
Review of �rst-year linear algebra
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In MATH 2740, we rely on notions you acquired in MATH 1210/1220/1300. We also
use some material from �rst-year calculus

So let us (brie�y) go over material in these courses

I also add (for some of you) a few things that will be handy and establish some
terminology that we use throughout the course
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OUTLINE

Sets and logic

Complex numbers

Vectors and vector spaces

Linear systems and matrices

Matrix arithmetic

Diagonalisation

Linear independence/Bases/Dimension
Linear algebra in a nutshell



Sets and elements

De�nition 1 (Set)

A set X is a collection of elements

We write x ∈ X or x ̸∈ X to indicate that the element x belongs to the set X or does
not belong to the set X , respectively

De�nition 2 (Subset)

Let X be a set. The set S is a subset of X , which is denoted S ⊂ X , if all its elements
belong to X

Not used here but worth noting: we say S is a proper subset of X and write S ⊊ X , if
it is a subset of X and not equal to X

p. 4 � Sets and logic



Quanti�ers

A shorthand notation for �for all elements x belonging to X � is ∀x ∈ X

For example, if X = R, the �eld of real numbers, then ∀x ∈ R means �for all real
numbers x�

A shorthand notation for �there exists an element x in the set X � is ∃x ∈ X

∀ and ∃ are quanti�ers
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Intersection and union of sets

Let X and Y be two sets

De�nition 3 (Intersection)

The intersection of X and Y , X ∩Y , is the set of elements that belong to X and to Y ,

X ∩ Y = {x : x ∈ X and x ∈ Y }

De�nition 4 (Union)

The union of X and Y , X ∪ Y , is the set of elements that belong to X or to Y ,

X ∪ Y = {x : x ∈ X or x ∈ Y }

In mathematics, or=and/or in common parlance. We also have an exclusive or (xor)
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A teeny bit of logic

In a logical sense, a proposition is an assertion (or statement) whose truth value (true
or false) can be asserted. For example, a theorem is a proposition that has been shown
to be true. �The sky is blue� is also a proposition

Let A be a proposition. We generally write

A

to mean that A is true, and
not A

to mean that A is false. not A is the contraposition of A (or not A is the contraposite
of A)
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A teeny bit of logic (cont.)

Let A,B be propositions. Then

▶ A ⇒ B (read A implies B) means that whenever A is true, then so is B

▶ A ⇔ B , also denoted A if and only if B (A i� B for short), means that A ⇒ B
and B ⇒ A
We also say that A and B are equivalent

Let A and B be propositions. Then

(A ⇒ B) ⇔ (not B ⇒ not A)
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Necessary or su�cient conditions

Suppose we want to establish whether a given statement P is true, depending on the
truth value of a statement H. Then we say that

▶ H is a necessary condition if P ⇒ H
(It is necessary that H be true for P to be true; so whenever P is true, so is H)

▶ H is a su�cient condition if H ⇒ P
(It su�ces for H to be true for P to also be true)

▶ H is a necessary and su�cient condition if H ⇔ P , i.e., H and P are equivalent
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Playing with quanti�ers

For the quanti�ers ∀ (for all) and ∃ (there exists),

∃ is the contraposite of ∀

Therefore, for example, the contraposite of

∀x ∈ X , ∃y ∈ Y

is
∃x ∈ X , ∀y ∈ Y
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Complex numbers

De�nition 5 (Complex numbers)

A complex number is an ordered pair (a, b), where a, b ∈ R. Usually written a+ ib or
a+ bi , where i2 = −1 (i.e., i =

√
−1)

The set of all complex numbers is denoted C,

C = {a+ ib : a, b ∈ R}
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De�nition 6 (Addition and multiplication on C)
Letting a+ ib and c + id ∈ C, addition on C is de�ned by

(a+ ib) + (c + id) = (a+ c) + i(b + d)

and multiplication on C is de�ned by

(a+ ib)(c + id) = (ac − bd) + i(ad + bc)

Latter is easy to obtain using regular multiplication and i2 = −1
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Properties

∀α, β, γ ∈ C,

α+ β = β + α and αβ = βα [commutativity]

