
University of Manitoba

Mathematics of Data Science

Julien Arino

Department of Mathematics

Fall 2023
Version of September 5, 2023

2

Contents

1 Data Science and Mathematics? 7
1.1 What is Data Science? . 7

1.1.1 The data deluge . 8
1.2 Why bother about mathematics? . 8
1.3 Where to go for more information . 8
1.4 Remark about this document . 8

2 R and data 11
2.1 Introduction to R and jupyter notebook 11
2.2 Grabing the Canadian census data and putting it into shape 11

3 Least squares problems 21
3.1 From interpolation to fitting . 21
3.2 Least squares problems . 24
3.3 Solving by brute force using a genetic algorithm 27
3.4 How about a little finesse? . 28
3.5 Fitting something more complicated . 31

3.5.1 Fitting the quadratic . 32
3.5.2 Fitting the exponential . 32

4 Matrix factorisations 35
4.1 Orthogonal matrices . 35
4.2 The Gram-Schmidt orthonormalisation procedure 37

4.2.1 Projections onto subspaces . 38
4.2.2 The Gram-Schmidt process . 38

4.3 The QR factorisation . 38
4.3.1 Back to least squares . 38

4.4 The singular values decomposition (SVD) 39
4.4.1 Computing the SVD (case of ̸= eigenvalues) 40
4.4.2 Computing the SVD (case of ̸= eigenvalues) 41
4.4.3 Computing the SVD (case where some eigenvalues are =) 41

4.5 Compressing images . 42
4.5.1 Doing things “by hand” . 44

3

4 CONTENTS

4.5.2 Doing things using proper functions 44

5 Principal component analysis (PCA) 47
5.1 Brief “review” of some probability concepts 47

5.1.1 Hockey players (eh!) . 54

6 Graph theory ... theory 63
6.1 Introduction and preliminaries . 63

6.1.1 Graphs versus networks . 63
6.1.2 Graphs vs digraphs vs multigraphs vs multidigraphs vs 63
6.1.3 The bridges of Königsberg . 64
6.1.4 Finding a cycle with all vertices 64
6.1.5 How far is it to drive through n cities? 64

6.2 Binary relations . 65
6.3 Undirected graphs . 66

6.3.1 Undirected graph . 66
6.3.2 Order and size of graph . 67
6.3.3 Relationships between vertices and edges, nature of the edges . 68
6.3.4 Degree of a vertex . 69
6.3.5 Regular, complete, bipartite and other notable graphs 70
6.3.6 Isomorphic graphs . 73
6.3.7 Subgraphs, unions of graphs . 74
6.3.8 Walks, trails, paths . 75
6.3.9 Eulerian graphs . 76
6.3.10 Hamiltonian graphs . 77
6.3.11 Connectedness . 78
6.3.12 Planar graphs . 82

6.4 Directed graphs . 88
6.4.1 Directed graph . 88
6.4.2 Degrees in digraphs . 90
6.4.3 Walks, paths, etc. 91
6.4.4 Connectivity in digraphs . 92
6.4.5 Orientable graphs . 94

6.5 Trees . 94
6.6 Matrices associated to a graph/digraph 100

6.6.1 Adjacency matrices . 100
6.6.2 Other matrices associated to a graph/digraph 102
6.6.3 Linking graphs and linear algebra 104

7 Quantifying graphs 107
7.1 Measures specific to vertices . 108

7.1.1 Centre of a graph . 108
7.1.2 Centrality – Betweenness and closeness 109

CONTENTS 5

7.1.3 Periphery of a graph . 111
7.1.4 Degree distribution . 112

7.2 Measures at the graph level . 114
7.2.1 Circumference & Girth . 114
7.2.2 Graph density . 115
7.2.3 Graph connectivity . 116
7.2.4 Cliques . 118
7.2.5 k-cores . 118

8 The PageRank algorithm 121
8.1 Markov chains . 121
8.2 Running example – Mendelian inheritance 122
8.3 Repetition of the process . 124
8.4 Regular Markov chains . 126
8.5 Back to the genetics example . 127
8.6 Changing the setting of the genetic experiment 128
8.7 Absorbing Markov chains . 129

A Review/presentation of some required concepts 133
A.1 Sets . 133

A.1.1 Sets and elements . 133
A.1.2 Quantifiers . 134
A.1.3 Intersection and union of sets 134

A.2 Just enough logic to get by . 135
A.3 Vectors and vector spaces . 136

A.3.1 Vectors . 136
A.3.2 Vector space . 136
A.3.3 Norms . 136
A.3.4 Standard basis vectors . 137
A.3.5 Dot product . 137
A.3.6 Some results stemming from the dot product 137
A.3.7 Scalar and vector projections 137

A.4 Complex numbers . 138
A.4.1 Solving quadratic equations . 139
A.4.2 Why this matters . 140

A.5 Linear systems and matrices . 141
A.5.1 Linear systems . 141

A.6 Matrix arithmetic . 142
A.6.1 Symmetric matrices . 143
A.6.2 Determinants . 145

A.7 Diagonalisation . 147
A.7.1 Eigenvalues / Eigenvectors / Eigenpairs 147
A.7.2 Diagonalisation . 147

6 CONTENTS

A.8 Linear independence/Bases/Dimension 148
A.9 Linear algebra in a nutshell . 149

Chapter 1

What is Data Science and why should
you care about mathematics as a data
scientist?

1.1 What is Data Science?

“Nobody knows” is probably quite an adequate answer to this question. In days of
yore (circa 2010), people talked about Big Data, prompting the following declaration,
attributed to Dan Ariely (Duke University):

Big data is like teenage sex: everyone talks about it, nobody really knows
how to do it, everyone thinks everyone else is doing it, so everyone claims
they are doing it...

The vocabulary has evolved, the term big data became complex data and more re-
cently, people have been talking about data science. According to Wikipedia (emphasis
mine)

Data science is an interdisciplinary field that uses scientific methods,
processes, algorithms and systems to extract knowledge and insights from
structured and unstructured data, and apply knowledge and actionable
insights from data across a broad range of application domains.

[..] It uses techniques and theories drawn from many fields within the con-
text of mathematics, statistics, computer science, information sci-
ence, and domain knowledge.

Data science is nothing new (some statisticians argue it is just another name for
statistics), but it has become prominent in recent years as a consequence of the un-
precedented mass of information generated and collected by our modern societies.

7

8 CHAPTER 1. DATA SCIENCE AND MATHEMATICS?

1.1.1 The data deluge

One speaks of information explosion or data deluge. See some considerations, e.g., here.
A wide variety of jobs
We have absolutely insane amounts of data and we try to make sense of it. However,

except for the more or less fixation of the name, the situation has not improved sig-
nificantly since the days of Ariely’s quote: data science is a hodge-podge that contains
everything but the kitchen sink.

To caricature - two main types of data: structured and unstructured - two main
branches: statistics and computer science - two main types of jobs: users and develop-
pers

1.2 Why bother about mathematics?
Recall that I said there were two main branches, statistics and computer science, and
two main types of jobs: users and developpers. So why a course on Math of Data
Science?

In short, if you plan to be a user and are not curious about the how and the why
and can tolerate some errors due to misuse of methods, then you probably do not care
about this course.

In other cases, many of the concepts used have their roots in math and to under-
stand where the methods are coming from and, even more importantly, to develop new
methods, math is often required

Warning!
We will barely brush the surface here:
- Some techniques from linear algebra - Some graph theory ideas
There is a lot more to see!!!

1.3 Where to go for more information
The Faculty of Science at the University of Manitoba has created the Data Science
NEXUS (link).

- Education component - Data Science Undergraduate Program (Fall 2021) - Data
Science Master’s Program - Master of Business Analytics

- Training (workshops, COOP, internships, etc.)
- Events (conferences, etc.)

1.4 Remark about this document
This document is written in RSweave, which is very similar to Rmarkdown, but allows
to write in native LATEX. All figures and most data processing is run by R at the time
of compilation. R code is also displayed frequently, when it is novel, in the sense that

https://bernardmarr.com/how-much-data-is-there-in-the-world/
https://sci.umanitoba.ca/data-science-nexus/

1.4. REMARK ABOUT THIS DOCUMENT 9

it has not been shown before. Otherwise, it is hidden. For example, the code used to
generate the first figure is shown; in subsequent figures, code is only shown if additional
options are used, etc.

10 CHAPTER 1. DATA SCIENCE AND MATHEMATICS?

Chapter 2

Getting started – Learning R and
collecting data

2.1 Introduction to R and jupyter notebook
In order to illustrate the use of Jupyter Notebook and R, let us prepare for the next
lecture using a notebook.

Notebooks run online (here on syzygy.ca). It uses two (mainly) types of "cells". A
cell like this one is a text cell. Text is formatted using ‘markdown‘, which is a simple
text description language yet has relatively powerful capabilities. See here, for instance,
for details.

2.2 Grabing the Canadian census data and putting it
into shape

The first steps in analysing data typically involve acquiring it, then putting it into a
form that is appropriate for the analysis steps that will follow. The latter step is often
called data wrangling.

To illustrate the process, let us consider the evolution of the population of Canada
through time. For this, we want to find census data. We search the web for “canada
historical census data csv”, since csv (comma separated values) files are very easy to
use with R. Our search returns a website, here, with a csv for 1851 to 1976. We follow
the link to Table A2-14, where we find another link (this one), this time to a csv file.
This is what we use below.

The first step is to read in the data. The function read.csv reads in a file, poten-
tially directly from the web. We assign the result to the variable data_old. The reason
for using the suffix old should become clear soon. Note that in order for the link to
appear clearly in this text, we first store it in two variable, one for the base url and one
for the specific page; this is not a required step by any means. The way we do this,
however, is of interest, as it is a process that is often used. Once the two strings are

11

syzygy.ca
https://www.markdownguide.org/getting-started/
https://www150.statcan.gc.ca/n1/pub/11-516-x/sectiona/4147436-eng.htm
https://www150.statcan.gc.ca/n1/en/pub/11-516-x/sectiona/A2_14-eng.csv?st=L7vSnqio

12 CHAPTER 2. R AND DATA

stored, we paste them one to another using the function paste0, which appends all its
arguments as a string without adding any space (there is also a function paste that
does the same thing but with separating spaces).

> url_base = "https://www150.statcan.gc.ca/"
> url_page = "n1/en/pub/11-516-x/sectiona/A2_14-eng.csv?st=L7vSnqio"
> url_data = paste0(url_base, url_page)
> data_old = read.csv(url_data)

When this is done, it is always a good idea to take a look at the first few rows in
the resulting table, to see what things look like. The function head shows the first few
lines in the argument, eight by default. The call to knitr::kable allows to use the
function kable from the knitr library without loading the whole library. The function
kable formats a table for display in a much better way than R does by default.

> knitr::kable(head(data_old))

X	Series.A2.14.	Population.of.Canada..by.province..census.dates..1851.to.1976	X.1	X.2	X.3	X.4	X.5	X.6	X.7	X.8	X.9	X.10	X.11	X.12	X.13	X.14	X.15	X.16	X.17	X.18	X.19	X.20
NA			NA			NA						NA		NA		NA		NA			NA	NA
NA	Year	Canada	NA	Newfound-	Prince	NA	Nova	New	Quebec	Ontario	Manitoba	NA	Saskat-	NA	Alberta	NA	British	NA	Yukon	Northwest	NA	NA
NA			NA	land	Edward	NA	Scotia	Brunswick				NA	chewan	NA		NA	Columbia	NA	Territory	Territories	NA	NA
NA			NA		Island	NA						NA		NA		NA		NA			NA	NA
NA		2	NA	3	4	NA	5	6	7	8	9	NA	10	NA	11	NA	12	NA	13	14	NA	NA
NA			NA			NA						NA		NA		NA		NA			NA	NA

We use kable quite often, actually, so let us load the library (I am assuming it is
installed and not using the “safe” way of loading a library explained earlier).

> library(knitr)

Returning to the data, obviously, this does not make a lot of sense. Take a look at
the first few lines in the csv file. (This is something you would usually do even before
loading the data into R.) They take the form

,Series A2-14.,"Population of Canada, by province, census dates, 1851 to 1976",,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,
,Year,Canada,,Newfound-,Prince,,Nova,New,Quebec,Ontario, Manitoba,,Saskat-,,Alberta,,British,,Yukon,Northwest,,
,,,,land,Edward,,Scotia,Brunswick,,,,,chewan,,,,Columbia,,Territory,Territories,,
,,,,,Island,,,,,,,,,,,,,,,,,
,,2,,3,4,,5,6,7,8,9,,10,,11,,12,,13,14,,
,,,,,,,,,,,,,,,,,,,,,,

This is frequent and results from good data storage practice: the first row (and some-
times quite a few more) contains metadata that helps understand what is in the table.
However, in the present case, this is not something we care about because we know
where the data is coming from, so we can discard this row. The function read.csv
takes the optional argument skip=, which indicates how many lines to skip at the
beginning. The second line is also empty, so let us skip it too.

2.2. GRABING THE CANADIAN CENSUS DATA AND PUTTING IT INTO SHAPE13

> data_old = read.csv(url_data, skip = 2)

This gives a slightly better looking table.

X	Year	Canada	X.1	Newfound.	Prince	X.2	Nova	New	Quebec	Ontario	Manitoba	X.3	Saskat.	X.4	Alberta	X.5	British	X.6	Yukon	Northwest	X.7	X.8
NA			NA	land	Edward	NA	Scotia	Brunswick				NA	chewan	NA		NA	Columbia	NA	Territory	Territories	NA	NA
NA			NA		Island	NA						NA		NA		NA		NA			NA	NA
NA		2	NA	3	4	NA	5	6	7	8	9	NA	10	NA	11	NA	12	NA	13	14	NA	NA
NA			NA			NA						NA		NA		NA		NA			NA	NA
NA	1976	22,992,604	NA	557,725	118,229	NA	828,571	677,250	6,234,445	8,264,465	1,021,506	NA	921,323	NA	1,838,037	NA	2,466,608	NA	21,836	42,609	NA	NA
NA			NA			NA						NA		NA		NA		NA			NA	NA

Here, there is the further issue that to make things legible, the table authors used 3
rows (from 2 to 4) to encode for long names (e.g., Prince Edward Island is written over
3 rows). Because we are only interested in the total population of the country and the
year, let us get rid of the first 4 rows and of all columns except the second (Year) and
third (Canada). Let us take a look at what we now have, both at the top of the table
(using head()):

Year Canada

5 1976 22,992,604
6
7 1971 21,568,311
8 1966 20,014,880
9 1961 18,238,247

10 1956 16,080,791

and at the end of the table (using tail()):

Year Canada

24
25 Includes 485 members of the Royal Canadian Navy whose province of residence is not known.
26 Included with Northwest Territories.
27 For the discussion of the ambiguities and under-enumeration contained in these figures consult the notes to series A2-14 in original volume. For completeness of enumeration in censuses of 1961 and later years,
28 see notes to series A15-53.

