
Markov chains, Eigenvector centrality & PageRank
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What makes an important webpage?

In days of yore, the web was a small thing

Alta Vista was the search engine of choice

Google started in 1998, based on an algorithm (PageRank) described in a paper of
Page, Brin, Motwani and Winograd
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Overview

Give each page a rating (of its importance), a recursively defined measure whereby a
page becomes important if important pages link to it

Recursive definition: the importance of a page refers back to the importance of other
pages that link to it

Random surfer model: a random surfer on the web follows links from page to page.
Page rank ≃ P random surfer lands on a particular page. Popular page =⇒ higher
probability to go there. (P stands for “probability”)

Example of a Markov chain
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Markov chain

A Markov chain is a stochastic process in which the evolution through time depends
only on the current state of the system (we say the process is memoryless)

Markov chains are an interesting combination of matrix theory and graph theory

They form the theoretical foundation for Hidden Markov processes or Markov Chain
Monte Carlo (MCMC) methods, are used in ML
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Conduct an experiment with a set of n possible outcomes

S = {S1, . . . ,Sn}

Experiment repeated t times (with t large, potentially infinite)

System has no memory: the next state depends only on the present state

Probability of Si occurring on the next step, given that Sj occurred on the last step, is

pij = p(Si |Sj)

p. 5 – Markov chains



Suppose that Si is the current state, then one of S1, . . . ,Sn must be the next state; so

p1i + p2i + · · ·+ pni = 1, 1 ≤ i ≤ n

(Some of the pij can be zero, all that is needed is that
∑n

j=1 pij = 1 for all i)

Definition 1

An experiment with finite number of possible outcomes S1, . . . ,Sn is repeated. The
sequence of outcomes is a Markov chain if there is a set of n2 numbers {pij} such
that the conditional probability of outcome Si on any experiment given outcome Sj on
the previous experiment is pij , i.e., for 1 ≤ i , j ≤ n, t = 1, . . .,

pij = P(Si on experiment t + 1 | Sj on experiment t)

Outcomes S1, . . . ,Sn are states and pij are transition probabilities. P = [pij ] the
transition matrix
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The matrix

P =


p11 p12 · · · p1r
p21 p22 · · · p2r

pr1 pr2 · · · prr


has

▶ nonnegative entries, pij ≥ 0

▶ entries less than 1, pij ≤ 1

▶ column sum 1, which we write

n∑
i=1

pij = 1, j = 1, . . . , n

or, using the notation 1lT = (1, . . . , 1),

1lTP = 1lT
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(super simple) Mendelian genetics

A phenotypic trait (eye colour, hair colour, etc.) is determined by a specific pair of
alleles, each of which may be two types, say G and g

Each individual can have

▶ GG combination (dominant)

▶ Gg or gG, considered equivalent genetically (hybrid)

▶ gg combination (recessive)

Individuals bearing GG or gg alleles are homozygotes, hybrids with Gg alleles are called
heterozygotes

GG and gg combinations lead to different phenotypes, Gg combination leads to
expressing the same phenotype as individuals bearing a GG combination, hence the
name dominant given to GG
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In sexual reproduction, offspring inherit one allele of the pair from each parent

Alleles inherited from each parent are selected at random, independently of each other

This determines probability of occurrence of each type of offspring. The offspring

▶ of two GG parents must be GG

▶ of two gg parents must be gg

▶ of one GG and one gg parent must be Gg

▶ other cases must be examined in more detail
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GG and Gg parents
Suppose one parent GG and the other Gg

G G G g

G g

Parents

G G G gG G Offspring

Parent 1

Parent 2

G G

G GG GG
g Gg Gg

To determine P that offspring is of a certain type, count number of outcomes of each
type (GG and Gg) and divide by 4
=⇒ offspring have probability
▶ 1/2 of being GG
▶ 1/2 of being Gg
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Gg and Gg parents

Both parents are hybrid

G g G g

G g

Parents

g G g gG G Offspring

=⇒ offspring have probability

▶ 1/4 of being GG

▶ 1/2 of being Gg

▶ 1/4 of being gg
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gg and Gg parents

