
The University of Manitoba campuses are located on original lands of Anishinaabeg, Ininew, Anisininew, Dakota
and Dene peoples, and on the National Homeland of the Red River Métis.
We respect the Treaties that were made on these territories, we acknowledge the harms and mistakes of the past,
and we dedicate ourselves to move forward in partnership with Indigenous communities in a spirit of Reconciliation
and collaboration.

Fall 2024

Clustering & Classification using ANNs

Julien Arino
University of Manitoba

julien.arino@umanitoba.ca

julien.arino@umanitoba.ca

Outline

Neural networks (the perceptron)

Neural networks (the perceptron)

Artificial neural network (ANN) - from Wikipedia

Artificial neural networks (ANNs) are computing systems inspired by the
biological neural networks that constitute animal brains
An ANN is based on a collection of connected units or nodes called artificial
neurons, which loosely model the neurons in a biological brain. Each con-
nection, like the synapses in a biological brain, can transmit a signal to other
neurons. An artificial neuron receives signals then processes them and can
signal neurons connected to it. The “signal” at a connection is a real number,
and the output of each neuron is computed by some non-linear function of
the sum of its inputs. The connections are called edges. Neurons and edges
typically have a weight that adjusts as learning proceeds. The weight increases
or decreases the strength of the signal at a connection. Neurons may have a
threshold such that a signal is sent only if the aggregate signal crosses that
threshold.

p. 1 – Neural networks (the perceptron)

https://en.wikipedia.org/wiki/Artificial_neural_network

The perceptron

One of the first neural networks (invented 1943, implemented 1957), made for simple
classification tasks, for example recognising letters or numbers

Two layers: the input layer (the retina) and the output layer

Inputs are 0 or 1, so are outputs

p. 2 – Neural networks (the perceptron)

0 ∨ 1

0 ∨ 1

0 ∨ 1

0 ∨ 1

∑

∑

∑

0 ∨ 1

0 ∨ 1

0 ∨ 1

Connections

Retina Output layer

The connections into the output layer are called synapses, they are modifiable
p. 3 – Neural networks (the perceptron)

The activation function

x0

x1

xi

xℓ

aj =
∑I

i=1 wijxi

w1j

w2j

wij

wIj

oj = f (aj)

Here,

f (aj) =

{
0 if aj ≤ 0

1 if aj > 0

p. 4 – Neural networks (the perceptron)

The activation function

We have I input neurons taking values 0 or 1, O output neurons taking values 0 or 1,
weights W = [wij] ∈ MIO and a threshold function f

More generally, use a threshold θj for each output neuron

oj =

{
0 if aj ≤ θj

1 if aj > θj

The thresholds (or response bias) and the weights are modifiable by learning. To do
that easily for the threshold, consider an input neuron that is always on, say neuron 0,
and set weights w0j = −θj , making the weights matrix an (I + 1)× O-matrix

p. 5 – Neural networks (the perceptron)

Another way to write the activation is

oj =

{
0 if aj + w0j ≤ 0

1 if aj + w0j > 0

where w0j = −θj

p. 6 – Neural networks (the perceptron)

Learning something simple

The aim is to adjust the synaptic weights so that the proper response is provided to a
given stimulus

Let us first do a simple example: the OR truth table

0 0 7→ 0
1 0 7→ 1
0 1 7→ 1
1 1 7→ 1

So we have two neurons in the retina and a single output neuron

p. 7 – Neural networks (the perceptron)

Supervised learning

(From R. Rojas)

Supervised learning: method in which some input vectors are collected and
presented to the network. The output computed by the network is observed
and the deviation from the expected answer is measured

The weights are corrected according to the magnitude of the error in the way
defined by the learning algorithm

Also called learning with a teacher, since a control process knows the correct
answer for the set of selected input vectors

p. 8 – Neural networks (the perceptron)

Further distinctions in supervised learning methods

Methods with reinforcement or error correction

▶ Reinforcement learning: used when after each presentation of an input-output
example, we only know whether the network produces the desired result or not.
Weights are updated based on this information (i.e., the Boolean values true or
false), so only the input vector can be used for weight correction

▶ In learning with error correction, the magnitude of the error, together with the
input vector, determines the magnitude of the corrections to the weights. In many
cases, we try to eliminate the error in a single correction step

p. 9 – Neural networks (the perceptron)

