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Why characterise a graph

Graphs are everywhere!

To compare graphs, understand their properties, we need ways to describe their shape
and characteristics

p. 1 – Why characterise graphs?



The global air transportation network
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Example of spread of p-H1N1

Role of social networks in shaping disease transmission during a community outbreak of 2009 H1N1 pandemic influenza, Cauchemez et al, PNAS
108(7):2825-2830 (2011)
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Example of spread of MERS

Topological dynamics of
the 2015 South Korea
MERS-CoV spread-on-
contact networks, Yang &
Jung, Scientific Reports
10:4327 (2020)
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More disease transmission trees

Outbreak Trees has an extensive database of disease transmission trees

p. 5 – Why characterise graphs?

https://outbreaktrees.ecology.uga.edu/


Some “measures” concern the vertices, others the graph as a whole

In all that follows, unless otherwise indicated, G = (V ,A) is a digraph. If undirected,
we write G = (V ,E )

p. 6 – Why characterise graphs?
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R packages for analysing graphs

Two main packages: network and igraph

We will use igraph: if you learn how to use it in R, you can easily do the same in
Python, C/C++ or Mathematica !

So in the following, I will assume that we have used the command library(igraph)

p. 7 – A few R preliminaries

https://cran.r-project.org/web/packages/network/index.html
https://r.igraph.org/
https://igraph.org/index.html


igraph documentation

These days, there is an issue with the igraph documentation site, whereas normally it
is quite good

You can find it here

Do read the R vignette, though, as well as the manual

p. 8 – A few R preliminaries

https://igraph.org/r/doc/
https://cran.r-project.org/web/packages/igraph/vignettes/igraph.html
https://cran.r-project.org/web/packages/igraph/igraph.pdf


Setting up a graph

There are multiple ways to set up a graph in igraph. Of course, you will need
library(igraph)

Two main mechanisms:

1. Use a function to create a known graph

2. Implement your own graph, describing the vertices and the edges/arcs
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Known graphs (a few)

▶ make lattice

▶ make ring

▶ make star

▶ make tree

▶ make line graph

▶ make full graph

▶ make bipartite graph

▶ make empty graph

p. 10 – A few R preliminaries
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Measures specific to vertices
Centre of a graph
Centrality – Betweenness and closeness
Periphery of a graph
Degree distribution



Geodesic distance

Definition 1 (Geodesic distance)

For x , y ∈ V , the geodesic distance d(x , y) is the length of the shortest path from x
to y , with d(x , y) = ∞ if no such path exists

p. 11 – Measures specific to vertices



▶ d(x1, x2) = 1

▶ d(x1, x3) = 2

▶ · · · 

0 1 2 2 4 3
1 0 1 1 3 2
3 4 0 5 2 1
4 5 1 0 3 2
1 2 3 3 0 4
2 3 4 4 1 0

 x1

x2 x3

x4 x5

x6
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▶ d(x5, x1) = ∞
▶ d(x3, x1) = ∞
▶ · · ·

0 1 2 2 4 3
1 0 1 1 3 2
∞ ∞ 0 ∞ 2 1
∞ ∞ 1 0 3 2
∞ ∞ ∞ ∞ 0 ∞
∞ ∞ ∞ ∞ 1 0

 x1

x2 x3

x4 x5

x6
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Eccentricity

Definition 2 (Vertex eccentricity)

The eccentricity e(x) of vertex x ∈ V is

e(x) = max
y∈V

y ̸=x

d(x , y)



0 1 2 2 4 3
1 0 1 1 3 2
3 4 0 5 2 1
4 5 1 0 3 2
1 2 3 3 0 4
2 3 4 4 1 0

 x1

x2 x3

x4 x5

x6
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Central points, radius and centre

Definition 3 (Central point)

A central point of G is a vertex x0 with smallest eccentricity

Definition 4 (Radius)

The radius of G is ρ(G ) = e(x0), where x0 is a centre of G In other words,

ρ(G ) = min
x∈V

e(x)

Definition 5 (Centre)

The centre of G is the set of vertices that are central points of G , i.e.,

{x ∈ V : e(x) = ρ(G )}
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

0 1 2 2 4 3
1 0 1 1 3 2
3 4 0 5 2 1
4 5 1 0 3 2
1 2 3 3 0 4
2 3 4 4 1 0

 x1

x2 x3

x4 x5

x6

Radius is 3, x2 is a central point (the only one) and the centre is {x2}
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Degree distribution



How central is a vertex?