29 1848 figure.

There are still quite a few remaining issues:
1. there are some empty rows;
2. the last few rows need to be removed too, they contain remarks about the data;
3. the population counts contain commas;
4. it would be better if years were increasing.

14 CHAPTER 2. R AND DATA

Let us fix these issues.
• For 1 and 2, this is easy: remark that the Canada column is empty for both issues.

Remark as well (if viewing the data from within RStudio or Jupyter Notebook)
that below Canada (and Year, for that matter), the text <chr>. This means that
entries in the column are characters. Looking for empty content therefore means
looking for empty strings. So we want to keep the rows where Canada does not
equal the empty string.

> data_old = data_old[which(data_old$Canada != ""),]

• To get rid of commas, we just need to substitute an empty chain for “,”.

> data_old$Canada = gsub(",", "", data_old$Canada)

• To sort, we find the order for the years and apply it to the entire table.

> order_data = order(data_old$Year)
> data_old = data_old[order_data,]

• Finally, as remarked above, both the year and the population are strings. This
means that in order to plot anything, we will have to indicate that these are
numbers, not strings.

> data_old$Year = as.numeric(data_old$Year)
> data_old$Canada = as.numeric(data_old$Canada)

Let us see what the table looks like now.

Year Canada

23 1851 2436297
22 1861 3229633
21 1871 3689257
20 1881 4324810
19 1891 4833239

17 1901 5371315

Row numbers are a little weird (the indicate the number of the row in the table as we
originally loaded it), so let us fix this. Note that this is purely cosmetic.

> row.names(data_old) = 1:dim(data_old)[1]

So we have

2.2. GRABING THE CANADIAN CENSUS DATA AND PUTTING IT INTO SHAPE15

Year Canada

1851 2436297
1861 3229633
1871 3689257
1881 4324810
1891 4833239

1901 5371315
1911 7206643
1921 8787949
1931 10376786
1941 11506655

1951 14009429
1956 16080791
1961 18238247
1966 20014880
1971 21568311

1976 22992604

Note that the row numbers are not show any more: they “make sense” and thus kable
has “decided” not to show them. This is looking quite good. However, this data only
goes to 1976. That is close to 50 years missing, surely there must be more recent data!

Looking around, we find another table here. There is a download csv link on that
page (this one), let us see where this leads us. Note that the link is very long so I am not
showing the read.csv command used. Refer to the Jupyter Notebook or Rmarkdown
files on the GitHub repository to see it. The table is 720KB, so there must be more to
this than just the population. To get a sense of that, we could dump the whole data
frame. Again, this is too much for lecture notes, refer to the worksheets for details. Let
us, nonetheless, take a quick peek inside the file. For this, instead of using head(), let
us pick 10 rows at random.

> idx = sort(sample(1:dim(data_new)[1], 10))

giving

https://www12.statcan.gc.ca/census-recensement/2011/dp-pd/vc-rv/index.cfm?LANG=ENG&VIEW=D&TOPIC_ID=1&GEOCODE=01&CFORMAT=html
https://www12.statcan.gc.ca/census-recensement/2011/dp-pd/vc-rv/download-telecharger/download-telecharger.cfm?Lang=eng&CTLG=98-315-XWE2011001&FMT=csv

16 CHAPTER 2. R AND DATA

GEOGRAPHY.NAME CHARACTERISTIC YEAR.S. TOTAL FLAG_TOTAL

395 Newfoundland and Labrador Population by single years of age: 18 years 2011 5995.00
701 St. John’s Population by single years of age: 68 years 2011 1720.00
810 Prince Edward Island Total private dwellings occupied by usual residents 2011 56462.00
907 Prince Edward Island Population by single years of age: 75 years 2011 995.00
1004 Prince Edward Island % of married-couple families 1966 90.02

1697 New Brunswick % of two-person households 2011 39.29
1727 New Brunswick % of five-or-more-person households 1996 9.31
1854 Moncton Population by single years of age: 38 years 2011 2045.00
1914 Moncton Population by single years of age: 98 years 2011 25.00
2467 Saguenay Population by single years of age: 13 years 2011 1600.00

This is a very different way of storing the information from the first table, which had,
to caricature, columns with the different regions of interest and rows the years. Here,
different contain different information. To get a better sense of what we are looking at,
let us first look at the columns.

> colnames(data_new)

[1] "GEOGRAPHY.NAME" "CHARACTERISTIC" "YEAR.S." "TOTAL"
[5] "FLAG_TOTAL"

This is a different way of thinking about the data. GEOGRAPHY.NAME and CHARACTERISTIC,
taken as a pair, define an attribute, whose TOTAL (value) is then documented for each
YEAR.S in the table. The column FLAG_TOTAL is used to comment on individual data
points. By selecting the relevant geography and characteristic, we therefore get the time
series we want. To find what value of geography and characteristic to use, we parse
through the output of, say,

unique(data_new$GEOGRAPHY.NAME)
unique(data_new$CHARACTERISTIC)

that return the list of distinct (unique) values in both these columns. The output
is not shown here because these commands generate a substantial number of results:
there are 12 unique geographies and 184 unique characteristics in the table. Looking
through these results, we find that the information we want has geography “Canada”
and characteristic “Population (in thousands)”. In passing, from this we also remark
that the population of Canada is expressed in thousands, so once we have selected what
we want, we will need to multiply the value by 1,000 in order to have data in the same
units as in data_old.

There are many ways to select rows. Let us present three different mechanisms.

2.2. GRABING THE CANADIAN CENSUS DATA AND PUTTING IT INTO SHAPE17

The basic (and reliable) way Let us proceed as follows: we want the rows where
the geography is “Canada” and the characteristic is “Population (in thousands)”. Let
us find the indices of rows that satisfy the first criterion, those that satisfy the second;
if we then intersect these two sets of indices, we have the indices of the rows we are
interested in.

> idx_CAN = which(data_new$GEOGRAPHY.NAME == "Canada")
> idx_char = which(data_new$CHARACTERISTIC == "Population (in thousands)")
> idx_keep = intersect(idx_CAN, idx_char)

Once these indices have been selected, we can retain only those rows in data_new that
are of interest to us.

> data_new = data_new[idx_keep,]

Thinking SQL If you have any experience with SQL, a language for maintaining
and querying databases, it can be tempting to solve this selection problem using SQL
syntax. This is made possible by using the library sqldf, which allows to perform SQL
queries on data frames.

> if (!require("sqldf")) {
+ install.packages("sqldf")
+ }
> query = "SELECT * FROM data_new
+ WHERE `GEOGRAPHY.NAME`='Canada'
+ AND `CHARACTERISTIC`='Population (in thousands)'"
> data_new = sqldf(query)

The modern way: dplyr dplyr is part of the tidyverse, an ecosystem of R libraries
meant to facilitate data manipulation. Personnally, I tend to be more familiar with SQL,
but there are similarities. dplyr also makes use of the pipe %>%, which is extremely
powerful when manipulated correctly. (This is the same idea as the unix pipe |.)

Back to our wrangling We want to concatenate this data frame with the one from
earlier. To do this, we need the two data frames to have the same number of columns
and, actually, the same column names and entry types (notice that YEAR.S. in data_new
is a column of characters). So what remains to do:

1. Rename the columns in the old data (data_old) to year and population (per-
sonally, I prefer lowercase column names).

> colnames(data_old) = c("year", "population")

2. Keep only the relevant columns in data_new and rename them to match column
names in data_old.

18 CHAPTER 2. R AND DATA

> data_new = data_new[,c("YEAR.S.","TOTAL")]
> colnames(data_new) = c("year", "population")

3. Transform year in data_new to numbers.

> data_new$year = as.numeric(data_new$year)

4. Multiply population by 1,000 in data_new.

> data_new$population = data_new$population*1000

5. We already have data up to and including 1976 in data_old, so get rid of that in
data_new.

> data_new = data_new[which(data_new$year>1976),]

6. Append the rows of data_new to those of data_old. To simplify later use, we
call data this aggregated data.

> data = rbind(data_old,data_new)

Let us see what this looks like when all of this is done; see Figure 2.1. For informa-
tion, the command used to generate Figure 2.1 is the following:

plot(data$year, data$population,
type = "b",
lwd = 2,
xlab = "Year",
ylab = "Population")

In case we need the data elsewhere, we save it.

> write.csv(data, file = "Canada_census.csv")

Saving processed data is usually a good idea. The preprocessing steps we have just
carried out can be quite costly computationally in the case of a large data set. Also,
the source of the data may move: websites, even institutional ones like Open Data
portals, have a tendency to rename files occasionally. Some files come with permanent
identifiers that in principle make them impervious to these changes, but this is not yet
the norm.

2.2. GRABING THE CANADIAN CENSUS DATA AND PUTTING IT INTO SHAPE19

1850 1900 1950 2000

5.
0e

+
06

1.
5e

+
07

2.
5e

+
07

Year

P
op

ul
at

io
n

Figure 2.1: Evolution of the population of Canada.

20 CHAPTER 2. R AND DATA

Chapter 3

Least squares problems

In this chapter, we consider several matrix methods useful in Data Science applications,
with different purposes in mind. Firstly, explain the principles; secondly, understand
why a method works; thirdly, show how to use the method in practice, both “by hand”
and using computational software.

We present some matrix theory, focusing on the specific results needed for the topics
under consideration. Other required material is found in Appendix A.

To motivate least squares problems, remember the data we gathered in Chapter 2
about the evolution of the population of Canada through time. As we saved that data
then, let us load it

> data = read.csv("Canada_census.csv")

and plot it, with the result shown in Figure 3. A public official, in view of this figure,
might be interested in getting a sense of what the population of Canada could be
expected to be in, say, 2050. There are several ways to do that. One is to use so-called
linear least squares (often called least squares for short), which is what we study here.

3.1 From interpolation to fitting
Let us start with the simplest possible case: if we have just two points, then obviously,
it is easy to find the parameters a0 and a1 such that the line

ℓ : y = a0 + a1x (3.1)

goes through the two points. This is called a problem of interpolation. There are
several ways to do that, but let us do so in a way that will be an inspiration for later
problems.

Suppose the two points are (x1, y1) and (x2, y2). Since they are on the line ℓ, they
must satisfy the equation (3.1), and thus

y1 = a0 + a1x1

y2 = a0 + a1x2.

21

22 CHAPTER 3. LEAST SQUARES PROBLEMS

1850 1900 1950 2000

5.
0e

+
06

1.
5e

+
07

2.
5e

+
07

Year

P
op

ul
at

io
n

Figure 3.1: Evolution of the population of Canada.

Recall that what we seek are the coefficients a0, a1 of ℓ, so we write this as a linear
system with unknowns a0 and a1:(

1 x1

1 x2

)(
a0
a1

)
=

(
y1
y2

)
,

which we write Ax = b with

A =

(
1 x1

1 x2

)
,x =

(
a0
a1

)
and b =

(
y1
y2

)
.

From Theorem A.62, we know that this system has the unique solution x = A−1b if
and only if det(A) ̸= 0. We easily obtain that det(A) = x2 − x1 and thus det(A) ̸= 0
(and we have a unique solution) if and only if x1 ̸= x2. This makes sense: if x1 = x2,
this means ℓ is vertical, which cannot be described by an equation such as (3.1).

Let us take a quick look at a numerical example. Suppose we have two points (1, 3)
and (3, 5). In R, we can for instance create a list and store the values there.

> points = list()
> points$x = c(1,2)
> points$y = c(3,5)

Recall that matrix inversion in R is through the function solve, which, when provided
with a second (vector) argument, actually computes A−1b, so

> A = matrix(c(1,points$x[1],
+ 1,points$x[2]),
+ nr = 2, byrow = TRUE)
> coefs = solve(A, points$y)

3.1. FROM INTERPOLATION TO FITTING 23

To plot the line with the coefficients we just obtained, we use the function abline, which
is quite versatile. With an argument coef=, it plots the line with these coefficients. So,
here, we will add the command abline(coef = coefs, lwd = 2, col = "red") after
the plot command, giving Figure 3.1.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
1

2
3

4
5

6

x

y

Figure 3.2: Two lonely points and an interpolating line.

However, we rarely have just two points and that is where things get more compli-
cated. Suppose we add a third point, say, (3, 4), to the previous two. So we now have
the situation shown in Figure ?? and, clearly, since the points are not colinear, it is
impossible to find coefficients a0, a1 of a curve y = a0+a1x that goes through the three
points.

Mathematically, this is also obvious. Reason as we did before: we have, now, three
points (x1, y1), (x2, y2) and (x3, y3) that must all satisfy the equation (3.1), i.e.,

y1 = a0 + a1x1

y2 = a0 + a1x2

y3 = a0 + a1x3.

As we did earlier, we write this in the form of a linear system Ax = b with

A =

1 x1

1 x2

1 x3

 ,x =

(
a0
a1

)
and b =

y1
y2
y3

 .

Here, the matrix A is not square so we cannot rely of Theorem A.62 and instead row-

24 CHAPTER 3. LEAST SQUARES PROBLEMS

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0
1

2
3

4
5

6

x

y

Figure 3.3: A little less ronery!

reduce A. We find

A =

1 x1

1 x2

1 x3

 R2←R2−R1−→
R3←R3−R1

1 x1

0 x2 − x1

0 x3 − x1

Thus, we have a solution if all three points lie on the same line, i.e., they are colinear.
In all other cases, there is no solution.