(α+ β) + γ = α+ (β + γ) and (αβ)γ = α(βγ) [associativity]

γ + 0 = γ and γ1 = γ [identities]

∀α ∈ C, ∃β ∈ C unique s.t. α+ β = 0 [additive inverse]

∀α ̸= 0 ∈ C, ∃β ∈ C unique s.t. αβ = 1 [multiplicative inverse]

γ(α+ β) = γα+ γβ [distributivity]

p. 13 � Complex numbers



Additive & multiplicative inverse, subtraction, division

De�nition 7

Let α, β ∈ C
▶ −α is the additive inverse of α, i.e., the unique number in C s.t. α+ (−α) = 0

▶ Subtraction on C:
β − α = β + (−α)

▶ For α ̸= 0, 1/α is the multiplicative inverse of α, i.e., the unique number in C
s.t.

α(1/α) = 1

▶ Division on C:
β/α = β(1/α)
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De�nition 8 (Real and imaginary parts)

Let z = a+ ib. Then Re z = a is real part and Im z = b is imaginary part of z

If ambiguous, write Re (z) and Im (z)

De�nition 9 (Conjugate and Modulus)

Let z = a+ ib ∈ C. Then
▶ Complex conjugate of z is

z̄ = a− ib

▶ Modulus (or absolute value) of z is

|z | =
√
a2 + b2 ≥ 0
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Properties of complex numbers

Let w , z ∈ C, then
▶ z + z̄ = 2Re z

▶ z − z̄ = 2iIm z

▶ zz̄ = |z |2

▶ w + z = w̄ + z̄ and wz = w̄ z̄

▶ z̄ = z

▶ |Re z | ≤ |z | and |Im z | ≤ |z |
▶ |z̄ | = |z |
▶ |wz | = |w | |z |
▶ |w + z | ≤ |w |+ |z | [triangle inequality]
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Solving quadratic equations
Consider the polynomial

P(x) = a0 + a1x + a2x
2

where x , a0, a1, a2 ∈ R. Letting

∆ = a21 − 4a0a2

you know that if ∆ > 0, then
P(x) = 0

has two distinct real solutions,

x1 =
−a1 −

√
∆

2a2
and x2 =

−a1 +
√
∆

2a2

if ∆ = 0, then there is a (multiplicity 2) unique real solution

x1 =
−a1
2a2

while if ∆ < 0, there is no solution
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Solving quadratic equations with complex numbers

Consider the polynomial
P(x) = a0 + a1x + a2x

2

where x , a0, a1, a2 ∈ R. If instead of seeking x ∈ R, we seek x ∈ C, then the situation
is the same, except when ∆ < 0

In the latter case, note that

√
∆ =

√
(−1)(−∆) =

√
−1

√
−∆ = i

√
−∆

Since ∆ < 0, −∆ > 0 and the square root is the usual one
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Solving quadratic equations with complex numbers
To summarize, consider the polynomial

P(x) = a0 + a1x + a2x
2

where x , a0, a1, a2 ∈ R. Letting

∆ = a21 − 4a0a2

Then
P(x) = 0

has two solutions,

x1,2 =
−a1 ±

√
∆

2a2

where, if ∆ < 0, x1, x2 ∈ C and take the form

x1,2 =
−a1 ± i

√
−∆

2a2
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Why this matters

Recall (we will come back to this later) that to �nd the eigenvalues of the matrix

A =

(
a11 a12
a21 a22

)
we seek λ solutions to det(A− λI) = 0, i.e., λ solutions to

|A− λI| =
∣∣∣∣a11 − λ a12

a21 a22 − λ

∣∣∣∣ = (a11 − λ)(a22 − λ)− a12a21 = 0

i.e., λ solutions to
λ2 − (a11 + a22)λ+ a11a22 − a12a21 = 0
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Why this matters (cont.)
Let

P(λ) = λ2 − (a11 + a22)λ+ a11a22 − a12a21

From previous discussion, letting

∆ = (a11 + a22)
2 − 4(a11a22 − a12a21)