Recessive and hybrid parents

g g G g

g g

Parents

g G g gg G Offspring

=⇒ offspring have probability

▶ 1/2 of being Gg

▶ 1/2 of being gg
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General case

pi (t): probability that state Si occurs on the tth repetition of the experiment,
1 ≤ i ≤ n

Since one the states Si must occur on the tth repetition

p1(t) + p2(t) + · · ·+ pn(t) = 1

pi (t + 1): probability that state Si , 1 ≤ i ≤ r , occurs on (t + 1)th repetition of the
experiment

n ways to be in state Si at step t + 1:

1. Step t is S1. Probability of getting S1 on tth step is p1(t), and probability of
having Si after S1 is pi1. Therefore P(Si |S1) = pi1p1(t)

2. We get S2 on step t and Si on step (t + 1). Then P(Si |S2) = p2ip2(t)

..

n. Probability of occurrence of Si at step t + 1 if Sn at step t is P(Si |Sn) = pinpn(t)
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=⇒ pi (t + 1) = P(Si |S1) + · · ·+ P(Si |Sn)
= pi1p1(t) + · · ·+ pinpn(t)

Therefore,

p1(t + 1) = p11p1(t) + p12p2(t) + · · ·+ p1npn(t)

...

pn(t + 1) = pn1p1(t) + pn2p2(t) + · · ·+ pnnpn(t)

In matrix form
p(t + 1) = Pp(t), n = 1, 2, 3, . . .

where p(t) = (p1(t), p2(t), . . . , pn(t))
T is a probability vector and P = (pij) is an

n × n transition matrix,

P =


p11 p12 · · · p1r
p21 p22 · · · p2r

pr1 pr2 · · · prr
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So p1(t + 1)
...

pn(t + 1)

 =


p11 p12 · · · p1r
p21 p22 · · · p2r

pr1 pr2 · · · prr


p1(t)

...
pn(t)



Easy to check that this gives the same expression as before
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Stochastic matrices

Definition 2 (Stochastic matrix)

The nonnegative n × n matrix M is row-stochastic (resp. column-stochastic) if∑n
j=1 aij = 1 for all i = 1, . . . , n (resp.

∑n
i=1 aij = 1 for all j = 1, . . . , n)

We often say stochastic and let the context determine whether we mean row- or
column-stochastic

If it is both row- and column-stochastic, the matrix is doubly stochastic

Theorem 3

Let M be a stochastic matrix. Then all eigenvalues λ of M are such that |λ| ≤ 1.
Furthermore, λ = 1 is an eigenvalue of M
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Long time behaviour
Let p(0) be the initial distribution vector. Then

p(1) = Pp(0)

p(2) = Pp(1)

= P(Pp(0))

= P2p(0)

Iterating, we get, for any t,
p(t) = Ptp(0)

Therefore,

lim
t→+∞

p(t) = lim
t→+∞

Ptp(0)

=

(
lim

t→+∞
Pt

)
p(0)

if this limit exists
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lim
n→+∞

p(t) =

(
lim

t→+∞
Pt

)
p(0)

Does the limit exist?

Theorem 4

If M,N are nonsingular stochastic matrices, then MN is a stochastic matrix

Corollary 5

If M is a nonsingular stochastic matrix, then for any k ∈ N, Mk is a stochastic matrix

So Pt above is stochastic
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Regular Markov chains

Definition 6 (Regular Markov chain)

A regular Markov chain has Pk (entry-wise) positive for some integer k > 0, i.e., Pk

has only positive entries

Definition 7 (Primitive matrix)

A nonnegative matrix M is primitive if, and only if, there is an integer k > 0 such that
Mk is positive.