So we ask if we can do the next-best thing, which would be to drive a line “as close
to as possible” (whatever that means) to the three points, which becomes a problem of
fitting.

3.2 Least squares problems
We have just established that, given more than two points, the problem we need to
consider is that of driving a line as close to as possible to the points. The first problem
is to define what we mean by “as close to as possible”. From earlier Linear Algebra, you
should remember that the shortest distance between a point and a line is the orthogonal
projection of the point onto the line. So, given values of a0 and a1, we could create the
resulting line y = a0 + a1x and compute the distance from the line to each of the three
points, sum these distances. Let us do that numerically. To do this, we use projections
(Section A.3.7) and more specifically, (A.2).

There is one obvious issue with the previous method: if instead of straight line, we
use a more complex curve, then projecting onto the curve becomes more complicated.
Indeed, firstly, we need to use the tangent to the curve (and hence need to consider

3.2. LEAST SQUARES PROBLEMS 25

the derivative of the curve), but also there are no guarantees of uniqueness of the point
being the closest to the curve.

Hence, instead of the projection onto the curve, we use another approach that
considers the distance between the data points (the known points) and what value we
“predict” that point should have when we use the curve that we find.

For future use, let me define a function that returns the value of (3.1):

> my_line = function(x, a_0, a_1) {
+ return(a_0 + a_1*x)
+ }

In Figure 3.2, you can see the situation when a0 = 3.5 and a1 = 0.4, with the distance
being the length of the blue line segments between the red and black dots.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0
1

2
3

4
5

6

x

y

Figure 3.4: Distance between the (given) data points, in black, and the value predicted
for the data points if using a line with coefficients a0 = 3.5 and a1 = 0.4.

The location of the black points in Figure 3.2 is easily found: given parameters a0
and a1 and the line equation (3.1), they have the same x coordinates as the data points
and y coordinates given by, at x1 = 1,

ỹ1 = a0 + a1x1 = a0 + a1,

at x2 = 2,
ỹ2 = a0 + a1x2 = a0 + 2a1

26 CHAPTER 3. LEAST SQUARES PROBLEMS

and at x3 = 3,
ỹ3 = a0 + a1x3 = a0 + 3a1.

Consider x1, for instance. The error we made by using the line with coefficients (a0, a1)
is ε1 = y1 − ỹ1, where the sign indicates whether we under-estimated or over-estimated
the value. We can then form the error vector

e = (ε1, ε2, ε3). (3.2)

The norm ∥e∥ of e then gives a measure of the overall error we made with our choice
of a0, a1. Different norms can be used, which will pick up on different characteristics,
but in linear least squares, we use the Euclidean norm

∥e∥ =
√

ε21 + ε22 + ε23,

because this norm has very useful properties. Our objective is then to find the coeffi-
cients a0, a1 such that ∥e∥ is minimal. This problem generalises of course to an arbitrary
number of data points, giving rise to the following definition.

Definition 3.1 (Linear least squares problem). Given a collection (x1, y1), . . . , (xn, yn)
of data points, find the coefficients a0, a1 of the line y = a0 + a1x such that the error

∥e∥ =
√

ε21 + · · ·+ ε2n =
√

(y1 − ỹ1)2 + · · ·+ (yn − ỹn)2 (3.3)

is minimal, where ỹi = a0 + a1xi for i = 1, . . . , n.

Before continuing, let us write a function to compute the error when the norm is the
Euclidean norm. This function expects that points are a list, as we have been using
this far.

> error = function(a_0, a_1, points) {
+ y_tilde = my_line(points$x, a_0 = a_0, a_1 = a_1)
+ e = points$y - y_tilde
+ return(sqrt(sum(e^2)))
+ }

Using it on a couple of different parameter values gives the following.

> error(a_0 = 3.5, a_1 = 0.4, points)

[1] 1.337909

> error(a_0 = 3, a_1 = 0.5, points)

[1] 1.224745

Of course, it would be Sisyphean to undertake to find a solution by hand: we do
not know that a solution to the problem exists and even if it does, a trial and error
approach could prove quite lengthy.

3.3. SOLVING BY BRUTE FORCE USING A GENETIC ALGORITHM 27

3.3 Solving by brute force using a genetic algorithm

We want to minimise the error (3.3). Let us set aside for now the issue of existence of a
minimal value for the expression and try to find a numerical solution to this minimi-
sation problem, which falls within the larger category of optimisation problems.
There are many algorithms available to perform optimisation, with probably the most
well known being the (deterministic) gradient descent algorithm. Here, we will use a
stochastic optimisation method called a genetic algorithm. The idea is to use a mech-
anism mimicking evolution’s drive towards higher fitness. As such, genetic algorithms
study the maximisation of functions, but we will see that it is very easy to use them as
well with the goal of minimising functions.

The “philosophy” of the genetic algorithm is as follows. Suppose we have a scalar-
valued function f : Rn → R of several variables.

1. A point x ∈ Rn is a gene.
2. The function value f(x) is the fitness of the gene x ∈ Rn.
3. Initiate the algorithm with N (the population size) random genes x1, . . . ,xN .
4. Repeat the following steps for the specified number of generations.

(a) Evaluate the fitness f(x1), . . . , f(xN) of all the genes in the population.
(b) Keep a certain number of the best performing genes, i.e., the ones with higher

fitness.
(c) To prepare the population for the next generation i + 1, keep these best

performing genes and throw in some new genes. Some of these new genes may
be random as initially, but most are obtained by using “genetic operations”
on the best performing genes in the current generation: crossover, mutations,
etc.

This algorithm is known to have good convergence properties. It is also less prone
to being stuck at local maxima, because of the stochasticity of the process. Also,
this algorithm is highly parallelisable: in a given generation, fitness evaluations are
completely independent, i.e., they do not require to know the results of the other
evaluations. This means that if you can devote a number of computing cores to the
task, they can run independently, greatly speeding up the process.

In R, there are several libraries implementing genetic algorithms; GA is probably a
good place to start. Additionally, ga, the main function in that library, makes it almost
trivial to parallelise your code, as I will demonstrate later. Assuming the library is
installed and loaded, running the algorithm is really simple for the problem we are
considering.

> GA = ga(type = "real-valued",
+ fitness = function(x) -error(a_0 = x[1], a_1 = x[2], points),
+ lower = c(0, -1), upper = c(10, 1),
+ suggestions = c(a_0 = 3.5, a_1 = 0.4),
+ popSize = 200, maxiter = 150,
+ monitor = FALSE)

28 CHAPTER 3. LEAST SQUARES PROBLEMS

Let me detail the function call above, as the components can be a little confusing. As
explained, genetic algorithms are maximisers, so in order to minimise the error, for
fitness (the function that computes the fitness), we use function(x) -error(a_0 =
x[1], a_1 = x[2], points). Note that if error() had only depended on x and not
also on points, we could have used fitness = -error(a_0 = x[1], a_1 = x[2]);
the reason for using function(x) is that error() is a function of several variables,
only a subset of which are of interest to ga for its computations.

lower and upper are lower and upper bounds for the (random) values of parameters.
They are vectors that must have the same length; they also determine the size of the
genes, i.e., the number of parameters with respect to which we are optimising. lower,
upper and fitness are the only required arguments to the function.

Given lower and upper, those gene components that are chosen at random are
chosen at random uniformly between the lower and upper bound. For instance, the
call above says that we seek a0 ∈ [0, 10] and a1 ∈ [−1, 1]. There are instances when we
want to hasard guesses as to the parameter values; these guesses can be given to the
function as a matrix (or a vector if there is only one). Above, I have added the values
I used for the figures above, as they did not look too bad.

Finally, popSize and maxiter have default values of 50 and 100, respectively, which
I have increased here just to point out their role. popSize is the size of the population,
i.e., the number of genes that are evaluated at each generation, while maxiter is the
maximum number of generations for which the algorithm is run. Increasing both values
from their defaults might help with some problems, but they might also vastly increase
the run time. And monitor is set to FALSE to suppress any output from the function,
otherwise progress is shown for each generation.

Using the command plot(GA), where GA is the result obtained above, gives a vi-
sual representation of the behaviour of the algorithm, showing how the mean fitness,
minimum and maximum fitness vary through generations. Give it a try (this is not
shown here). The result of using ga is a so-called S4 object, so accessing the result is
done using @ rather than $. The most useful part of the return value is of course the
parameters we are looking for, which are returned as follows.

> GA@solution

x1 x2
[1,] 3.000126 0.4999276

You could also see the value of the fitness at that solution by looking at GA@fitnessValue.

3.4 How about a little finesse?

We just saw how to minimise ∥e∥ by brute force using a genetic algorithm. Let us now
see what mathematics can tell us about this.

3.4. HOW ABOUT A LITTLE FINESSE? 29

For a data point i = 1, . . . , n, because of the form of (3.1), the error can be written
as

εi = yi − ỹi = yi − (a0 + a1xi).

Do this for all data points,

ε1 = y1 − (a0 + a1x1)

...
εn = yn − (a0 + a1xn)

and rewrite in matrix form. This allows to reformulate the problem as follows.

Definition 3.2 (Least squares for an affine function). Given a set of data points

(x1, y1), . . . , (xn, yn), (3.4)

define the vectors

b =

y1
...
yn

 and x =

(
a0
a1

)
(3.5)

and the matrix

A =

1 x1
...

...
1 xn

 . (3.6)

Let the error vector e = (ε1, . . . , εn)
T be defined as

e = b− Ax. (3.7)

Find x such that ∥e∥ is minimum.

Note that this is where the complication comes from. Finding e = b−Ax is trivial:
since b and A are given, plugging in any value of x gives a resulting value of e. However,
what we seek here is x that minimises ∥e∥, i.e., of all possible values of x, i.e., here, R2,
we want the one or the ones that make ∥e∥ the smallest possible. To solve the problem,
we need a few more tools.

Definition 3.3 (Least squares solution). Let A ∈ Mmn and b ∈ Rm. A least squares
solution of Ax = b is a vector x̃ ∈ Rn such that

∀x ∈ Rn, ∥b− Ax̃∥ ≤ ∥b− Ax∥. (3.8)

In other words, if we denote ẽ the error corresponding to a least squares solution, ẽ
is such that ẽ ≤ e for all x.

30 CHAPTER 3. LEAST SQUARES PROBLEMS

Definition 3.4 (Best approximation). Let V be a vector space, W ⊆ V and v ∈ V .
The best approximation to v in W is ṽ ∈ W such that

∀w ∈ W,w ̸= ṽ, ∥v − ṽ∥ < ∥v −w∥. (3.9)

Theorem 3.5 (Best approximation theorem). Let V be a vector space with an inner
product, W ⊂ V and v ∈ V . Then projW (v) is the best approximation to v in W

Let us reformulate this result even more explicitly in terms of projections.

Theorem 3.6 (Best approximation theorem). Let V be a vector space with an inner
product, W ⊂ V and v ∈ V . Then projW (v) ∈ W is the best approximation to v in W,
i.e.,

∀w ∈ W,w ̸= projW (v), ∥v − projW (v)∥ < ∥v −w∥

We then have the following theorem.

Theorem 3.7 (Least squares theorem). Let A ∈ Mmn and b ∈ Rm. Then
1. Ax = b always has at least one least squares solution x̃
2. x̃ least squares solution to Ax = b ⇐⇒ x̃ is a solution to the normal equations

ATAx̃ = ATb
3. A has linearly independent columns ⇐⇒ ATA invertible. In this case, the least

squares solution is unique and

x̃ =
(
ATA

)−1
ATb.

Before we prove this, let us consider what Theorem 3.7 says. The first point stipu-
lates that we are always be able to find a least squares solution. The second provides us
with a way to construct least squares solutions that always works. The third condition
then says that under stricter conditions, the least squares is unique.

Proof. Let us find the least squares solution ∀x ∈ Rn, Ax is a vector in the column
space of A (the space spanned by the vectors making up the columns of A)

Since x ∈ Rn, Ax ∈ col(A). This implies that the least squares solution of Ax = b
is a vector ỹ ∈ col(A) such that

∀y ∈ col(A), ∥b− ỹ∥ ≤ ∥b− y∥.

This looks very much like Best approximation and Best approximation theorem
Putting things together We just stated: The least squares solution of Ax = b is a

vector ỹ ∈ col(A) s.t.
∀y ∈ col(A), ∥b− ỹ∥ ≤ ∥b− y∥

=⇒ W = col(A), v = b and ỹ = projcol(A)(b)
So if x̃ is a least squares solution of Ax = b, then

ỹ = Ax̃ = projcol(A)(b)

3.5. FITTING SOMETHING MORE COMPLICATED 31

We have
b− Ax̃ = b− projcol(A)(b) = perpcol(A)(b)

and it is easy to show that
perpcol(A)(b) ⊥ col(A)

So for all columns ai of A
ai · (b− Ax̃) = 0

which we can also write as aT
i (b− Ax̃) = 0

For all columns ai of A,
aT
i (b− Ax̃) = 0

This is equivalent to saying that

AT (b− Ax̃) = 0

We have

AT (b− Ax̃) = 0 ⇐⇒ ATb− ATAx̃ = 0

⇐⇒ ATb = ATAx̃

⇐⇒ ATAx̃ = ATb

The latter system constitutes the normal equations for x̃

We have seen 1 and 2, we will not show 3 (it is not hard)

3.5 Fitting something more complicated

Suppose we want to fit something a bit more complicated, because the data does not
seem to be really distributed along a straight line. For instance, instead of the affine
function

y = a0 + a1x,

suppose we want to fit the quadratic

y = a0 + a1x+ a2x
2

or even the exponential
y = k0e

k1x.

How should we proceed?

32 CHAPTER 3. LEAST SQUARES PROBLEMS

3.5.1 Fitting the quadratic

We have the data points (x1, y1), (x2, y2), . . . , (xn, yn) and want to fit

y = a0 + a1x+ a2x
2.

At (x1, y1),
ỹ1 = a0 + a1x1 + a2x

2
1.

...
At (xn, yn),

ỹn = a0 + a1xn + a2x
2
n.

In terms of the error

ε1 = y1 − ỹ1 = y1 − (a0 + a1x1 + a2x
2
1)

...
εn = yn − ỹn = yn − (a0 + a1xn + a2x

2
n)

i.e.,
e = b− Ax

where

e =

ε1
...
εn

 , A =

1 x1 x2
1

...
...