= a2
11

+ a2
22

+ 2a11a22 − 4a11a22 + 4a12a21
= a2

11
+ a2

22
− 2a11a22 + 4a12a21

= (a11 − a22)
2 + 4a12a21

we have two (potentially equal) solutions to P(λ) = 0

x1,2 =
a11 + a22 ±

√
∆

2

that are complex if ∆ < 0

Example:

(
0 −1
1 0

)
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Vectors

A vector v is an ordered n-tuple of real or complex numbers

Denote F = R or C (real or complex numbers). For v1, . . . , vn ∈ F,

v = (v1, . . . , vn) ∈ Fn

is a vector. v1, . . . , vn are the components of v

If unambiguous, we write v . Otherwise, v or v⃗
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Vector space

De�nition 10 (Vector space)

A vector space over F is a set V together with two binary operations, vector
addition, denoted +, and scalar multiplication, that satisfy the relations:

1. ∀u, v ,w ∈ V , u + (v +w) = (u + v) +w

2. ∀v ,w ∈ V , v +w = w + v

3. ∃0 ∈ V , the zero vector, such that v + 0 = v for all v ∈ V

4. ∀v ∈ V , there exists an element w ∈ V , the additive inverse of v , such that
v +w = 0

5. ∀α ∈ R and ∀v ,w ∈ V , α(v +w) = αv + αw

6. ∀α, β ∈ R and ∀v ∈ V , (α+ β)v = αv + βv

7. ∀α, β ∈ R and ∀v ∈ V , α(βv) = (αβ)v

8. ∀v ∈ V , 1v = v
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Norms

De�nition 11 (Norm)

Let V be a vector space over F, and v ∈ V be a vector. The norm of v , denoted ∥v∥,
is a function from V to R+ that has the following properties:

1. For all v ∈ V , ∥v∥ ≥ 0 with ∥v∥ = 0 i� v = 0

2. For all α ∈ F and all v ∈ V , ∥αv∥ = |α| ∥v∥
3. For all u, v ∈ V , ∥u + v∥ ≤ ∥u∥+ ∥v∥
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Let V be a vector space (for example, R2 or R3)

The zero element (or zero vector) is the vector 0 = (0, . . . , 0)

The additive inverse of v = (v1, . . . , vn) is −v = (−v1, . . . ,−vn)

For v = (v1, . . . , vn) ∈ V , the length (or Euclidean norm) of v is the scalar

∥v∥ =
√

v2
1
+ · · ·+ v2n

To normalize the vector v consists in considering ṽ = v/∥v∥, i.e., the vector in the
same direction as v that has unit length
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Standard basis vectors

Vectors i = (1, 0, 0), j = (0, 1, 0) and k =
(0, 0, 1) are the standard basis vectors of
R3. A vector v = (v1, v2, v3) can then be
written

v = v1i + v2j + v3k

  

For V (Rn), the standard basis vectors are usually denoted e1, . . . , en, with

ek = (0, . . . , 0︸ ︷︷ ︸
k−1

, 1, 0, . . . , 0︸ ︷︷ ︸
n−k+1

)

p. 26 � Vectors and vector spaces



Dot product

De�nition 12 (Dot product)

Let a = (a1, . . . , an) ∈ Rn, b = (b1, . . . , bn) ∈ Rn. The dot product of a and b is the
scalar

a • b =
n∑

i=1

aibi = a1b1 + · · ·+ anbn

The dot product is a special case of inner product
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Properties of the dot product

Theorem 13

For a,b, c ∈ Rn and α ∈ R,

▶ a • a = ∥a∥2 (so a • a ≥ 0, with a • a = 0 i� a = 0)

▶ a • b = b • a (• is commutative)

▶ a • (b + c) = a • b + a • c (• distributive over +)

▶ (αa) • b = α(a • b) = a • (αb)
▶ 0 • a = 0
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Some results stemming from the dot product

Theorem 14

If θ is the angle between the vectors a and b, then

a • b = ∥a∥ ∥b∥ cos θ

Corollary 15 (Cauchy-Schwarz inequality)

For any two vectors a and b, we have

|a • b| ≤ ∥a∥ ∥b∥

with equality if and only if a is a scalar multiple of b, or one of them is 0.