Centrality tries to answer the question: what are the most influent vertices?

We have seen central vertices and vertices on the periphery, let us consider two other
measures of centrality

▶ Betweenness centrality

▶ Closeness centrality

Many other forms (we will come back to this, e.g., degree centrality)

p. 17 – Measures specific to vertices



Betweenness

Definition 6 (Betweenness)

G = (V ,A) a (di)graph. The betweenness of v ∈ V is

bD(v) =
∑

s ̸=t ̸=v∈V

σst(v)

σst

where

▶ σst is number of shortest geodesic paths from s to t

▶ σst(v) is number of shortest geodesic paths from s to t through v

p. 18 – Measures specific to vertices



In other words

▶ For each pair of vertices (s, t), compute the shortest paths between them

▶ For each pair of vertices (s, t), determine the fraction of shortest paths that pass
through vertex v

▶ Sum this fraction over all pairs of vertices (s, t)

p. 19 – Measures specific to vertices



Normalising betweenness

Betweenness may be normalized by dividing through the number of pairs of vertices
not including v :

▶ for directed graphs, (n − 1)(n − 2)

▶ for undirected graphs, (n − 1)(n − 2)/2

p. 20 – Measures specific to vertices



Example of betweenness

distances(G, mode="out")

0 1 2 2 4 3
1 0 1 1 3 2
3 4 0 5 2 1
4 5 1 0 3 2
1 2 3 3 0 4
2 3 4 4 1 0

 x1

x2 x3

x4 x5

x6
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Number of shortest paths

Recall we found distances(G, mode="out")

D =



0 1 2 2 4 3
1 0 1 1 3 2
3 4 0 5 2 1
4 5 1 0 3 2
1 2 3 3 0 4
2 3 4 4 1 0



To find the number of shortest paths between pairs of vertices, we can use powers of
the adjacency matrix

Write D = [dij ], for a given (i , j) (i ̸= j), if dij = k, then pick the (i , j) in Ak
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We find 

0 1 1 1 1 1
1 0 1 1 1 1
1 1 0 1 1 1
1 1 1 0 1 1
1 1 1 1 0 1
1 1 1 1 1 0


Recall that betweenness of v is

bD(v) =
∑

s ̸=t ̸=v∈V

σst(v)

σst

σst (# shortest paths from s to t) is found in the matrix above

What about σst(v), # of those shortest paths that go through v?

We can use all shortest paths(G, from = s, to = t, mode = "out")
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Example of betweenness

betweenness(G, directed = FALSE, normalized = TRUE)

0.5

0.5 0.45

0 0.45

0.45
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Closeness

Definition 7

G = (V ,A). The closeness of v ∈ V is

cD(v) =
1

n − 1

∑
t∈V \{v}

dD(v , t)

i.e., mean geodesic distance between a vertex v and all other vertices it has access to

Another definition is

cD(v) =
1∑

t∈V \{v}

dD(v , t)
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Example of (out) closeness

closeness(G, normalized = TRUE, mode=‘‘out’’)

0.417

0.625 0.333

0.333 0.385

0.357
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Diametre and periphery of a graph

Definition 8 (Diametre of a graph)

The diametre of G is
δ(G ) = max

x,y∈V

x ̸=y

d(x , y) = max
x∈V

e(x)

δ(G ) < ∞ ⇐⇒ G strongly connected

Definition 9 (Periphery)