...
1 xn x2

n

 ,x =

a0
a1
a2

 and b =

y1
...
yn

Theorem 3.7 applies, with here A ∈ Mn3 and b ∈ Rn

Recall that the points are (1,3), (2,5) and (3,4). Let us fit y = a0+ a1x+ a2x
2. The

matrix A takes the form

A =

1 x1 x2
1

...
...

...
1 xn x2

n

b takes the form

b =

y1
...
yn

3.5.2 Fitting the exponential

Things are a bit more complicated when trying to fit the data to an exponential function
y = k0 exp(k1x). Indeed, proceeding as we did before, we get the system

y1 = k0e
k1x1

...
yn = k0e

k1xn .

3.5. FITTING SOMETHING MORE COMPLICATED 33

The ek1xi are nonlinear terms, they cannot be put in a matrix. However, this can be
transformed into a form more amenable to the technique we already used. Indeed, take
the ln of both sides of the equation yi = k0 exp(k1xi):

ln(yi) = ln(k0e
k1xi)

= ln(k0) + ln(ek1xi)

= ln(k0) + k1xi.

If yi, k0 > 0, then their ln are defined and we are back essentially to the affine case,
with the system being

y = Ax+ b

where

A =

x1
...
xn

 ,x =
(
k1
)
,b =

(
ln(k0)

)
and y =

ln(y1)
...

ln(yn)

 .

34 CHAPTER 3. LEAST SQUARES PROBLEMS

Chapter 4

Matrix factorisations

Matrix factorisations, which are known under many different other names, are theo-
retical results and algorithms that allow to write matrices typically as the product of
several matrices with specified forms. The matrices in the factorisation usually have
known properties that make them much easier to perform computations with.

There are several different types of factorisations. Here, we study two: the QR
factorisation and the SVD. Both have many applications in their own right, but we also
return later to the problem of least squares. Then, we present another dimensionality
reduction technique, principal component analysis (PCA).

Before we start, though, we need to learn a little about orthogonal sets and orthog-
onal matrices.

4.1 Orthogonal matrices
Definition 4.1 (Orthogonal set of vectors). The set of vectors {v1, . . . ,vk} ∈ Rn is an
orthogonal set if

∀i, j = 1, . . . , k, i ̸= j =⇒ vi • vj = 0

Theorem 4.2. {v1, . . . ,vk} ∈ Rn with ∀i, vi ̸= 0, orthogonal set =⇒ {v1, . . . ,vk} ∈
Rn linearly independent.

Proof. Assume {v1, . . . ,vk} orthogonal set with vi ̸= 0 for all i = 1, . . . , k. Recall
{v1, . . . ,vk} is LI if

c1v1 + · · ·+ ckvk = 0 ⇐⇒ c1 = · · · = ck = 0

So assume c1, . . . , ck ∈ R are s.t. c1v1+ · · ·+ckvk = 0. Recall that ∀x ∈ Rk, 0k •x = 0.
So for some vi ∈ {v1, . . . ,vk}

0 = 0 • vi

= (c1v1 + · · ·+ ckvk) • vi

= c1v1 • vi + · · ·+ ckvk • vi (4.1)

35

36 CHAPTER 4. MATRIX FACTORISATIONS

As {v1, . . . ,vk} orthogonal, vj • vi = 0 when i ̸= j, (4.1) reduces to

civi • vi = 0 ⇐⇒ ci∥vi∥2 = 0

As vi ̸= 0 for all i, ∥vi∥ ≠ 0 and so ci = 0. This is true for all i, hence the result.

Definition 4.3 (Orthogonal basis). Let S be a basis of the subspace W ⊂ Rn composed
of an orthogonal set of vectors. We say S is an orthogonal basis of W

Example – Vectors of the standard basis of R3 For R3, we denote

i =

1
0
0

 , j =

0
1
0

 and k =

0
0
1

 .

For Rk, k > 3, we denote them ei. Clearly, {i, j}, {i,k}, {j,k} and {i, j,k} are orthog-
onal sets. The standard basis vectors are also ̸= 0, so the sets are linearly independent.
And

{i, j,k}

is an orthogonal basis of R3 since it spans R3 and is linearly independent. Then any
point (or vector) (c1, c2, c3) ∈ R3 can be written asc1

c2
c3

 = c1

1
0
0

+ c2

0
1
0

+ c3

0
0
1

 = c1i+ c2j+ c3k,

with this linear combination being unique.
There is an orthonormal version of these definitions and results.

Definition 4.4 (Orthonormal set). The set of vectors {v1, . . . ,vk} ∈ Rn is an or-
thonormal set if it is an orthogonal set and furthermore

∀i = 1, . . . , k, ∥vi∥ = 1.

Definition 4.5 (Orthonormal basis). A basis of the subspace W ⊂ Rn is an orthonor-
mal basis if the vectors composing it are an orthonormal set.

{v1, . . . ,vk} ∈ Rn is orthonormal if

vi • vj =

{
1 if i = j

0 otherwise.

Theorem 4.6. Let Q ∈ Mmn. The columns of Q form an orthonormal set if and only
if

QTQ = In

4.2. THE GRAM-SCHMIDT ORTHONORMALISATION PROCEDURE 37

Definition 4.7 (Orthogonal matrix). Q ∈ Mn is an orthogonal matrix if its columns
form an orthonormal set

So Q ∈ Mn orthogonal if QTQ = I, i.e., QT = Q−1

Theorem 4.8 (NSC for orthogonality). Q ∈ Mn orthogonal ⇐⇒ Q−1 = QT

Theorem 4.9 (Orthogonal matrices “encode" isometries). Let Q ∈ Mn. The following
are equivalent.

1. Q orthogonal.
2. ∀x ∈ Rn, ∥Qx∥ = ∥x∥.
3. ∀x,y ∈ Rn, Qx •Qy = x • y.

Theorem 4.10. Let Q ∈ Mn be orthogonal. Then
1. The rows of Q form an orthonormal set.
2. Q−1 orthogonal.
3. detQ = ±1.
4. ∀λ ∈ σ(Q), |λ| = 1.
5. If Q2 ∈ Mn also orthogonal, then QQ2 orthogonal.

Proof. (Proof of 4 in Theorem 4.10) All statements in Theorem 4.10 are easy, but let’s
focus on 4

Let λ be an eigenvalue of Q ∈ Mn orthogonal, i.e., ∃Rn ∋ x ̸= 0 s.t.

Qx = λx

Take the norm on both sides
∥Qx∥ = ∥λx∥

From 2 in Theorem 4.9, ∥Qx∥ = ∥x∥ and from the properties of norms, ∥λx∥ = |λ| ∥x∥,
so we have

∥Qx∥ = ∥λx∥ ⇐⇒ ∥x∥ = |λ| ∥x∥ ⇐⇒ 1 = |λ|

(we can divide by ∥x∥ since x ̸= 0 as an eigenvector)

4.2 The Gram-Schmidt orthonormalisation procedure

We could spend a long time on these interesting notions, but we need to get back to
the QR decomposition. What this aims to do is to construct an orthogonal basis for
a subspace W ⊂ Rn. To do this, we use the Gram-Schmidt orthogonalisation process,
which turns a basis of W into an orthogonal basis of W .

38 CHAPTER 4. MATRIX FACTORISATIONS

4.2.1 Projections onto subspaces

Definition 4.11 (Orthogonal projection onto a subspace). W ⊂ Rn a subspace and
{u1, . . . ,uk} an orthogonal basis of W . ∀v ∈ Rn, the orthogonal projection of v
onto W is

projW (v) =
u1 • v
∥u1∥2

u1 + · · ·+ uk • v
∥uk∥2

uk

Definition 4.12 (Component orthogonal to a subspace). W ⊂ Rn a subspace and
{u1, . . . ,uk} an orthogonal basis of W . ∀v ∈ Rn, the component of v orthogonal to
W is

perpW (v) = v − projW (v)

4.2.2 The Gram-Schmidt process

Theorem 4.13. W ⊂ Rn a subset and {x1, . . . ,xk} a basis of W . Let

v1 = x1

v2 = x2 −
v1 • x2

∥v1∥2
v1

v3 = x3 −
v1 • x3

∥v1∥2
v1 −

v2 • x3

∥v2∥2
v2

...

vk = xk −
v1 • xk

∥v1∥2
v1 − · · · − vk−1 • xk

∥vk−1∥2
vk−1

and
W1 = span(x1),W2 = span(x1,x2), . . . ,Wk = span(x1, . . . ,xk)

Then ∀i = 1, . . . , k, {v1, . . . ,vi} orthogonal basis for Wi

4.3 The QR factorisation
Theorem 4.14. Let A ∈ Mmn, with A having linearly independent. Then A can be
factored as

A = QR, (4.2)

where Q ∈ Mmn has orthonormal columns and R ∈ Mn is a nonsingular upper trian-
gular matrix.

4.3.1 Back to least squares

So what was the point of all that..?

4.4. THE SINGULAR VALUES DECOMPOSITION (SVD) 39

Theorem 4.15 (Least squares with QR factorisation). A ∈ Mmn with LI columns,
b ∈ Rm. If A = QR is a QR factorisation of A, then the unique least squares solution
x̃ of Ax = b is

x̃ = R−1QTb

Proof of Theorem 4.15 A has LI columns so
• least squares Ax = b has unique solution x̃ = (ATA)−1ATb
• by Theorem 4.14, A can be written as A = QR with Q ∈ Mmn with orthonormal

columns and R ∈ Mn nonsingular and upper triangular
So

ATAx̃ = ATb =⇒ (QR)TQRx̃ = (QR)Tb

=⇒ RTQTQRx̃ = RTQTb

=⇒ RT InRx̃ = RTQTb

=⇒ RTRx̃ = RTQTb

=⇒ (RT)−1Rx̃ = (RT)−1RTQTb

=⇒ Rx̃ = QTb

=⇒ x̃ = R−1QTb

4.4 The singular values decomposition (SVD)

The singular value decomposition, known mostly by its acronym SVD, is another type
of factorisation.

Definition 4.16 (Singular value). Let A ∈ Mmn(R). The singular values of A are
the real numbers

σ1 ≥ σ2 ≥ · · ·σn ≥ 0

that are the square roots of the eigenvalues of ATA.

Recall that ∀A ∈ Mmn, the matrix ATA is symmetric (see Theorem A.31). Since A
is real, there furthermore holds that ATA has all its eigenvalues real and nonnegative
(by Theorem A.33). (Note that the proofs of these results are important, so refer to
Section A.6.1 for details.) As a consequence, this definition is valid (it would not were
some of the eigenvalues complex).

Theorem 4.17 (Singular value decomposition). A ∈ Mmn with singular values σ1 ≥
· · · ≥ σr > 0 and σr+1 = · · · = σn = 0. Then there exists U ∈ Mm orthogonal, V ∈ Mn

orthogonal and a block matrix Σ ∈ Mmn taking the form

Σ =

(
D 0r,n−r

0m−r,r 0m−r,n−r

)
,

40 CHAPTER 4. MATRIX FACTORISATIONS

where
D = diag(σ1, . . . , σr) ∈ Mr

such that
A = UΣV T .

Note that by construction, U and V T are rotation or reflection matrices, while Σ is
a scaling matrix.

Definition 4.18. We call a factorisation as in Theorem 4.17 the singular value
decomposition of A. The columns of U and V are, respectively, the left and right
singular vectors of A.

The following result tells us how we can reconstruct the original matrix from its
SVD. This is useful in the image compression example of Section 4.5.

Theorem 4.19 (Outer product form of the SVD). A ∈ Mmn with singular values
σ1 ≥ · · · ≥ σr > 0 and σr+1 = · · · = σn = 0, u1, . . . ,ur and v1, . . . ,vr, respectively, left
and right singular vectors of A corresponding to these singular values. Then

A = σ1u1v
T
1 + · · ·+ σrurv

T
r .

4.4.1 Computing the SVD (case of ̸= eigenvalues)

To compute the SVD, we use the following result

Theorem 4.20. Let A ∈ Mn symmetric, (λ1,u1) and (λ2,u2) be eigenpairs, assuming
that λ1 ̸= λ2. Then u1 • u2 = 0

Proof. Let A ∈ Mn be symmetric, (λ1,u1) and (λ2,u2) be eigenpairs of A with λ1 ̸= λ2.
Then we have

λ1(v1 • v2) = (λ1v1) • v2

= Av1 • v2

= (Av1)
Tv2

= vT
1 A

Tv2

= vT
1 (Av2)[A symmetric so AT = A]

= vT
1 (λ2v2)

= λ2(v
T
1 v2)

= λ2(v1 • v2).

It follows that (λ1 − λ2)(v1 • v2) = 0. However, since λ1 ̸= λ2, this means that
v1 • v2 = 0.