Theorem 16

a and b are orthogonal if and only if a • b = 0.
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Scalar and vector projections
Scalar projection of v onto a (or component of v along a):

comp
av= a•v

∥a∥

Vector (or orthogonal) projection of v onto a:

proj
av=

(
a•v
∥a∥

)
a

∥a∥=
a•v
∥a∥2

a
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Linear systems

De�nition 17 (Linear system)

A linear system of m equations in n unknowns takes the form

a11x1 + a12x2 + · · · + a1nxn = b1
a21x1 + a22x2 + · · · + a2nxn = b2
...

...
...

...
...

am1x1 + am2x2 + · · · + amnxn = bn

(1)

The aij , xj and bj could be in R or C, although here we typically assume they are in R

The aim is to �nd x1, x2, . . . , xn that satisfy all equations simultaneously
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Theorem 18 (Nature of solutions to a linear system)

A linear system can have

▶ no solution

▶ a unique solution

▶ in�nitely many solutions
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Operations on linear systems

You learned to manipulate linear systems using

▶ Gaussian elimination

▶ Gauss-Jordan elimination

with the aim to put the system in row echelon form (REF) or reduced row echelon

form (RREF)
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Matrices and linear systems

Writing

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn

 , x =


x1
x2
...
xn

 and b =


b1
b2
...
bn


where A is an m× n matrix, x and b are n (column) vectors (or n× 1 matrices), then
the linear system in the previous slide takes the form

Ax = b

p. 34 � Linear systems and matrices



Notation for vectors

We usually assume vectors are column vectors and thus write, e.g.,

x =


x1
x2
...
xn

 = (x1, x2, . . . , xn)
T

Here, T is the transpose operator (more on this soon)
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Consider the system
Ax = b

If b = 0, the system is homogeneous and always has the solution x = 0 and so the
�no solution� option in Theorem 18 goes away
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De�nition 19 (Matrix)

An m-by-n or m × n matrix is a rectangular array of elements of R or C with m rows
and n columns,

A = [aij ] =

a11 · · · a1n
...

...
am1 · · · amn



We always list indices as �row,column�

We denote Mmn(F) or Fmn the set of m × n matrices with entries in F = {R,C}.
Often, we omit F in Mmn if the nature of F is not important

When m = n, we usually write Mn
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Basic matrix arithmetic

Let A ∈ Mmn,B ∈ Mmn be matrices (of the same size) and c ∈ F = {R,C} be a
scalar

▶ Scalar multiplication

cA = [caij ]

▶ Addition

A+ B = [aij + bij ]

▶ Subtraction (addition of −B = (−1)B to A)

A− B = A+ (−1)B = [aij + (−1)bij ] = [aij − bij ]

▶ Transposition of A gives a matrix AT = Mnm with

AT = [aji ], j = 1, . . . , n, i = 1, . . . ,m
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Matrix multiplication

The (matrix) product of A and B , AB , requires the �inner dimensions� to match, i.e.,
the number of columns in A must equal the number of rows in B

Suppose that is the case, i.e., let A ∈ Mmn, B ∈ Mnp. Then the i , j entry in C := AB
takes the form

cij =
n∑

k=1

aikbkj

Recall that the matrix product is not commutative, i.e., in general, AB ̸= BA (when
both those products are de�ned, i.e., when A,B ∈ Mn)
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Special matrices

De�nition 20 (Zero and identity matrices)

The zero matrix is the matrix 0mn whose entries are all zero. The identity matrix is a
square n × n matrix In with all entries on the main diagonal equal to one and all o�
diagonal entries equal to zero

De�nition 21 (Symmetric matrix)

A square matrix A ∈ Mn is symmetric if ∀i , j = 1, . . . , n, aij = aji . In other words,
A ∈ Mn is symmetric if A = AT
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Properties of symmetric matrices

Theorem 22

1. If A ∈ Mn, then A+ AT is symmetric

2. If A ∈ Mmn, then AAT ∈ Mm and ATA ∈ Mn are symmetric

X symmetric ⇐⇒ X = XT , so use X = the matrix whose symmetric property you
want to check
1. True if A+ AT = (A+ AT )T . We have