The periphery of a graph is the set of vertices whose eccentricity achieves the
diametre, i.e.,

{x ∈ V : e(x) = δ(G )}
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

0 1 2 2 4 3
1 0 1 1 3 2
3 4 0 5 2 1
4 5 1 0 3 2
1 2 3 3 0 4
2 3 4 4 1 0

 x1

x2 x3

x4 x5

x6

Diametre is δ(G ) = 5 and periphery is {x3, x4}

Definition 10 (Antipodal vertices)

Vertices x , y ∈ V are antipodal if d(x , y) = δ(G )
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Measures specific to vertices
Centre of a graph
Centrality – Betweenness and closeness
Periphery of a graph
Degree distribution



Degree distribution

Definition 11 (Arc incident to a vertex)

If a vertex x is the initial endpoint of an arc u, which is not a loop, the arc u is
incident out of vertex x

The number of arcs incident out of x plus the number of loops attached to x is
denoted d+

G (x) and is the outer demi-degree of x

An arc incident into vertex x and the inner demi-degree d−
G (x) are defined similarly

Definition 12 (Degree)

The degree of vertex x is the number of arcs with x as an endpoint, each loop being
counted twice. The degree of x is denoted dG (x) = d+

G (x) + d−
G (x)

If each vertex has the same degree, the graph is regular
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Definition 13 (Isolated vertex)

A vertex of degree 0 is isolated.

Definition 14 (Average degree of G )

d(G ) = 1
|V |

∑
v∈V degG (v).

Definition 15 (Minimum degree of G )

δ(G ) = min{degG (v)|v ∈ V }.

Definition 16 (Maximum degree of G )

∆(G ) = max{degG (v)|v ∈ V }.
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Degrees in an undirected graph

2

3 3

2 2

2

Here, vertices are labelled
using the degree
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Degrees in a directed graph

d+ = 1
d− = 2

d+ = 3
d− = 1

d+ = 1
d− = 2

d+ = 1
d− = 1

d+ = 1
d− = 1

d+ = 1
d− = 1

d+ = 1
d− = 2

d+ = 4
d− = 2

d+ = 1
d− = 2

d+ = 1
d− = 1

d+ = 1
d− = 1

d+ = 2
d− = 2
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What to consider about degrees?

Degrees are often considered as a measure of popularity

Often write k(i) (or ki ) for “degree of vertex i”, k−(i) and k+(i) for in- and out-degree

▶ Minimum and maximum degree

▶ Minimum and maximum in/out-degree. E.g., if you consider the global air
transportation network and the in/out-degree of airports, in-degree is a measure
of a location’s “popularity” as a travel destination

▶ Range of degrees in a graph: are there large discrepancies in connectivity between
vertices in the graph?

▶ Average degree (often denoted ⟨k⟩ because of physicists)

▶ Average in/out-degree

▶ Variance of the degrees or in/out-degrees
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▶ Average (nearest) neighbour degree, to encode for preferential attachment (one
prefers to hang out with popular people)

knni =
1

k(i)

∑
j∈N (i)

k(j)

or, in terms of the adjacency matrix A = [aij ],

knni =
1

k(i)

∑
j

aijk(j)

▶ Excess degree: take nearest neighbour degree but do not consider the edge/arc
followed to get to the neighbour

▶ Degree, nearest neighbour and excess degree distributions
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Degrees in igraph

▶ degree gives the degrees of the vertices

▶ degree distribution gives numeric vector of the same length as the maximum
degree plus one. The first element is the relative frequency zero degree vertices,
the second vertices with degree one, etc.