4.4. THE SINGULAR VALUES DECOMPOSITION (SVD) 41

4.4.2 Computing the SVD (case of ̸= eigenvalues)

If all eigenvalues of ATA are distinct, we can use Theorem 4.20
1. Compute ATA ∈ Mn

2. Compute eigenvalues λ1, . . . , λn of ATA; order them as λ1 > · · · > λn ≥ 0 (> not
≥ since ̸=)

3. Compute singular values σ1 =
√
λ1, . . . , σn =

√
λn

4. Diagonal matrix D in Σ is either in Mn (if σn > 0) or in Mn−1 (if σn = 0)
5. Since eigenvalues are distinct, Theorem 4.20 =⇒ eigenvectors are orthogonal

set. Compute these eigenvectors in the same order as the eigenvalues
6. Normalise them and use them to make the matrix V , i.e., V = [v1 · · ·vn]
7. To find the ui, compute, for i = 1, . . . , r,

ui =
1

σi

Avi

and ensure that ∥ui∥ = 1

4.4.3 Computing the SVD (case where some eigenvalues are =)

1. Compute ATA ∈ Mn

2. Compute eigenvalues λ1, . . . , λn of ATA; order them as λ1 ≥ · · · ≥ λn ≥ 0
3. Compute singular values σ1 =

√
λ1, . . . , σn =

√
λn, with r ≤ n the index of the

last positive singular value
4. For eigenvalues that are distinct, proceed as before
5. For eigenvalues with multiplicity > 1, we need to ensure that the resulting eigen-

vectors are LI and orthogonal
Dealing with eigenvalues with multiplicity > 1 When an eigenvalue has (algebraic)

multiplicity > 1, e.g., characteristic polynomial contains a factor like (λ − 2)2, things
can become a little bit more complicated

The proper way to deal with this involves the so-called Jordan Normal Form (another
matrix decomposition)

In short: not all square matrices are diagonalisable, but all square matrices admit
a JNF

Sometimes, we can find several LI eigenvectors associated to the same eigenvalue.
Check this. If not, need to use the following

Definition 4.21 (Generalised eigenvectors). x ̸= 0 generalized eigenvector of rank
m of A ∈ Mn corresponding to eigenvalue λ if

(A− λI)mx = 0

but
(A− λI)m−1x ̸= 0

42 CHAPTER 4. MATRIX FACTORISATIONS

Procedure for generalised eigenvectors A ∈ Mn and assume λ eigenvalue with alge-
braic multiplicity k

Find v1, “classic" eigenvector, i.e., v1 ̸= 0 s.t. (A− λI)v1 = 0
Find generalised eigenvector v2 of rank 2 by solving for v2 ̸= 0,

(A− λI)v2 = v1

. . .
Find generalised eigenvector vk of rank k by solving for vk ̸= 0,

(A− λI)vk = vk−1

Then {v1, . . . ,vk} LI
Back to the normal procedure With the LI eigenvectors {v1, . . . ,vk} corresponding

to λ
Apply Gram-Schmidt to get orthogonal set
For all eigenvalues with multiplicity > 1, check that you either have LI eigenvectors

or do what we just did
When you are done, be back on your merry way to step 6 in the case where eigen-

values are all ̸=
I am caricaturing a little here: there can be cases that do not work exactly like this,

but this is general enough..

4.5 Compressing images

This example is adapted from ... To summarise, we consider an image that, for simplic-
ity, we assume is in shades of grey. Such an image can be stored in a matrix A ∈ Mmn

in which, typically, a value of 0 means the pixel is black and a value of 1 means it is
white, with grey scale covering all the range in between. Take the SVD of A. Then the
small singular values carry information about the regions with little variation and can
perhaps be omitted, whereas the large singular values carry information about more
“dynamic” regions of the image. To see this, we use the outer product form of the SVD
given by Theorem 4.19 to reconstruct an image from its SVD.

Namely, if we suppose A ∈ Mmn has r nonzero singular values, then for k ≤ r, we
let

Ak = σ1u1v
T
1 + · · ·+ σkukv

T
k . (4.3)

For k = r, we have the usual outer product form given in Theorem 4.19 and we fully
recuperate A. Using a partial sum (k < r) gives some (but not all) information and
the current example illustrates this.

We need two libraries to deal with the image, bmp and pixmap, which I assume
here are installed and loaded. Let us read in the image using read.bmp (from the bmp
library) and transform it to grey scale using pixmapGrey (from the pixmap library).

4.5. COMPRESSING IMAGES 43

> orig_image = read.bmp("FIGS/Julien-and-friend.bmp")
> orig_image = pixmapGrey(orig_image)

As usual in R, the plot function is very versatile and adapts to this new type of object,
so plot(my_image) produces

For context, I “met” this friend in the Natural History Museum of Vienna (the Naturhis-
torisches Museum Wien). Very nice museum to visit if you are ever in the area. (At
the same time, you had better be in the area for a while as there is no shortage of very
nice museums to visit in Vienna.) Let us show some information about the image.

> orig_image

Pixmap image
Type : pixmapGrey
Size : 1000x890
Resolution : 1x1
Bounding box : 0 0 890 1000

The pixelmap (the matrix of greyscale values) is stored in my_image@grey, so we set

> M = orig_image@grey

From now on, we can forget about the image itself and focus on the matrix M .

https://www.nhm-wien.ac.at/en
https://www.nhm-wien.ac.at/en

44 CHAPTER 4. MATRIX FACTORISATIONS

4.5.1 Doing things “by hand”

4.5.2 Doing things using proper functions

R has, as can be expected from a language originating in statistics, a native function
to perform an SVD, which is, very surprisingly, called svd. We use this function and
create a function to perform an image compression.

> compress_image = function(im, n) {
+ M = svd(im@grey)
+ if (n > length(M$d)) {
+ n = length(im$d)
+ }
+ d_tmp = M$d[1:n]
+ u_tmp = M$u[,1:n]
+ v_tmp = M$v[,1:n]
+ out = list()
+ out$img = mat.or.vec(nr = dim(M$u)[1], nc = dim(M$v)[1])
+ for (i in 1:n) {
+ out$img = out$img + d_tmp[i] * u_tmp[,i] %*% t(v_tmp[,i])
+ }
+ if (min(min(out$img)) < 0) {
+ out$img = out$img - min(min(out$img))
+ }
+ out$img = out$img / max(max(out$img))
+ out$nb_pixels_original = dim(im@grey)[1] * dim(im@grey)[2]
+ out$nb_pixels_compressed =
+ length(d_tmp) + dim(u_tmp)[1]*dim(u_tmp)[2] +
+ dim(v_tmp)[1]*dim(v_tmp)[2]
+ out$pct_of_original =
+ out$nb_pixels_compressed / out$nb_pixels_original * 100
+ return(out)
+ }

Let me explain what this function does. The arguments to the function are the
image to process im and the number n of singular values to use in the compression.
The image im is assumed to already be in the form of a greyscale pixelmap. We first
idiot-proof the code: if the number of SVD to use is larger than the number possible,
we set n to that maximum value.

Let us use the function with 10 singular values. Note that we need to copy the
image and then substitute the result of the function to the pixelmap of the copied
image. Indeed, the returned matrix cannot simply be displayed as an image.

> compressed_image = orig_image

4.5. COMPRESSING IMAGES 45

> result_tmp = compress_image(orig_image, 10)
> compressed_image@grey = result_tmp$img

If you did not know the original image, you might find it hard to recognise much of
anything, but knowing it, you can probably recognise many features. And this achieved
by keeping 10 singular values and their corresponding singular vectors. The function
compress_image returns this information as $pct_of_original.

46 CHAPTER 4. MATRIX FACTORISATIONS

Chapter 5

Principal component analysis (PCA)

One of the reasons the SVD is used is for dimensionality reduction, as we have seen for
instance in the image compression example. Now let us consider another dimensionality
reduction technique, the so-called principal components analysis or PCA for short. PCA
is often used as a blackbox technique, here we take a look at the mathematics behind
it. PCA is another linear algebraic technique, that helps reduce a complex dataset to a
lower dimensional one. It is a non-parametric method that does not assume anything
about data distribution (from the statistical point of view).

5.1 Brief “review” of some probability concepts
A proper treatment of probability requires to use measure theory and is not the object
of this course. Here, we present just what is needed to understand the content of this
chapter. For instance, a random variable X is a measurable function X : Ω → E,
where Ω is a set of outcomes (sample space) and E is a measurable space and we define
the probability as follows:

P(X ∈ S ⊆ E) = P(ω ∈ Ω|X(ω) ∈ S).

However, let us not worry about the detailed specifics here.
Distribution function of a r.v., F (x) = P(X ≤ x), describes the distribution of a

r.v.
R.v. can be discrete or continuous or .. other things.

Definition 5.1 (Variance). Let X be a random variable. The variance of X is given
by

Var X = E
[
(X − E(X))2

]
where E is the expected value

Definition 5.2 (Covariance). Let X, Y be jointly distributed random variables. The
covariance of X and Y is given by

cov(X, Y) = E [(X − E(X)) (Y − E(Y))]

47

48 CHAPTER 5. PRINCIPAL COMPONENT ANALYSIS (PCA)

Note that cov(X,X) = E
[
(X − E(X))2

]
= Var X

In practice: “true law” versus “observation” In statistics: we reason on the true law
of distributions, but we usually have only access to a sample

We then use estimators to .. estimate the value of a parameter, e.g., the mean,
variance and covariance

Definition 5.3 (Unbiased estimators of the mean and variance). Let x1, . . . , xn be data
points (the sample) and

x̄ =
1

n

n∑
i=1

xi

be the mean of the data. An unbiased estimator of the variance of the sample is

σ2 =
1

n− 1

n∑
i=1

(xi − x̄)2

Definition 5.4 (Unbiased estimator of the covariance). Let (x1, y1), . . . , (xn, yn) be data
points,

x̄ =
1

n

n∑
i=1

xi and ȳ =
1

n

n∑
i=1

yi

be the means of the data. An estimator of the covariance of the sample is

cov(x, y) =
1

n

n∑
i=1

(xi − x̄)(yi − ȳ)

What does covariance do? Variance explains how data disperses around the mean,
in a 1-D case

Covariance measures the relationship between two dimensions. E.g., height and
weight

More than the exact value, the sign is important:
• cov(X, Y) > 0: both dimensions change in the same “direction”; e.g., larger height

usually means higher weight
• cov(X, Y) < 0: both dimensions change in reverse directions; e.g., time spent on

social media and performance in this class
• cov(X, Y) = 0: the dimensions are independent from one another; e.g., sex/gender

and “intelligence”
The covariance matrix Typically, we consider more than 2 variables..

Definition 5.5. Suppose p random variables X1, . . . , Xp. Then the covariance matrix
is the symmetric matrix

cov(X1, X1) cov(X1, X2) · · · cov(X1, Xp)
cov(X2, X1) cov(X2, X2) · · · cov(X2, Xp)

...
...

...
cov(Xp, X1) cov(Xp, X2) · · · cov(Xp, Xp)

5.1. BRIEF “REVIEW” OF SOME PROBABILITY CONCEPTS 49

i.e., using the properties of covariance,
Var X1 cov(X1, X2) · · · cov(X1, Xp)

cov(X1, X2) Var X2 · · · cov(X2, Xp)
...

...
...

cov(X1, Xp) cov(X2, Xp) · · · Var Xp

We want to find what carries the most information
For this, we are going to project the information in a new basis in which the first

“dimension” will carry most variance, the second dimension will carry a little less, etc.
In order to do so, we need to learn how to change bases
Change of basis

Definition 5.6 (Change of basis matrix). B = {u1, . . . ,un} and C = {v1, . . . ,vn} bases
of vector space V

The change of basis matrix PC←B ∈ Mn,

PC←B = [[u1]C · · · [un]C]

has columns the coordinate vectors [u1]C, . . . , [un]C of the vectors in B with respect to C

Theorem 5.7. B = {u1, . . . ,un} and C = {v1, . . . ,vn} bases of vector space V and
PC←B a change of basis matrix from B to C

1. ∀x ∈ V , PC←B[x]B = [x]C
2. PC←B s.t. ∀x ∈ V , PC←B[x]B = [x]C is unique
3. PC←B invertible and P−1C←B = PB←C

Row-reduction method for changing bases

Theorem 5.8. B = {u1, . . . ,un} and C = {v1, . . . ,vn} bases of vector space V . Let E
be any basis for V ,

B = [[u1]E , . . . , [un]E] and C = [[v1]E , . . . , [vn]E]

and let [C|B] be the augmented matrix constructed using C and B. Then

RREF ([C|B]) = [I|PC←B]

If working in Rn, this is quite useful with E the standard basis of Rn (it does not
matter if B = E)

So the question now becomes

How do we find what new basis to look at our data in?

50 CHAPTER 5. PRINCIPAL COMPONENT ANALYSIS (PCA)

(Changing the basis does not change the data, just the view you have of it)
(Think of what happens when you do a headstand.. your up becomes down, your

right and left switch, but the world does not change, just your view of it)
(Changes of bases are fundamental operations in Science)
Setting things up I will use notation (mostly) as in Joliffe’s Principal Component

Analysis (PDF of older version available for free from UofM Libraries)
x = (x1, . . . , xp) vector of p random variables
We seek a linear function mαT

1 x with maximum variance, where mα1 = (α11, . . . , α1p),
i.e.,

mαT
1 x =

p∑
j=1

α1jxj

Then we seek a linear function mαT
2 x with maximum variance, uncorrelated to

mαT
1 x

And we continue...
At kth stage, we find a linear function mαT

k x with maximum variance, uncorrelated
to mαT

1 x, . . . ,mαT
k−1x

mαT
i x is the ith principal component (PC)

Case of known covariance matrix Suppose we know Σ, covariance matrix of x (i.e.,
typically: we know x)

Then the kth PC is
zk = mαT

k x

where mαk is an eigenvector of Σ corresponding to the kth largest eigenvalue λk

If, additionally, ∥mαk∥ = mαT
kmα = 1, then λk = Var zk

Why is that? Let us start with
mαT

1 x

We want maximum variance, where mα1 = (α11, . . . , α1p), i.e.,

mαT
1 x =

p∑
j=1

α1jxj

with the constraint that ∥mα1∥ = 1

We have
Var mαT

1 x = mαT
1Σmα1

Objective We want to maximise Var mαT
1 x, i.e.,

mαT
1Σmα1

under the constraint that ∥mα1∥ = 1

=⇒ use Lagrange multipliers

5.1. BRIEF “REVIEW” OF SOME PROBABILITY CONCEPTS 51

Maximisation using Lagrange multipliers

subtitle(A.k.a. super-brief intro to multivariable calculus) We want the max of f(x1, . . . , xn)
under the constraint g(x1, . . . , xn) = k

1. Solve

∇f(x1, . . . , xn) = λ∇g(x1, . . . , xn)

g(x1, . . . , xn) = k

where ∇ = (∂
∂x1

, . . . , ∂
∂xn

) is the gradient operator
2. Plug all solutions into f(x1, . . . , xn) and find maximum values (provided values

exist and ∇g ̸= 0 there)
λ is the Lagrange multiplier
The gradient subtitle(Continuing our super-brief intro to multivariable calculus)

f : Rn → R function of several variables, ∇ =
(

∂
∂x1

, . . . , ∂
∂xn

)
the gradient operator

Then

∇f =

(
∂

∂x1

f, . . . ,
∂

∂xn

f

)
So ∇f is a vector-valued function, ∇f : Rn → Rn; also written as

∇f = fx1(x1, . . . , xn)e1 + · · · fxn(x1, . . . , xn)en

where fxi
is the partial derivative of f with respect to xi and {e1, . . . , en} is the standard

basis of Rn

mαT
1Σmα1 and ∥mα1∥2 = mαT

1mα1 are functions of mα1 = (α11, . . . , α1p)

In the notation of the previous slide, we want the max of

f(α11, . . . , α1p) := mαT
1Σmα1

under the constraint that

g(α11, . . . , α1p) := mαT
1mα1 = 1

and with gradient operator

∇ =

(
∂

∂α11

, . . . ,
∂

∂α1p

)

52 CHAPTER 5. PRINCIPAL COMPONENT ANALYSIS (PCA)

Effect of ∇ on g

g is easiest to see:

∇g(α11, . . . , α1p) =

(
∂

∂α11

, . . . ,
∂

∂α1p

)
(α11, . . . , α1p)

α11
...