(A+ AT )T = AT + (AT )T = AT + A = A+ AT

2. AAT symmetric if AAT = (AAT )T . We have

(AAT )T = (AT )TAT = AAT

ATA works similarly
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Determinants

De�nition 23 (Determinant)

Let A ∈ Mn with n ≥ 2. The determinant of A is the scalar

det(A) = |A| =
n∑

j=1

aijCij

where Cij = (−1)i+jdet(Aij) is the (i , j)-cofactor of A and Aij is the submatrix of A
from which the ith row and jth column have been removed

This is a cofactor expansion along the ith row
This is a recursive formula: it gives result in terms of n Mn−1 matrices, to which it
must in turn be applied, all the way down to

det

(
a11 a12
a21 a22

)
= a11a22 − a12a21
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Two special matrices and their determinants

De�nition 24

A ∈ Mn is upper triangular if aij = 0 when i > j , lower triangular if aij = 0 when
j > i , triangular if it is either upper or lower triangular and diagonal if it is both upper
and lower triangular

When A diagonal, we often write A = diag(a11, a22, . . . , ann)

Theorem 25

Let A ∈ Mn be triangular or diagonal. Then

det(A) =
n∏

i=1

aii = a11a22 · · · ann
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Inversion/Singularity

De�nition 26 (Matrix inverse)

A ∈ Mn is invertible (or nonsingular) if ∃A−1 ∈ Mn s.t.

AA−1 = A−1A = I

A−1 is the inverse of A. If A−1 does not exist, A is singular

Theorem 27

Let A ∈ Mn, x ,b ∈ Fn. Then

▶ A invertible ⇐⇒ det(A) ̸= 0

▶ If A invertible, A−1 is unique

▶ If A invertible, then Ax = b has the unique solution x = A−1b
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Revisiting matrix arithmetic

With addition, subtraction, scalar multiplication, multiplication, transposition and
inversion, you can perform arithmetic on matrices essentially as on scalar, if you bear in
mind a few rules

▶ The sizes have to be compatible

▶ The order is important since matrix multiplication is not commutative

▶ Transposition and inversion change the order of products:

(AB)T = BTAT and (AB)−1 = B−1A−1
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Eigenvalues / Eigenvectors / Eigenpairs

De�nition 28

Let A ∈ Mn. A vector x ∈ Fn such that x ̸= 0 is an eigenvector of A if ∃λ ∈ F called
an eigenvalue, s.t.

Ax = λx

A couple (λ, x) with x ̸= 0 s.t. Ax = λx is an eigenpair

If (λ, x) eigenpair, then for c ̸= 0, (λ, cx) also eigenpair since A(cx) = cAx = cλx and
dividing both sides by c ..
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Similarity

De�nition 29 (Similarity)

A,B ∈ Mn are similar (A ∼ B) if ∃P ∈ Mn invertible s.t.

P−1AP = B

Theorem 30 (∼ is an equivalence relation)

A,B,C ∈ Mn, then

▶ A ∼ A (∼ re�exive)

▶ A ∼ B =⇒ B ∼ A (∼ symmetric)

▶ A ∼ B and B ∼ C =⇒ A ∼ C (∼ transitive)
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Similarity (cont.)

Theorem 31

A,B ∈ Mn with A ∼ B . Then

▶ det A = det B

▶ A invertible ⇐⇒ B invertible

▶ A and B have the same eigenvalues
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Diagonalisation

De�nition 32 (Diagonalisability)

A ∈ Mn is diagonalisable if ∃D ∈ Mn diagonal s.t. A ∼ D

In other words, A ∈ Mn is diagonalisable if there exists a diagonal matrix D ∈ Mn and
a nonsingular matrix P ∈ Mn s.t. P−1AP = D

Could of course write PAP−1 = D since P invertible, but P−1AP makes more sense for
computations
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Theorem 33

A ∈ Mn diagonalisable ⇐⇒ A has n linearly independent eigenvectors

Corollary 34 (Su�cient condition for diagonalisability)

A ∈ Mn has all its eigenvalues distinct =⇒ A diagonalisable

For P−1AP = D: in P , put the linearly independent eigenvectors as columns and in D,
the corresponding eigenvalues
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Linear combination and span