A first learning algorithm

Suppose the training set consists of two sets of points P and N

▶ start: Generate random weight vector w0; set t := 0

▶ test: A vector x ∈ P ∪ N is selected randomly
▶ if x ∈ P and ⟨wt , x⟩ > 0 go to test
▶ if x ∈ P and ⟨wt , x⟩ ≤ 0 go to add
▶ if x ∈ N and ⟨wt , x⟩ < 0 go to test
▶ if x ∈ N and ⟨wt , x⟩ ≥ 0 go to subtract

▶ add: set wt+1 = wt + x and t := t + 1, goto test

▶ subtract: set wt+1 = wt − x and t := t + 1, goto test

p. 10 – Neural networks (the perceptron)

Widrow-Hoff learning rule

Need to provide the correct answer, i.e., this is a supervised learning rule

An output cell only learns if it is mistaken

Present random inputs and apply the rule if the output does not match the known
output

p. 11 – Neural networks (the perceptron)

Widrow-Hoff learning rule

w
(t+1)
ij = w

(t)
ij + η(tj − oj)xj = w

(t)
ij +∆wij (1)

with

▶ ∆wij correction to add to the weight wij

▶ xi : value (0 or 1) of the ith retinal cell

▶ oj : response of the jth output cell

▶ tj target response (correct desired response)

▶ w
(t)
ij : weight of the synapse between the ith retinal cell and jth output cell at

time t. Typically initiated at small random values

▶ η: small positive constant, the learning constant

p. 12 – Neural networks (the perceptron)

Learning OR
0 0 7→ 0
1 0 7→ 1
0 1 7→ 1
1 1 7→ 1

Three cells in the retina (two inputs and the “dummy” cell used for the threshold) and
one output cell. So inputs and outputs must be

1 0 0 7→ 0
1 1 0 7→ 1
1 0 1 7→ 1
1 1 1 7→ 1

Initialise the 3× 1 weight matrix W to zero:

W =

w0 = −θ
w1

w2

 =

0
0
0

p. 13 – Neural networks (the perceptron)

Procedure

We choose one random association in

1 0 0 7→ 0
1 1 0 7→ 1
1 0 1 7→ 1
1 1 1 7→ 1

say, the fourth one. So we present [1, 1, 1] and expect an output of 1. We have

a =
∑
i

wixi = (1× 0) + (1× 0) + (1× 0) = 0

This being ≤ 0 means that o = 0, giving an error of 1

p. 14 – Neural networks (the perceptron)

Applying the rule

Suppose the learning constant η = 0.1. Then applying (1),

∆w0 = η(t − o)x0 = 0.1× (1− 0)× 1 = 0.1

∆w1 = η(t − o)x0 = 0.1× (1− 0)× 1 = 0.1

∆w2 = η(t − o)x0 = 0.1× (1− 0)× 1 = 0.1

Applying the correction, W becomes

W =

0.1
0.1
0.1

p. 15 – Neural networks (the perceptron)

Trying another input

Suppose we now present the first input [1, 0, 0]. This should produce a result of 0.
Then

a =
∑
i

wixi = (1× 0.1) + (0× 0.1) + (0× 0.1) = 0.1

which is > 0, so o = 1. We compute the correction

∆w0 = η(t − o)x0 = 0.1× (0− 1)× 1 = −0.1

∆w1 = η(t − o)x1 = 0.1× (0− 1)× 0 = 0

∆w1 = η(t − o)x2 = 0.1× (0− 1)× 0 = 0

and adjust the weights, giving

W =

 0
0.1
0.1

p. 16 – Neural networks (the perceptron)

And we are done!

With the weights

W =

 0
0.1
0.1

we are done. Indeed

Input 0 Input 1 Input 2 a o Should be
1 0 0 0 0 0
1 1 0 0+0.1+0 1 1
1 0 1 0+0+0.1 1 1
1 1 1 0+0.1+0.1 1 1

p. 17 – Neural networks (the perceptron)

Learning XOR

Let us now look at the XOR truth table

0 0 7→ 0
1 0 7→ 1
0 1 7→ 1
1 1 7→ 0

This problem is not solvable with a simple perceptron of the type we just used, as
truth table is not linearly separable

Indeed, we would get weights w1 > 0, w2 > 0 to activate when presenting [1, 0] and
[0, 1], but would require that the sum of the weights when applied to the input [1, 1],
give a negative value.

p. 18 – Neural networks (the perceptron)