α1p

=

(
∂

∂α11

, . . . ,
∂

∂α1p

)(
α2
11 + · · ·+ α2

1p

)
= (2α11, . . . , 2α1p)

= 2mα1

(And that’s a general result: ∇∥x∥22 = 2x with ∥ · ∥2 the Euclidean norm)

Effect of ∇ on f

Expand (write Σ = [sij] and do not exploit symmetry)

mαT
1Σmα1 = (α11, . . . , α1p)

s11 s12 · · · s1p
s21 s22 · · · s2p
...

...
...

sp1 sp2 spp

α11

α12
...

α1p

= (α11, . . . , α1p)

s11α11 + s12α12 + · · ·+ s1pα1p

s21α11 + s22α12 + · · ·+ s2pα1p
...

sp1α11 + sp2α12 + · · ·+ sppα1p

= (s11α11 + s12α12 + · · ·+ s1pα1p)α11

+ (s21α11 + s22α12 + · · ·+ s2pα1p)α12

...
+ (sp1α11 + sp2α12 + · · ·+ sppα1p)α1p

We have

mαT
1Σmα1 = (s11α11 + s12α12 + · · ·+ s1pα1p)α11

+ (s21α11 + s22α12 + · · ·+ s2pα1p)α12

...
+ (sp1α11 + sp2α12 + · · ·+ sppα1p)α1p

5.1. BRIEF “REVIEW” OF SOME PROBABILITY CONCEPTS 53

So

∂

∂α11

mαT
1Σmα1 = (s11α11 + s12α12 + · · ·+ s1pα1p) + s11α11

+ s21α12

...
+ sp1α1p

= s11α11 + s12α12 + · · ·+ s1pα1p

+ s11α11 + s21α12 + · · ·+ sp1α1p

= 2(s11α11 + s12α12 + · · ·+ s1pα1p)

(last equality stems from symmetry of Σ)
In general, for i = 1, . . . , p,

∂

∂α1i

mαT
1Σmα1 = si1α11 + si2α12 + · · ·+ sipα1p

+ si1α11 + s2iα12 + · · ·+ spiα1p

= 2(si1α11 + si2α12 + · · ·+ sipα1p)

(because of symmetry of Σ)
As a consequence,

∇mαT
1Σmα1 = 2Σmα1

So solving
∇f(x1, . . . , xn) = λ∇g(x1, . . . , xn)

means solving
2Σmα1 = λ2mα1

i.e.,
Σmα1 = λmα1

=⇒ (λ,mα1) eigenpair of Σ, with mα1 having unit length

Picking the right eigenvalue

(λ,mα1) eigenpair of Σ, with mα1 having unit length
But which λ to choose?
Recall that we want Var mαT

1 x = mαT
1Σmα1 maximal

We have

Var mαT
1 x = mαT

1Σmα1 = mαT
1 (Σmα1) = mαT

1 (λmα1) = λ(mαT
1mα1) = λ

=⇒ we pick λ = λ1, the largest eigenvalue (covariance matrix symmetric so
eigenvalues real)

54 CHAPTER 5. PRINCIPAL COMPONENT ANALYSIS (PCA)

What we have this far.. The first principal component is mαT
1 x and has variance λ1,

where λ1 the largest eigenvalue of Σ and mα1 an associated eigenvector with ∥mα1∥ = 1
We want the second principal component to be uncorrelated with mαT

1 x and to have
maximum variance Var mαT

2 x = mαT
2Σmα2, under the constraint that ∥mα2∥ = 1

mαT
2 x uncorrelated to mαT

1 x if cov(mαT
1 x,mαT

2 x) = 0
We have

cov(mαT
1 x,mαT

2 x) = mαT
1Σmα2

= mαT
2Σ

Tmα1

= mαT
2Σmα1 [Σ symmetric]

= mαT
2 (λ1mα1)

= λmαT
2mα1

So mαT
2 x uncorrelated to mαT

1 x if mα1 ⊥ mα2

This is beginning to sound a lot like Gram-Schmidt, no?
In short Take whatever covariance matrix is available to you (known Σ or sample

SX) – assume sample from now on for simplicity
For i = 1, . . . , p, the ith principal component is

zi = vT
i x

where vi eigenvector of SX associated to the ith largest eigenvalue λi

If vi is normalised, then λi = Var zk
Covariance matrix Σ the covariance matrix of the random variable, SX the sample

covariance matrix
X ∈ Mmp the data, then the (sample) covariance matrix SX takes the form

SX =
1

n− 1
XTX

where the data is centred!
Sometimes you will see SX = 1/(n− 1)XXT . This is for matrices with observations

in columns and variables in rows. Just remember that you want the covariance matrix
to have size the number of variables, not observations, this will give you the order in
which to take the product

5.1.1 Hockey players (eh!)

Let us consider a very Canadian example, although it involves players from all over
the world. The height and weight of hockey players who participated in IIHF world
championship games during the period 2001-2016 can be found online (here), as part
of a study.

We download the data

https://dx.doi.org/10.6084/m9.figshare.3394735.v2

5.1. BRIEF “REVIEW” OF SOME PROBABILITY CONCEPTS 55

> #data = read.csv("https://figshare.com/ndownloader/files/5303173")
> data = read.csv("DATA/hockey_players.csv")

and take a quick peek (using kable and head), focusing on the first few columns.

year country no name position side height weight birth

2001 RUS 10 tverdovsky oleg D L 185 84 1976-05-18
2001 RUS 2 vichnevsky vitali D L 188 86 1980-03-18
2001 RUS 26 petrochinin evgeni D L 182 95 1976-02-07
2001 RUS 28 zhdan alexander D R 178 85 1971-08-28
2001 RUS 32 orekhovsky oleg D R 175 88 1977-11-03

2001 RUS 4 zhukov sergei D L 193 93 1975-11-23

There is also information about players’ club, age, age cohort and BMI, but we will
not be using any of these for sure. The table contains 6292 rows. However, the author
of the study was interested in the evolution of weights, so it is likely that the same
person will be in the dataset several times. Let us check if this is indeed the case. The
command any returns true if any of the entries in the vector it is passed as an argument
is true and duplicated is true if an entry is present more than once in its argument.

> any(duplicated(data$name))

[1] TRUE

So, indeed, there are players present several times. We are not interested in the evolution
of weights, so let us simplify things: if we have more than one record for someone, let
us take their height and weight as the average of the heights and weights recorded
for them. We keep only three characteristics for a player: their country, height and
weight. (We do keep their name as well.) It could be worth checking if there is any
case of a player playing for two different countries, which would require to decide on a
mechanism to attribute a country to them. However, in this illustrative example, we
choose to ignore this possibility.

> data_simplified = data.frame(name = unique(data$name))
> c = c()
> w = c()
> h = c()
> for (n in data_simplified$name) {
+ tmp = data[which(data$name == n),]
+ c = c(c, tmp$country[1])
+ h = c(h, mean(tmp$height))
+ w = c(w, mean(tmp$weight))
+ }
> data_simplified$country = c

56 CHAPTER 5. PRINCIPAL COMPONENT ANALYSIS (PCA)

> data_simplified$weight = w
> data_simplified$height = h
> data = data_simplified

The resulting table looks like this

name country weight height

tverdovsky oleg RUS 84.0 185.0
vichnevsky vitali RUS 86.0 188.0
petrochinin evgeni RUS 95.0 182.0
zhdan alexander RUS 85.5 178.5
orekhovsky oleg RUS 88.0 175.0

zhukov sergei RUS 92.5 193.0

Let us plot the height and weight data as it stands after this preprocessing step.

170 180 190 200

70
80

90
10

0
11

0

Height (cm)

W
ei

gh
t (

kg
)

The mean height of players in the data is 183.9 centimetres, their mean weight is 87.72
kilograms. Let us centre the data:

> data$weight.c = data$weight-mean(data$weight)
> data$height.c = data$height-mean(data$height)

5.1. BRIEF “REVIEW” OF SOME PROBABILITY CONCEPTS 57

−20 −10 0 10 20

−
20

−
10

0
10

20
30

Height (cm)

W
ei

gh
t (

kg
)

If you do not pay attention to the axes, you can see no difference between the two
figures. Although this is a change of basis, this is a rather simple one. Let us now
compute the covariance of the data.

> cov(data$height, data$weight)

[1] 26.63506

(Note that using the centred data would have given exactly the same result.) So there
is a positive linear relationship between the two variables (duh!). Let us now compute
the sample covariance matrix, using the centred data.

> X = as.matrix(data[,c("height.c", "weight.c")])
> S = 1/(dim(X)[1]-1)*t(X) %*% X

The result is a 2× 2 matrix,

> S

height.c weight.c
height.c 29.66176 26.63506
weight.c 26.63506 47.81112

One important remark here: the sample covariance matrix, when computed using this
method, requires the data to be centred. If you do not centre the data prior to com-
puting that matrix, this is what you find.

58 CHAPTER 5. PRINCIPAL COMPONENT ANALYSIS (PCA)

> X2 = as.matrix(data[,c("height", "weight")])
> S2 = 1/(dim(X)[1]-1)*t(X2) %*% X2
> S2

height weight
height 33844.33 16158.902
weight 16158.90 7744.176

Let us now compute the principal components. For this, we need eigenvalues and
eigenvectors.

> ev = eigen(S)
> ev

eigen() decomposition
$values
[1] 66.87496 10.59793

$vectors
[,1] [,2]

[1,] 0.5820222 -0.8131729
[2,] 0.8131729 0.5820222

For matrices with only real eigenvalues, eigen returns eigenvalues sorted in decreasing
order. If we needed to ensure that eigenvalues (and their corresponding eigenvectors)
are ordered as we want them to be, we would for instance proceed as follows.

> idx_order = order(ev$values, decreasing = TRUE)
> ev$values = ev$values[idx_order]
> ev$vectors = ev$vectors[, idx_order]

Let us normalise the first eigenvector. This way, we now that the variance of the first
principal component is the corresponding eigenvalue.

> ev$vectors[,1] = ev$vectors[,1] / sqrt(sum(ev$vectors[,1]^2))

Let us plot this first eigenvector (well, the line carrying this first eigenvector). To
use the function ‘abline‘, we need to give the coefficients of the line in the form of
(intercept,slope). Intercept is easy, as the line goes through the origin (by construction
and because we have centred the data). The slope is also quite simple..

5.1. BRIEF “REVIEW” OF SOME PROBABILITY CONCEPTS 59

−20 −10 0 10 20

−
20

−
10

0
10

20
30

Height (cm)

W
ei

gh
t (

kg
)

I will let you in a little "secret": least squares are used so often in Stats that ‘R‘ has a
very simple function that does that very well. The function is ‘lm‘ (linear models) and
you can use it as follows.

> z <- lm(weight.c ~ 0 + height.c, data = data)

This essentially says “fit a linear model with weight.c function of height.c and store
the result in z”. You can then use this result in a variety of contexts. First of all, this
is what the result looks like (in green), in comparison to the one we found.

60 CHAPTER 5. PRINCIPAL COMPONENT ANALYSIS (PCA)

−20 −10 0 10 20

−
20

−
10

0
10

20
30

Height (cm)

W
ei

gh
t (

kg
)

Why, you may ask, are the two results so different?
Let us rotate the data so that the red line becomes the red axis. To do that, we use

a rotation matrix,

Rθ =

(
cos θ − sin θ
sin θ cos θ

)
.

To find the angle θ, recall that tan θ is equal to opposite length over adjacent length,
i.e.,

tan θ =
ev$vectors[2, 1]

ev$vectors[1, 1]

So we just use the arctan of this. (Note that angles are in radians.)

> theta = atan(ev$vectors[2,1]/ev$vectors[1,1])
> R_theta = matrix(c(cos(theta), -sin(theta),
+ sin(theta), cos(theta)),
+ nr = 2, byrow = TRUE)

And now we rotate the points. (In this case, we think of the points as vectors, of
course.)

> tmp_in = matrix(c(data$weight.c, data$height.c),
+ nc = 2)
> tmp_out = c()
> for (i in 1:dim(tmp_in)[1]) {
+ tmp_out = rbind(tmp_out,

5.1. BRIEF “REVIEW” OF SOME PROBABILITY CONCEPTS 61

+ t(R_theta %*% tmp_in[i,]))
+ }
> data$weight.c_r = tmp_out[,1]
> data$height.c_r = tmp_out[,2]

This change of basis has recast the data in a way where the first axis (the x-axis) is the
dimension along which there is the highest variance. To see this, we need to plot the
data with the same range as was used before.

−30 −20 −10 0 10 20 30

−
20

−
10

0
10

20
30

x−axis

y−
ax

is

It is of course possible to do the same thing with existing R functions.

> if (!require("pracma")) {
+ install.packages("pracma")
+ }
> GS = pracma::gramSchmidt(A = ev$vectors)

Now recall we saw a theorem that told us how to construct a new basis.

> A=matrix(c(GS$Q,1,0,0,1), nr = 2)
> pracma::rref(A)

[,1] [,2] [,3] [,4]
[1,] 1 0 0.5820222 0.8131729
[2,] 0 1 -0.8131729 0.5820222

> P = pracma::rref(A)[,c(3,4)]
> X.new = X %*% t(P)

62 CHAPTER 5. PRINCIPAL COMPONENT ANALYSIS (PCA)

Chapter 6

Graph theory ... theory

In this chapter, I present some elements of graph theory. Chapters that follow are
devoted to applications, but here I focus on the theory. I will nonetheless explain how
you can use R to perform some of the operations or characterise some of the structures
described in this chapter.