Theorem 8

Markov chain regular ⇐⇒ transition matrix P primitive
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Behaviour of a regular MC

Theorem 9

If P is the transition matrix of a regular Markov chain, then

1. the powers Pt approach a stochastic matrix W

2. each column of W is the same (column) vector w = (w1, . . . ,wn)
T

3. the components of w are positive

So if the Markov chain is regular

lim
t→+∞

p(t) = lim
t→+∞

Ptp(0) = Wp(0)
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Computing W

If p(t) converges, then p(t + 1) = Pp(t) at the limit, so w = limt→∞ p(t) is a fixed
point of the system. Write

w = Pw

and solve for w , i.e., find w as a (right) eigenvector corresponding to the eigenvalue 1

w might have to be normalized (you want a probability vector). Check that the norm
∥w∥1 defined by

∥w∥1 = |w1|+ · · ·+ |wn| = w1 + · · ·+ wn

(since w ≥ 0) is equal to one. If not, use

w̃ =
w

∥w∥1
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Back to genetics

Suppose we want to understand what it means to have hybrid individuals in the
population

Investigate this using a process of continued matings

▶ Start with an individual of known or unknown genetic character (dominant, hybrid
or recessive) and mate it with a hybrid

▶ Assume that the mating results in at least one offspring; choose one of the
offspring at random and mate it with a hybrid

▶ Repeat this process through a number of generations

What can we expect in terms of the genetic composition of the population after a
while?

=⇒ consider MC with states GG, Gg and gg
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3 states: S1 = GG, S2 = Gg and S3 = gg; we use GG, Gg and gg as well to name the
states

↙ GG Gg gg

GG 0.5 0.25 0
Gg 0.5 0.5 0.5
gg 0 0.25 0.5

The transition probabilities are thus

P =



1

2

1

4
0

1

2

1

2

1

2

0
1

4

1

2
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P =



1

2

1

4
0

1

2

1

2

1

2

0
1

4

1

2


so

P2 =



3

8

1

4

1

8
1

2

1

2

1

2
1

8

1

4

3

8


=⇒ P primitive =⇒ Markov chain regular

Theorem 10

M primitive if the associated connection graph is strongly connected and there is at
least one positive entry on the diagonal of M
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This is checked directly on the transition graph

GG Gg gg

0.5

0.5

0.25

0.25

0.5

0.5

0.5
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Compute (right) eigenvector associated to 11/2 1/4 0
1/2 1/2 1/2
0 1/4 1/2

w1

w2

w3

 =

w1

w2

w3


1

2
w1 +

1

4
w2 = w1

1

2
w1 +

1

2
w2 +

1

2
w3 = w2

1

4
w2 +

1

2
w3 = w3

So w1 = w2/2, w3 = w2/2 and thus

1

4
w2 +

1

2
w2 +

1

4
w2 = w2,

that is, w2 = w2, i.e., w2 can take any value

=⇒ w =

(
1

4
,
1

2
,
1

4

)
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Changing the setting of the genetic experiment
Suppose now the same type of experiment, but mate each new generation with a GG
individual instead of a Gg individual

GG Gg gg

1

0.5

0.5

1

↙ GG Gg gg

GG 1 0.5 0
Gg 0 0.5 1
gg 0 0 0

P =

1 1/2 0

0 1/2 1

0 0 0


▶ leave gg after 1 iteration and can never return

▶ when we leave Gg, we can never return

▶ we can never leave GG when we get there
p. 27 – Markov chains



Absorbing Markov chains

Definition 11 (Absorbing state)

A state Si in a Markov chain is absorbing if whenever it occurs on the tth generation
of the experiment, it then occurs on every subsequent step. In other words, Si is
absorbing if pii = 1 and pij = 0 for i ̸= j

Definition 12 (Absorbing chain)

A Markov chain is absorbing if it has at least one absorbing state, and if from every
state it is possible to go to an absorbing state. In an absorbing Markov chain, a state
that is not absorbing is called transient
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Suppose we have a chain like the following

1 2 3 4

1. Does the process eventually reach an absorbing state?

2. What is the average number of steps spent in a transient state, if starting in a
transient state?

3. What is the average number of steps before entering an absorbing state?

4. What is the probability of being absorbed by a given absorbing state, when there
are more than one, when starting in a given transient state?
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The answer to the first question (“Does the process eventually reach an absorbing
state?”) is given by the following result

Theorem 13

In an absorbing Markov chain, the probability of reaching an absorbing state is 1
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To answer the other questions, write the transition matrix in standard form