Linear separability and OR and XOR

x1

x2

x1

x2

A single-layer perceptron can only learn linearly separable problems

p. 19 – Neural networks (the perceptron)

Adding a hidden layer

It is possible to do XOR, but we need to add a hidden layer

0 ∨ 1

0 ∨ 1

θ = 1 θ = 0

w = 1

w = 1

w = 0.6

w = 0.6

w = −2

p. 20 – Neural networks (the perceptron)

Using neuralnet to learn OR

First, create the truth table

OR_table = matrix(c(0, 0, 0,

1, 0, 1,

0, 1, 1,

1, 1, 1),

nc = 3, byrow = TRUE)

OR_table = as.data.frame(OR_table)

colnames(OR_table) = c("x1", "x2", "OR")

p. 21 – Neural networks (the perceptron)

Now create and train the NN

The “formula” is to find the OR column using the x1 and x2 columns. We use no
hidden layer

nn_OR = neuralnet(OR ~ x1 + x2,

data = OR_table,

act.fct = "logistic",

hidden = 0,

linear.output = FALSE)

Plot the result

plot(nn_OR, rep = "best")

p. 22 – Neural networks (the perceptron)

4.30427

x2

7.67803

x1

OR

−2.0053

1

Error: 0.011204 Steps: 62

Testing the result

pred = predict(nn_OR, OR_table)

OR_table$result = pred > 0.5

kable(OR_table, "latex", booktabs = TRUE)

x1 x2 OR result

0 0 0 FALSE
1 0 1 TRUE
0 1 1 TRUE
1 1 1 TRUE

p. 24 – Neural networks (the perceptron)

Now the XOR truth table

XOR_table = matrix(c(0, 0, 0,

1, 0, 1,

0, 1, 1,

1, 1, 0),

nc = 3, byrow = TRUE)

XOR_table = as.data.frame(XOR_table)

colnames(XOR_table) = c("x1", "x2", "XOR")

p. 25 – Neural networks (the perceptron)

Try to learn it without a hidden layer

nn_XOR = neuralnet(XOR ~ x1 + x2,

data = XOR_table,

act.fct = "logistic",

hidden = 0,

linear.output = FALSE)

pred = predict(nn_XOR, XOR_table)

XOR_table$result = pred > 0.5

kable(XOR_table, "latex", booktabs = TRUE)

x1 x2 XOR result

0 0 0 FALSE
1 0 1 FALSE
0 1 1 TRUE
1 1 0 TRUE

p. 26 – Neural networks (the perceptron)

Now with a hidden layer

nn_XOR = neuralnet(XOR ~ x1 + x2,

data = XOR_table,

act.fct = "tanh",

hidden = 1)

pred = predict(nn_XOR, XOR_table)

XOR_table$result = pred > 0.5

kable(XOR_table, "latex", booktabs = TRUE)

x1 x2 XOR result

0 0 0 FALSE
1 0 1 TRUE
0 1 1 TRUE
1 1 0 TRUE

Should look into options.. :)
p. 27 – Neural networks (the perceptron)

An example from the neuralnet manual – Training vs testing sets

iris is a built-in R dataset detailing physical characteristics of 150 flowers from 3 iris
species

train_idx <- sample(nrow(iris), 2/3 * nrow(iris))

iris_train <- iris[train_idx,]

iris_test <- iris[-train_idx,]

Thus we pick at random 2/3 of the data for training and 1/3 for testing. See some
considerations on training, validation and testing on this Wikipedia page

p. 28 – Neural networks (the perceptron)

https://en.wikipedia.org/wiki/Training,_validation,_and_test_data_sets

An example from the neuralnet manual

nn <- neuralnet(Species == "setosa" ~ Petal.Length + Petal.Width,

iris_train, linear.output = FALSE)

pred <- predict(nn, iris_test)

table(iris_test$Species == "setosa", pred[, 1] > 0.5)

##

FALSE TRUE

FALSE 34 0

TRUE 0 16

p. 29 – Neural networks (the perceptron)

Another example – multiclass classification

nn <- neuralnet((Species == "setosa") +

(Species == "versicolor") +

(Species == "virginica")

~ Petal.Length + Petal.Width,

iris_train, linear.output = FALSE)

pred <- predict(nn, iris_test)

table(iris_test$Species, apply(pred, 1, which.max))

##

1

setosa 16

versicolor 17

virginica 17

p. 30 – Neural networks (the perceptron)

	Neural networks (the perceptron)