6.1 Introduction and preliminaries

6.1.1 Graphs versus networks

First, let me remark that it is likely that you know some of the material here under the
name of network theory. This is mostly a terminology difference:

• we say graphs in the mathematical world;
• most of the rest of the world says networks.

I will mostly say graphs as this is a mathematics course, but might oscillate. Beware:
this is a domain of mathematics in which the language is not consistent, even more so
because of the duality noted above. Make sure you read the definitions at the start of
whatever source you are using.

6.1.2 Graphs vs digraphs vs multigraphs vs multidigraphs vs ...

As noted, name-wise and notation-wise, this domain is a bit of a mess. We see the
precise definitions of the objects below later, but to clarify notation, let me highlight
notation choices here.

• The vertex set V is essentially the only constant in what follows.
• An undirected graph is denoted G = (V,E), where E are the edges.
• An undirected multigraph is denoted GM = (V,E). We will not be using these

much.
• A directed graph (or digraph) is denoted G = (V,A), where A are the arcs.
• A directed multigraph (or multidigraph) is denoted GM = (V,A).

63

64 CHAPTER 6. GRAPH THEORY ... THEORY

• Any of the above is called a graph and is denoted G = (V,X), when we seek
generality.

And just to confuse the whole thing more: we often say graph for unoriented graph.

6.1.3 The bridges of Königsberg

A “real life” problem formulated by Euler: is it possible to cross the seven bridges of
Königsberg in a continuous walk without recrossing any of them?

Mathematical problem Is it possible to find a trail containing all edges of
the graph?

6.1.4 Finding a cycle with all vertices

A salesperson must visit a couple of cities for their job. Is it possible for them to plan
a round trip using highways enabling him to visit each specified city exactly once?

• vertices correspond to cities
• two vertices are connected iff a highway connects the corresponding cities and

does not pass through any other city.

Mathematical problem Is it possible to find a cycle containing all graph
vertices?

6.1.5 How far is it to drive through n cities?

What is the minimal length of driving needed to drive through n cities?

6.2. BINARY RELATIONS 65

• vertices correspond to the cities
• all cities are connected; each edge has a value assigned to it

Mathematical problem What is the minimal spanning tree associated to the
graph?

6.2 Binary relations
Graphs are used to describe relations between elements (the vertices or nodes). Math-
ematically, relations can be encoded by binary relations, which we define here.
Definition 6.1. • A binary relation is an arbitrary association of elements of

one set with elements of another (maybe the same) set.
• A binary relation over the sets X and Y is a subset of the Cartesian product
X × Y = {(x, y)|x ∈ X, y ∈ Y }.

• (x, y) ∈ R is read “x is R−related to y” and is denoted xRy.
• If (x, y) ̸∈ R, we write not xRy.

Definition 6.2 (Properties of binary relations). A binary relation R over a set X is
• Reflexive if ∀x ∈ X, xRx.
• Irreflexive if there does not exist x ∈ X such that xRx.
• Symmetric if xRy ⇒ yRx.
• Asymmetric if xRy ⇒ not yRx.
• Antisymmetric if xRy and yRx ⇒ x = y.
• Transitive if xRy and yRz ⇒ xRz.
• Total (or complete) if ∀x, y ∈ X, xRy or yRx.

Definition 6.3 (Equivalence relation). A relation which is reflexive, symmetric and
transitive is called an equivalence relation.

An equivalence relation allows to partition the set of elements on which it is defined
into equivalence classes. In a given equivalence class, all elements are equivalent and
any element can be chosen to represent that equivalence class. If S is the set over
which the relation R is an equivalence relation, we denote S/R the quotient set.
Definition 6.4 (Partial order). A relation which is reflexive, antisymmetric and tran-
sitive is called a partial order.

66 CHAPTER 6. GRAPH THEORY ... THEORY

6.3 Undirected graphs

6.3.1 Undirected graph

Intuitively: a graph is a set of points, and a set of relations between the points. The
points are called the vertices of the graph and the relations are the edges of the graph.
We can also think of the relations as being one directional, in which case the relations
are the arcs of the digraph (a contraction of “directed graph“).

Definition 6.5 (Graph). An undirected graph is a pair G = (V,E) of sets such that
• V is a set of points: V = {v1, v2, v3, .., vp}
• E is a set of 2-element subsets of V : E = {{vi, vj}, {vi, vk}, . . . , {vn, vp}}, also

noted E = {vivj, vivk, . . . , vnvp}.

Definition 6.6 (Vertex). The elements of V are the vertices (or nodes, or points) of
the graph G. V is the vertex set of the graph G, also noted V (G).

Definition 6.7 (Edge). The elements of E are the edges (or lines) of the graph G. E
is the edge set of the graph G, also noted E(G).

In R, we will use mostly the package igraph, which has the advantage of also existing
in Python.

> if (!require(igraph)) {
+ install.package("igraph")
+ }

There are many different ways to construct graphs in igraph. There are also means
to construct graphs with specific properties. I do not detail all of them here. Here are
a few of the methods for creating “your own” graphs.

• graph_from_adjacency_matrix creates graphs from adjacency matrices; see Sec-
tion 6.6.1.

• graph_from_adj_list creates graphs from adjacency lists.
• graph_from_edgelist creates a graph from an edge list matrix.
• graph_from_incidence_matrix creates graphs from incidence matrices.
• graph_from_literal creates (small) graphs via a simple interface.

There are many other methods, typically with a name starting with the prefix graph_from,
see the list of igraph functions. Let us create a simple graph from an edge list. If we
have, say, a graph with 6 vertices labelled a through f , we could for instance create the
matrix

> M = matrix(c("a", "b",
+ "b", "c",
+ "b", "d",
+ "c", "d",

6.3. UNDIRECTED GRAPHS 67

+ "c", "f",
+ "e", "f",
+ "e", "a"),
+ nc = 2, byrow = TRUE)

We now use the function graph_from_edgelist to make the graph. Note that this
function assumes by default that the graph isoriented, i.e., a digraph, so to make an
undirected graph, we use the optional argument directed = FALSE.

> G = graph_from_edgelist(M, directed = FALSE)

You can get some basic information about the graph you just created by typing its
name.

> G

IGRAPH 7ebce05 UN-- 6 7 --
+ attr: name (v/c)
+ edges from 7ebce05 (vertex names):
[1] a--b b--c b--d c--d c--f f--e a--e

It is also easy to plot the graph, although by default, the result is not really impressive.

> plot(G)

a

b

c

d

f

e

6.3.2 Order and size of graph

Two fundamental properties of a graph are the number of vertices and of edges it has.
These numbers are called, respectively, the order and size of the graph.

Definition 6.8 (Order of a graph). The number of vertices in G is the order of G.
Using the notation |V (G)| for the cardinality of V (G),

|V (G)| = order of G.

68 CHAPTER 6. GRAPH THEORY ... THEORY

Definition 6.9 (Size of a graph). The number of edges in G is the size of G,

|E(G)| = size of G.

• A graph having order p and size q is called a (p, q)−graph.
• A graph is finite if |V (G)| < ∞.

These properties are obtained in igraph using

> gorder(G)

[1] 6

> gsize(G)

[1] 7

6.3.3 Relationships between vertices and edges, nature of the
edges

Definition 6.10 (Incident vertices and edges). Let G = (V,E) be an undirected graph.
• A vertex v is incident with an edge e if v ∈ e; then e is an edge at v.
• If e = uv ∈ E(G), then u and v are each incident with e.
• Two vertices incident with an edge are its ends.
• An edge e = uv is incident with both vertices u and v

Definition 6.11 (Adjacent). • Two vertices u and v are adjacent in a graph G if
uv ∈ E(G).

• If uv and uw are distinct edges (i.e. v ̸= w) of a graph G, then uv and uw are
adjacent edges.

Definition 6.12 (Multiple edge). Multiple edges are two or more edges connecting
the same two vertices within a multigraph.

Definition 6.13 (Loop). A loop is an edge with both the same ends; e.g. {u, u} is a
loop.

Definition 6.14 (Simple graph). A simple graph is a graph which contains no loops
or multiple edges.

Definition 6.15 (Multigraph). A multigraph is a graph which can contain multiple
edges or loops.

Several igraph functions allow to consider these aspects. From the documentation,
• any_loop decides whether the graph has any loop edges.
• which_loop decides whether the edges of the graph are loop edges.
• any_multiple decides whether the graph has any multiple edges.
• which_multiple decides whether the edges of the graph are multiple edges.
• count_multiple counts the multiplicity of each edge of a graph.

6.3. UNDIRECTED GRAPHS 69

Graph and binary relations A (simple) graph G can be defined in term of a vertex
set V and an irreflexive and symmetric binary relation over V . R is symmetric if (u, v) ∈
R ⇒ (v, u) ∈ R (or, in other words, uRv =⇒ vRu). Hence, {(u, v), (v, u)} ∈ E(G)
({(u, v), (v, u)} is an edge). The set of edges E(G) is the set of symmetric pairs in R.

6.3.4 Degree of a vertex

Definition 6.16 (Degree of a vertex). Let v be a vertex of G = (V,E).
• The number of edges of G incident with v is the degree of v in G.
• The number of edges of G at v is the degree of v in G.
• The degree of v in G is noted dG(v) or degG(v).

Theorem 6.17. Let G be a (p, q)−graph with vertices v1, . . . , vp, then

p∑
i=1

dG(vi) = 2q.

Definition 6.18 (Odd vertex). A vertex is an odd vertex is its degree is odd.

Definition 6.19 (Even vertex). A vertex is called even vertex is its degree is even.

Theorem 6.20. Every graph contains an even number of odd vertices.

igraph has many functions to consider degrees, as they are important to characterise
the properties of graphs. Some are detailed in Chapter 7, here we just give the base.
To obtain the degree of vertex e in the graph defined above,

> degree(G, "e")

e
2

(degree(G,c("a","e")) would return the degree of a and e), while

> degree(G)

a b c d f e
2 3 3 2 2 2

returns the degree of all vertices in G.

70 CHAPTER 6. GRAPH THEORY ... THEORY

6.3.5 Regular, complete, bipartite and other notable graphs

Some graphs are very useful in studying the mathematical properties of graphs or in
applications and have therefore been named. I list some of these below. Note that
igraph has many functions to generate such graphs as well, so most graphs below are
also illustrated using igraph. Typically, if a function exists to create a graph with
prescribed properties, a function also exists to check if an existing graph possesses that
property. I also indicate these functions.

Definition 6.21 (Regular graph). If all the vertices of G have the same degree k, then
the graph G is k−regular.

The command below generates a random regular undirected graph of order 5 where
each vertex has degree 2.

> U = sample_k_regular(no.of.nodes = 5, k = 2)

1

2

3

4

5

Note that it is “easy” to specify values of the order and degree for which no graph can
be found. In this case, you will get an error. There is no function to check if a graph
is regular, although this is very easily done using degree. For instance,

> length(unique(degree(G))) == 1

[1] FALSE

> length(unique(degree(U))) == 1

[1] TRUE

Definition 6.22 (Complete graph). A graph is complete if every two of its vertices are
adjacent.

6.3. UNDIRECTED GRAPHS 71

Definition 6.23 (n-clique). A simple, complete graph on n vertices is called an n-
clique and is often denoted Kn.

Note that a complete graph of order p is (p − 1)−regular. In igraph, complete
graphs are called full graphs, so the function to create them are as follows.

> U = make_full_graph(5)

1

2

3

4

5

Definition 6.24 (Bipartite graph). A graph G = (V,E) is bipartite if it is possible to
partition the vertex set V (G) into two subsets V1 and V2 so that every edge of G joins a
vertex of V1 with a vertex of V2 and no vertex joins another vertex of its own set, i.e., no
two vertices in the same set are adjacent. This graph may be written G = (X1, X2, U)

Definition 6.25 (Complete bipartite graph). A bipartite graph in which every two
vertices from the 2 different partitions are adjacent is called a complete bipartite
graph. A simple, complete bipartite graph with |X1| = p and |X2| = q is often denoted
Kp,q.

Bipartite graphs can be generated in igraph using several different commands.
If you know the specific connections, you can use make_bipartite_graph. Other-
wise, a random bipartite graph with specified number of vertices in the two sets is
defined using sample_bipartite, which we do here. Note that the argument p = 0.3
is the probability that an edge exists. Complete bipartite graphs are generated using
make_full_bipartite_graph.

> U1 = sample_bipartite(n1 = 5, n2 = 3, p = 0.3)
> U2 = make_full_bipartite_graph(n1 = 5, n2 = 3)

72 CHAPTER 6. GRAPH THEORY ... THEORY

1 2 3 45

6 7 8

1 2 3 4 5

6 7 8

Note that the plots above use an additional option for the vertices to appear as they
do. For instance, the graph on the right was obtained using plot(U2, layout =
layout_bipartite). You can also easily check if a graph is bipartite using the com-
mand is_bipartite, so for instance

> is_bipartite(U)

[1] FALSE

> is_bipartite(U1)

[1] TRUE

Definition 6.26 (Cycle Cn). For n ≥ 3, the cycle, denoted Cn, is a connected graph
of order n that is a cycle on n vertices.

> U = make_ring(n = 8)

1

2

3

4

5

6

7

8

6.3. UNDIRECTED GRAPHS 73

Definition 6.27 (Path Pn). The path, Pn, is a connected graph that consists of n ≥ 2
vertices and n− 1 edges. Two vertices of Pn have degree 1 and the rest are of degree 2.

Note that to obtain a path in igraph, we use the same function as for cycles but
with an additional argument.

> U = make_ring(n = 8, circular = FALSE)

1

2

3

4

5

6

7

8

Definition 6.28 (Star Sn). The star of order n is the complete bipartite graph K1,n−1
(1 vertex of degree n− 1, and n− 1 vertices of degree 1).