For an absorbing chain with k absorbing states and r − k transient states, write
transition matrix as

P =

(
Ik R
0 Q

)
with following meaning

Absorbing states Transient states
Absorbing states Ik R
Transient states 0 Q

with Ik the k × k identity matrix, 0 an (r − k)× k matrix of zeros, R an k × (r − k)
matrix and Q an (r − k)× (r − k) matrix. The matrix Ir−k − Q is invertible. Let

▶ N = (Ir−k − Q)−1 the fundamental matrix of the MC

▶ Ti sum of the entries on row i of N

▶ B = RN
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Answers to our remaining questions:

2. Nij average number of times the process is in the jth transient state if it starts in
the ith transient state

3. Ti average number of steps before the process enters an absorbing state if it
starts in the ith transient state

4. Bij probability of eventually entering the ith absorbing state if the process starts
in the jth transient state
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Back to the genetic example
The matrix is already in standard form

P =

1 1
2 0

0 1
2 1

0 0 0

 =

(
I1 R
0 Q

)

with I1 = 1, 0 = (0 0)T and

R =
(
1
2 0

)
Q =

(
1
2 1
0 0

)
We have

I2 − Q =

(
1 0
0 1

)
−
(

1
2 1
0 0

)
=

(
1
2 −1
0 1

)
so

N = (I2 − Q)−1 = 2

(
1 1
0 1

2

)
=

(
2 0
2 1

)
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We have

N =

(
2 0
2 1

)
So

T = N1l =

(
2
3

)
and

B = RN =
(
1
2 0

)(2 0
2 1

)
=

(
1 1

)
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2. Nij average number of times the process is in the jth transient state if it starts in
the ith transient state

N =

(
2 0
2 1

)

3. Ti average number of steps before the process enters an absorbing state if it
starts in the ith transient state

T =

(
2
3

)

4. Bij probability of eventually entering the ith absorbing state if the process starts
in the jth transient state

B =
(
1 1

)
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Constructing a stochastic matrix from an adjacency matrix

Let A be the adjacency matrix of a simple graph G = (V ,E ) and D its degree matrix,
i.e., the diagonal matrix D = (dij) with diagonal entries

dii =
n∑

j=1

aji =
n∑

j=1

aij

(Recall that A symmetric since G nondirected.) Then the matrix AD−1 is column
stochastic
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Indeed, write entries in D−1 as d−1
ij . Of course, d−1

ii = 1/dii , 1 ≤ i ≤ n and d−1
ij = 0 if

i ̸= j
Then

AD−1 =
n∑

k=1

aikd
−1
kj = aijd

−1
jj , i , j = 1, . . . , n

So the sum of column j of AD−1 is

n∑
i=1

aijd
−1
jj = d−1

jj

n∑
i=1

aij

= d−1
jj

n∑
i=1

aji

= d−1
jj djj

= 1

and the matrix is column-stochastic
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Eigenvector centrality (undirected graph)

Let x be an eigenvector corresponding to the largest eigenvalue λ of the non-negative
adjacency matrix A of the undirected graph G = (V ,E )

(We often call λ the Perron root of A and x a Perron eigenvector)

The eigenvector centrality (or prestige score) of vertex i is the ith component of
the eigenvector x of the (column) stochastic matrix N := AD−1 corresponding to the
eigenvalue 1:

Nx = x
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Consider a particular vertex i with its neighbouring vertices N (i):

xi =
∑

j∈N (i)

xj =
∑
j

Aijxj

The eigenvector centrality defined this way depends both on the number of neighbours
|N (i)| and the quality of its connections xj , j ∈ N (i)
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Let A = (aij) be the adjacency matrix of a graph. The eigenvector centrality xi of
vertex i is given by

xi =
1

λ

∑
k

aki xk

where λ ̸= 0 is a constant. In matrix form

xTA = λxT

Hence the centrality vector x is the left eigenvector of the adjacency matrix A
associated with the eigenvalue λ
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Power method to solve eigenvector centrality

m(v): signed component of maximal magnitude of vector v ; if more than one maximal
component, let m(v) be the first one. E.g., m(−3, 3, 2) = −3

