 1)× 0 = 0

∆w1 = η(t − o)x2 = 0.1× (0− 1)× 0 = 0

and adjust the weights, giving

W =

 0
0.1
0.1


Neural networks (the perceptron) p. 41

And we are done!

With the weights

W =

 0
0.1
0.1


we are done. Indeed

Input 0 Input 1 Input 2 a o Should be
1 0 0 0 0 0
1 1 0 0+0.1+0 1 1
1 0 1 0+0+0.1 1 1
1 1 1 0+0.1+0.1 1 1

Neural networks (the perceptron) p. 42

Learning XOR

Let us now look at the XOR truth table

0 0 7→ 0
1 0 7→ 1
0 1 7→ 1
1 1 7→ 0

This problem is not solvable with a simple perceptron of the type we just used, as
truth table is not linearly separable

Indeed, we would get weights w1 > 0, w2 > 0 to activate when presenting [1, 0] and
[0, 1], but would require that the sum of the weights when applied to the input [1, 1],
give a negative value.

Neural networks (the perceptron) p. 43

Linear separability and OR and XOR

x1

x2

x1

x2

A single-layer perceptron can only learn linearly separable problems

Neural networks (the perceptron) p. 44

Adding a hidden layer

It is possible to do XOR, but we need to add a hidden layer

0 ∨ 1

0 ∨ 1

θ = 1 θ = 0

w = 1

w = 1

w = 0.6

w = 0.6

w = −2

Neural networks (the perceptron) p. 45

	What are clustering and classification ?
	Support vector machines
	Neural networks (the perceptron)