▶ knn calculate the average nearest neighbor degree of the given vertices and the
same quantity in the function of vertex degree

▶ strength sums up the edge weights of the adjacent edges for each vertex
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Degree from adjacency matrix

Suppose adjacency matrix take the form A = [aij ] with aij = 1 if there is an arc from
the vertex indexed i to the vertex indexed j and 0 otherwise. (Could be the other way
round, using AT , just make sure)

Let e = (1, . . . , 1)T be the vector of all ones

Ae = (d+
G (1), . . . , d+

G (1))T (out-degree)

eTA = (d−
G (1), . . . , d−

G (1)) (in-degree)

p. 36 – Measures specific to vertices
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Measures at the graph level
Circumference & Girth
Graph density
Graph connectivity
Cliques
k-cores



Circumference

Definition 17 (Circumference)

In an undirected (resp. directed) graph, the total number of edges (resp. arcs) in the
longest cycle of graph G is the circumference of G

Circumference is 6.

x1

x2 x3

x4 x5

x6
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Girth

Definition 18 (Girth)

The total number of edges in the shortest cycle of graph G is the girth g(G )

Girth is 2.

x1

x2 x3

x4 x5

x6
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Measures at the graph level
Circumference & Girth
Graph density
Graph connectivity
Cliques
k-cores



Completeness

Definition 19 (Complete undirected graph)

An undirected graph is complete if every two of its vertices are adjacent.

Definition 20 (Complete digraph)

A digraph D(V ,A) is complete if ∀u, v ∈ V , uv ∈ A.

In case of simple graphs, completeness effectively means that “information” can be
transmitted from every vertex to every other vertex quickly (1 step)

It can be useful to know how far away we are from being complete
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Number of edges/arcs in a complete graph

G = (V ,E ) undirected and simple of order n has at most

n(n − 1)

2

edges, while G = (V ,A) directed and simple of order n has at most

n(n − 1)

arcs
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Density of a graph

Definition 21 (Density)

The fraction of maximum number of edges or arcs present in the graph is the density
of the graph.

If the graph has p edges or arcs, then its density is, respectively,

2p

n(n − 1)

or
p

n(n − 1)
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Example of density

x1

x2 x3

x4 x5

x6

Graph has order 6 and
thus a max of 30 arcs.
Here, 8 arcs =⇒ density
0.267
(26.7% of arcs are
present)
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Connectedness

We have already seen connectedness (quasi- or strong in the oriented case)

Connectedness is important in terms of characteristing graph properties, as it shows
the capacity of the graph to convey information to all the members of the graph (the
vertices)
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Definition 22 (Connected graph)

A connected graph is a graph that contains a chain µ[x , y ] for each pair x , y of
distinct vertices

Denote x ≡ y the relation “x = y , or x ̸= y and there exists a chain in G connecting x
and y”. ≡ is an equivalence relation since

1. x ≡ y [reflexivity]

2. x ≡ y =⇒ y ≡ x [symmetry]

3. x ≡ y , y ≡ z =⇒ x ≡ z [transitivity]

Definition 23 (Connected component of a graph)

The classes of the equivalence relation ≡ partition V into connected sub-graphs of G
called connected components
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Articulation set

Definition 24 (Articulation set)

For a connected graph, a set A of vertices is called an articulation set (or a cutset) if
the subgraph of G generated by V − A is not connected

articulation points(G) in igraph (assumes the graph is undirected, makes it so if
not)
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Strongly connected graphs
G = (V ,U) connected. A path of length 0 is any sequence {x} consisting of a single
vertex x ∈ V

For x , y ∈ V , let x ≡ y be the relation “there is a path µ1[x , y ] from x to y as well as
a path µ2[y , x ] from y to x”. This is an equivalence relation (it is reflexive, symmetric
and transitive)

Definition 25 (Strong components)

Sets of the form
A(x0) = {x : x ∈ V , x ≡ x0}

are equivalence classes; they partition V and are the strongly connected
components of G

Definition 26 (Strongly connected graph)

G strongly connected if it has a single strong component
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Definition 27 (Minimally connected graph)

G is minimally connected if it is strongly connected and removal of any arc destroys
strong-connectedness

Definition 28 (Contraction)