Let x (0) be an arbitrary vector. For k ≥ 1

▶ repeatedly compute x (k) = x (k−1)A

▶ normalize x (k) = x (k)/m(x (k))

until desired precision is achieved

Then x (k) converges to the dominant eigenvector of A and m(x (k)) converges to the
dominant eigenvalue of A

If matrix A is sparse, each vector-matrix product can be performed in linear time in the
size of the graph.
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Power method converges when the dominant (largest) and the sub-dominant (second
largest) eigenvalues of A λ1 and λ2 are separated, i.e., are different in absolute value,
i.e., when |λ1| > |λ2|

Rate of convergence is rate at which (λ2/λ1)
k goes to 0. Hence, if the sub-dominant

eigenvalue is small compared to the dominant one, the method converges quickly
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Why use the leading eigenvector?

We want a nonnegative measure, so we want a vector in R+

We know from the Perron-Frobenius Theorem that the eigenvector corresponding to
the dominant eigenvalue of a nonnegative matrix is nonnegative

Furthermore, if the graph is strongly connected, the matrix is irreducible and the
eigenvector corresponding to the dominant eigenvalue is positive
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PageRank

Variant of the Eigenvector centrality measure for directed network

Basic PageRank

▶ Whenever a vertex i has no outgoing link, we add a self-loop to i such that
k ini = kouti = 1. Therefore Aii = 1 for such vertices in the adjacency matrix

▶ Let D+ be the diagonal matrix of outdegrees where each element D+
ii = kouti

▶ Define a column stochastic matrix N = A(D+)−1

▶ The PageRank centrality of node i is equal to the eigenvector xi of matrix N (The
leading eigenvalue is 1): x = Nx
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Problem

Given n interlinked webpages, rank them in order of “importance”

Assign the pages importance scores x1, x2, . . . , xn ≥ 0

Key insight: use the existing link structure of the web to determine importance. A link
to a page “is” a vote for its importance

How does this help with web searches?
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First attempt: let xk equal the number of links to page k

Criticism: a link from an “important” page (like Google) should carry more weight
than a link from some random blog!
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Second attempt: let xk equal the sum of the importance scores of all pages linking to
page k

Criticism 1: a webpage gets more “votes” (exerts more influence) if it has many
outgoing links

Criticism 2: this system only has the trivial solution!
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Third attempt (Brin and Page, late 90s): let xk equal the sum of xj/nj , where the sum
is taken over all the pages j that link to page k , and nj is the number of outgoing links
on page j

A page’s number of votes is then its importance score, and gets split evenly among the
pages it links to
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Summary: given a web with n pages, construct an n × n matrix A as

aij =

{
1/nj if page j links to page i

0 otherwise

where nj is number of outgoing links on page j

Sum of jth column is nj/nj = 1, so A is a stochastic matrix

The ranking vector x̃ solves Ax̃ = x̃
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Possible issues: existence of solution with nonnegative entries? Non-unique solutions?

PF Theorem guarantees a unique steady-state vector if entries of A are strictly positive
or A irreducible. But irreducible ��⇒ λ1 and λ2 separated, so make it primitive

Brin-Page: replace A with

B = 0.85A+
0.15

n
J

where J is the matrix of all ones

B > 0 is primitive =⇒ PF Theorem says B has a unique steady-state vector, x. So
x can be used for rankings!
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The Random Surfer

Why Markov chains?

Brin and Page

PageRank can be thought of as a model of user behavior. We assume there is a
“random surfer” who is given a web page at random and keeps clicking on links, never
hitting “back” but eventually gets bored and starts on another random page

Surfer clicks on a link on the current page with probability 0.85; opens up a random
page with probability 0.15

A page’s rank is the probability the random user will end up on that page, OR,
equivalently the fraction of time the random user spends on that page in the long run
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In practice

Estimates of the number of web pages vary.. 4.77× 109 to more than 50× 109

Computing stationary distribution is hard computationally

Instead, use power method, i.e., an iterative method, starting with initial distribution
(1/n, . . . , 1/n)
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