De�nition 35 (Linear combination)

Let V be a vector space. A linear combination of a set {v1, . . . , vk} of vectors in V is
a vector

c1v1 + · · ·+ ckvk

where c1, . . . , ck ∈ F

De�nition 36 (Span)

The set of all linear combinations of a set of vectors v1, . . . , vk is the span of
{v1, . . . , vk},

span(v1, . . . , vk) = {c1v1 + · · ·+ ckvk : c1, . . . , ck ∈ F}
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Finite/in�nite-dimensional vector spaces

Theorem 37

The span of a set of vectors in V is the smallest subspace of V containing all the

vectors in the set

De�nition 38 (Set of vectors spanning a space)

If span(v1, . . . , vk) = V , we say v1, . . . , vk spans V

De�nition 39 (Dimension of a vector space)

A vector space V is �nite-dimensional if some set of vectors in it spans V . A vector
space V is in�nite-dimensional if it is not �nite-dimensional
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Linear (in)dependence

De�nition 40 (Linear independence/Linear dependence)

A set {v1, . . . , vk} of vectors in a vector space V is linearly independent if

(c1v1 + · · ·+ ckvk = 0) ⇔ (c1 = · · · = ck = 0) ,

where c1, . . . , ck ∈ F. A set of vectors is linearly dependent if it is not linearly
independent.

If linearly dependent, assume w.l.o.g. that c1 ̸= 0, then

v1 = −c2
c1
v2 − · · · − ck

c1
vk

i.e., v1 is a linear combination of the other vectors in the set
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Theorem 41

Let V be a �nite-dimensional vector space. Then the cardinal (number of elements) of

every linearly independent set of vectors is less than or equal to the number of elements

in every spanning set of vectors

E.g., in R3, a set with 4 or more vectors is automatically linearly dependent
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Basis

De�nition 42 (Basis)

Let V be a vector space. A basis of V is a set of vectors in V that is both linearly
independent and spanning

Theorem 43 (Criterion for a basis)

A set {v1, . . . , vk} of vectors in a vector space V is a basis of V ⇐⇒ ∀v ∈ V , v can

be written uniquely in the form

v = c1v1 + · · ·+ ckvk ,

where c1, . . . , ck ∈ F

p. 55 � Linear independence/Bases/Dimension



Plus/Minus Theorem

Theorem 44 (Plus/Minus Theorem)

S a nonempty set of vectors in vector space V

▶ If S is linearly independent and V ∋ v ̸∈ span(S), then S ∪ {v} is linearly

independent

▶ If v ∈ S is linear combination of other vectors in S , then span(S) = span(S −{v})
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More on bases

Theorem 45 (Basis of �nite-dimensional vector space)

Every �nite-dimensional vector space has a basis

Theorem 46

Any two bases of a �nite-dimensional vector space have the same number of vectors

De�nition 47 (Dimension)

The dimension dimV of a �nite-dimensional vector space V is the number of vectors
in any basis of the vector space

Theorem 48 (Dimension of a subspace)

Let V be a �nite-dimensional vector space and U ⊂ V be a subspace of V . Then

dimU ≤ dimV
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Constructing bases

Theorem 49

Let V be a �nite-dimensional vector space. Then every linearly independent set of

vectors in V with dimV elements is a basis of V

Theorem 50

Let V be a �nite-dimensional vector space. Then every spanning set of vectors in V
with dimV elements is a basis of V
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To �nish: the �famous� �growing result�

Theorem 51

Let A ∈ Mn. The following statements are equivalent (TFAE)

1. The matrix A is invertible

2. ∀b ∈ Fn, Ax = b has a unique solution (x = A−1b)

3. The only solution to Ax = 0 is the trivial solution x = 0

4. RREF (A) = In
5. The matrix A is equal to a product of elementary matrices

6. ∀b ∈ Fn, Ax = b has a solution

7. There is a matrix B ∈ Mn such that AB = In
8. There is an invertible matrix B ∈ Mn such that AB = In
9. det(A) ̸= 0

10. 0 is not an eigenvalue of A
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