G = (V ,U). The contraction of the set A ⊂ V of vertices consists in replacing A by
a single vertex a and replacing each arc into (resp. out of) A by an arc with same
index into (resp. out of) a

p. 47 – Measures at the graph level



Quasi-strong connectedness

Definition 29 (Quasi-strong connectedness)

G quasi-strongly connected if ∀x , y ∈ V , exists z ∈ V (denoted z(x , y) to
emphasize dependence on x , y) from which there is a path to x and a path to y

Strongly connected =⇒ quasi-strongly connected (take z(x , y) = x); converse not
true

Quasi-strongly connected =⇒ connected

Lemma 30

G = (V ,U) has a root ⇐⇒ G quasi-strongly connected
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Weak-connectedness

Definition 31 (Weakly connected graph)

G = (V ,U) weakly connected if G = (V ,E ) connected, where E is obtained from U
by ignoring the direction of arcs

x1

x2 x3

x4 x5

x6

=⇒
x1

x2 x3

x4 x5

x6
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Weak components

Define for x , y ∈ V the relation x ≡ y as “x = y or x ̸= y and there is a chain in G
connecting x and y” [like for components in an undirected graph, except the graph is
directed here]

This defines an equivalence relation

Definition 32 (Weak components)

Sets of the form
A(x0) = {x : x ∈ V , x ≡ x0}

are equivalence classes partitioning V into the weakly connected components of G

G = (V ,U) is weakly connected if there is a single weak component
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Components in igraph

▶ is connected decides whether the graph is weakly or strongly connected

▶ components finds the maximal (weakly or strongly) connected components of a
graph

▶ count components does almost the same as components but returns only the
number of clusters found instead of returning the actual clusters

▶ component distribution creates a histogram for the maximal connected
component sizes

▶ decompose creates a separate graph for each component of a graph

▶ subcomponent finds all vertices reachable from a given vertex, or the opposite: all
vertices from which a given vertex is reachable via a directed path
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Cliques

Definition 33 (Clique in undirected graphs)

G = (V ,E ) a simple undirected graph. A clique is a subgraph G ′ of G such that all
vertices in G ′ are adjacent

Definition 34 (n-clique)

A simple, complete graph on n vertices is called an n-clique and is often denoted Kn

Definition 35 (Clique in directed graphs)

G = (V ,U) a simple directed graph. A clique is a subgraph G ′ of G such that all
vertices in G ′ are mutually adjacent

Definition 36 (Maximal clique)

A maximal clique is a clique that cannot be extended by adding another adjacent
vertex

p. 52 – Measures at the graph level



x1

x2 x3

x4 x5

x6

x1

x2 x3

x4 x5

x6
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Cliques in igraph

▶ cliques find all complete subgraphs in the input graph, obeying the size
limitations given in the min and max arguments

▶ largest cliques finds all largest cliques in the input graph

▶ max cliques finds all maximal cliques in the input graph (The largest cliques are
always maximal, but a maximal clique is not necessarily the largest)

▶ count max cliques counts the maximal cliques

▶ clique num calculates the size of the largest clique(s)

p. 54 – Measures at the graph level
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k-core

Definition 37 (k-core of a graph)

G = (V ,U) a graph. The k-core of G is a maximal subgraph in which each vertex has
degree at least k

Definition 38 (Coreness of a vertex)

G = (V ,U) a graph, x ∈ V . The coreness of x is k if x belongs to the k-core of G
but not to the k + 1 core of G

For directed graphs, in-cores or out-cores depending on whether in-degree or
out-degree is used

In igraph: coreness

p. 55 – Measures at the graph level



Coreness in the directed case

x1

x2 x3

x4 x5

x6

G has only a 1-in-core and 1-out-core: there is no (maximal) subgraph in which the in-
or out-degree is larger than 1

p. 56 – Measures at the graph level



In-coreness in the directed case

x1

x2 x3

x4 x5

x6

=⇒

1

2 2

1 1

2
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Coreness in the undirected case

2

2 2

2 2

2

=⇒
2

3 3

2 2

3

p. 58 – Measures at the graph level
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