> U = make_star(n = 8, mode = "undirected")

1

2

3
4

5

6

7

8

6.3.6 Isomorphic graphs

Definition 6.29 (Isomorphic graphs). Let G1 = (V (G1), E(G1)) and G2 = (V (G2), E(G2))
be two graphs. G1 and G2 are isomorphic if there exists an isomorphism ϕ from G1 to

74 CHAPTER 6. GRAPH THEORY ... THEORY

G2, that is defined as an injective mapping ϕ : V (G1) → V (G2) such that two vertices
u1 and v1 are adjacent in G1 if and only if the vertices ϕ(u1) and ϕ(v1) are adjacent in
G2.

Definition 6.30 (Another formulation of isomorphic graphs). Let G1 = (V (G1), E(G1))
and G2 = (V (G2), E(G2)) be two graphs; G1 and G2 are isomorphic if there exists an
isomorphism ϕ from G1 to G2, defined as an injective mapping ϕ : V (G1) → V (G2)
such that {u1, v1} ∈ E(G1) if and only if {ϕ(u1), ϕ(v1)} ∈ E(G2) for all u1, v1 ∈ V (G1).

If ϕ is an isomorphism from G1 to G2, then the inverse mapping ϕ−1 from V (G2) to
V (G1) also satisfies the definition of an isomorphism.

As a consequence, if G1 and G2 are isomorphic graphs, then
• G1 is isomorphic to G2

• G2 is isomorphic to G1

Theorem 6.31. The relation “is isomorphic to” is an equivalence relation on the set
of all graphs.

Theorem 6.32. If G1 and G2 are isomorphic graphs, then the degrees of vertices of
G1 are exactly the degrees of vertices of G2.

As you can probably guess, this is not an easy problem from an algorithmic point
of view. In igraph, there is an exact method only if the two graphs have three or
four vertices. Otherwise, the methods used can be costly from a computational point
of view. The example below is adapted from the igraph manual: we make a graph
(here, Erdos-Renyi) and permutate the vertices, giving two graphs that are isomorphic
by construction.

> g1 <- sample_gnp(n = 50, p = 0.5)
> g2 <- permute(g1, sample(gorder(g1)))
> isomorphic(g1, g2, method = "auto")

[1] TRUE

6.3.7 Subgraphs, unions of graphs

Definition 6.33 (Subgraph). Let G = (V (G), E(G)) be a graph. A graph H =
(V (H), E(H)) is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G).

Definition 6.34 (Another definition of subgraph). If a graph F is isomorphic to a
subgraph H of G, then F is also called a subgraph of G.

Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs.

Definition 6.35 (Union of G1 and G2). G1 ∪G2 = (V1 ∪ V2, E1 ∪ E2)

Definition 6.36 (Intersection of G1 and G2). G1 ∩G2 = (V1 ∩ V2, E1 ∩ E2)

6.3. UNDIRECTED GRAPHS 75

Definition 6.37 (Disjoint graphs). If G1∩G2 = (∅, ∅) = ∅ (empty graph) then G1 and
G2 are disjoint.

Definition 6.38 (Complement of G1). The complement Ḡ1 of G1 is the graph on V1,
with the edge set E(Ḡ1) = [V1]

2\E1 (e ∈ E(Ḡ1) iff e ̸∈ E1).

6.3.8 Walks, trails, paths

Definition 6.39 (Walk). A walk in a graph G = (V,E) is a non-empty alternating
sequence v0e0v1e1v2 . . . ek−1vk of vertices and edges in G such that ei = {vi, vi+1} for all
i < k. This walk begins with v0 and ends with vk.

Definition 6.40 (Length of a walk). The length of a walk is equal to the number of
edges in the walk.

Definition 6.41 (Closed walk). If v0 = vk, the walk is closed.

Definition 6.42 (Trail). A trail in G is a walk in G in which all edges are distinct.

Definition 6.43 (Path). A path in G is a walk in G in which all vertices are distinct.

The sets of vertices and edges determined by a trail or a path is a subgraph of G.
Having defined paths, a question comes naturally: what is the length of a path. Clearly,
one can count vertices or edges along the path. Now, given two vertices, there may be
several paths joining them. To account for this, we define the distance between vertices
as the length of the shortest path joining the vertices.

Definition 6.44 (Distance between two vertices). The distance d(u, v) in G between
two vertices u and v is the length of the shortest path linking u and v in G. If no such
path exists, we assume d(u, v) = ∞.

We return to the notion of distance between vertices in more detail in Chapter 7,
where we will restate this definition using the name geodesic distance instead of just
distance as we did here. Indeed, when characterising the graphs as we do there, it
is important to consider that the edges may have a value and that the distance be-
tween edges could use this value. We defer consideration of programmatic aspects until
Chapter 7.

Definition 6.45 (Circuit). A trail linking u to v, containing at least 3 edges and in
which u = v, is a circuit.

Definition 6.46 (Cycle). A circuit which does not repeat any vertices (except the first
and the last) is a cycle (or simple circuit).

Definition 6.47 (Length of a cycle). The length of a cycle is its number of edges.

76 CHAPTER 6. GRAPH THEORY ... THEORY

6.3.9 Eulerian graphs

Here, we return to one of the problems mentioned in the introduction of this chapter.

Definition 6.48 (Eulerian trail). A trail containing all the vertices and edges of a
multigraph M is called a Eulerian trail of M .

Definition 6.49 (Traversable graph). If a graph G has a Eulerian trail, then G is
called a traversable graph.

Definition 6.50 (Eulerian circuit). A circuit containing all the vertices and edges of a
multigraph M is called a Eulerian circuit of M .

Definition 6.51 (Eulerian graph). A graph (resp. multigraph) containing an Eulerian
circuit is called a Eulerian graph (resp. multigraph).

Theorem 6.52. A multigraph M is traversable if and only if M is connected and has
exactly two odd vertices. Furthermore, any Eulerian trail of M begins at one of the odd
vertices and ends at the other odd vertex.

Theorem 6.53. A multigraph M is Eulerian if and only if M is connected and every
vertex of M is even.

Fleury’s algorithm to find a Eulerian circuit (for a connected graph with no
odd vertices)

• Pick any vertex as a starting point.
• Marking your path as you move from vertex to vertex, travel along any edges you

wish, but DO NOT travel along an edge that is a bridge for the graph formed by
the EDGES THAT HAVE YET TO BE TRAVELED – unless you have to.

• Continue until you return to your starting point.
RESULT: a Eulerian circuit

Fleury’s algorithm to find a Eulerian trail (for a connected graph with exactly
2 odd vertices)

• Start at one of the odd vertices.
• Marking your path as you move from vertex to vertex, travel along any edges you

wish, but DO NOT travel along an edge that is a bridge for the graph formed by
the EDGES THAT HAVE YET TO BE TRAVELED – unless you have to.

• Continue until every edge has been travelled.
RESULT: a Eulerian trail

igraph has several functions for dealing with Eulerian graphs: has_eulerian_path
and has_eulerian_cycle decide if a graph has, respectively, a Eulerian path and cycle,
while eulerian_path and eulerian_cycle find Eulerian paths and cycles, respectively.
The following is slightly adapted from the igraph help. First, we create a graph using
a different method from the ones we have used this far.

6.3. UNDIRECTED GRAPHS 77

> g <- make_graph(~ A-B-C-D-E-A-F-D-B-F-E)

A

B
C

D

E

F

> if (has_eulerian_path(g)) {
+ eulerian_path(g)
+ } else {
+ writeLines("No Eulerian path")
+ }

$epath
+ 10/10 edges from c4d5214 (vertex names):
[1] A--B B--C C--D B--D B--F A--F A--E D--E D--F E--F

$vpath
+ 11/6 vertices, named, from c4d5214:
[1] A B C D B F A E D F E

> if (has_eulerian_cycle(g)) {
+ eulerian_cycle(g)
+ } else {
+ writeLines("No Eulerian cycle")
+ }

No Eulerian cycle

The return values are the edges along the Eulerian path or cycle and the vertices along
the path or cycle. In this example, there is a Eulerian path but no Eulerian cycle.

6.3.10 Hamiltonian graphs

Definition 6.54 (Hamiltonian path). A path containing all vertices of a graph G is
called a Hamiltonian path of G.

78 CHAPTER 6. GRAPH THEORY ... THEORY

Definition 6.55 (Traceable graph). If a graph G has an Hamiltonian path, then G is
called a traceable graph.

Definition 6.56 (Hamiltonian cycle). A cycle containing all vertices of a graph G is
called a Hamiltonian cycle of G.

Definition 6.57 (Hamiltonian graph). A graph containing a Hamiltonian cycle is called
a Hamiltonian graph.

Theorem 6.58 (Dirac’s theorem). If G is a graph of order p ≥ 3 such that deg(v) ≥ p/2
for every vertex v of G, then G is Hamiltonian.

Theorem 6.59 (Ore’s theorem). If G is a graph of order p ≥ 3 such that for all distinct
nonadjacent vertices u and v of G,

deg(u) + deg(v) ≥ p,

then G is Hamiltonian.

6.3.11 Connectedness

Definition 6.60 (Connected vertices). Two vertices u and v in a graph G are con-
nected if u = v, or if u ̸= v and there exists a path in G that links u and v.

Definition 6.61 (Connected graph). A graph is connected if every two vertices of G
are connected; otherwise, G is disconnected.

To check for connectedness in igraph, you can use the function is_connected.
Using the graph defined earlier in Section 6.3.9,

> is_connected(g)

[1] TRUE

Theorem 6.62 (A necessary condition for connectedness). A connected graph on p
vertices has at least p− 1 edges.

In other words, a connected graph G of order p has size(G) ≥ p− 1.

Connectedness is an equivalence relation Denote x ≡ y the relation “x = y, or
x ̸= y and there exists a path in G connecting x and y”. ≡ is an equivalence relation
since

1. x ≡ y [reflexivity]
2. x ≡ y =⇒ y ≡ x [symmetry]
3. x ≡ y, y ≡ z =⇒ x ≡ z [transitivity]

6.3. UNDIRECTED GRAPHS 79

Definition 6.63 (Connected component of a graph). The classes of the equivalence
relation ≡ partition X into connected sub-graphs of G called connected components
(or components for short) of G.

A connected subgraph H of a graph G is a component of G if H is not contained in
any connected subgraph of G having more vertices or edges than H.

To obtain the connected components, use the function components. Let us cre-
ate a disconnected graph, e.g., by making an Erdos-Renyi graph with low connection
probability of the vertices.

> g <- sample_gnp(50, 1/50)
> components(g)

$membership
[1] 1 2 3 4 5 6 4 4 4 7 2 4 8 6 2 9 4 10 4 11 12 13 12 10 14

[26] 4 15 10 2 4 4 16 17 10 18 19 2 20 4 21 10 22 4 4 23 24 25 26 8 27

$csize
[1] 1 5 1 13 1 2 1 2 1 5 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1

[26] 1 1

$no
[1] 27

The return value no is evidently the number of connected components, membership
indicates which component a given vertex belongs to (vertices being listed in order)
and csize is the size of the components. Here, there are 27 components. We can
colour the vertices to indicate what components they belong to.

> comps <- components(g)$membership
> colbar = viridis::viridis(max(comps)+1)
> V(g)$color <- colbar[comps+1]
> plot(g, vertex.size = 5, layout=layout_nicely)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29
30

31
32

33

34

35

36

37

38

39

4041

42

43

44

45

46

47

48

49

50

80 CHAPTER 6. GRAPH THEORY ... THEORY

Cut vertices and bridges Connectedness is an important property and it is useful
to know what can “destroy” this property. For that, we seek vertices or edges whose
deletion results in the graph becoming disconnected.

Definition 6.64 (Vertex deletion). If v is a vertex of G, the graph G− v is the graph
formed from G by removing v and all edges incident with v.

Definition 6.65 (Cut-vertices). Let G be a connected graph. If G− v is disconnected
for v ∈ V (G), then v is a cut vertex (or articulation point) of G.

Definition 6.66 (Edge deletion). If e is an edge of G, the graph G − e is the graph
formed from G by removing e from G.

Definition 6.67 (Bridge). An edge e in a connected graph G is called a bridge if G−e
is disconnected.

Theorem 6.68. Let G be a connected graph. An edge e of G is a bridge of G if and
only if e does not lie on any cycle of G.

In igraph, cut vertices are found using articulation_points, while bridges are
found using bridges. Following an example from the igraph manual, we make a
connected graph by making two full graphs of order 5 and joining them by selecting a
vertex in each and making an edge between them.

> g <- disjoint_union(make_full_graph(5), make_full_graph(5))
> clu <- components(g)$membership
> g <- add_edges(g, c(match(1, clu), match(2, clu)))
> plot(g)

1

2

3

4

5

6
7

8

9

10

We then seek the cut vertices.

> articulation_points(g)

6.3. UNDIRECTED GRAPHS 81

+ 2/10 vertices, from c540a5f:
[1] 6 1

We can actually plot those vertices in a different colour.

> v_ap = articulation_points(g)
> V(g)$color <- "red"
> V(g)[v_ap]$color <- "blue"
> plot(g, layout=layout_nicely)

1

2

3
4

5

6

78

910

To illustrate bridges, let us make a special graph, the so-called Krackhardt kite graph.

> g <- make_graph("krackhardt_kite")
> plot(g)

1 2
3

4 5

6 7

8

9

10

We then seek bridges,

> bridges(g)

82 CHAPTER 6. GRAPH THEORY ... THEORY

+ 2/18 edges from 52f2699:
[1] 9--10 8-- 9

As we did in the previous example, let us highlight the bridges.

> e_b = bridges(g)
> E(g)$color = "black"
> E(g)[e_b]$color = "red"
> plot(g)

1

2

3

4

5

6

7

8

9

10

6.3.12 Planar graphs

Definition 6.69 (Planar graph). A graph is planar if it can be drawn in the plane
with no crossing edges. Otherwise it is nonplanar.

A planar graph is a graph that can be drawn in the plane. If a planar graph is
indeed drawn in the plane, it is a plane graph.

Definition 6.70 (Plane graph). A plane graph is a graph that is drawn in the plane
with no crossing edges. If G is a plane graph, then

• the connected parts of the plane are called regions;
• vertices and edges that are incident with a region R make up a boundary of R.

Theorem 6.71 (Euler’s formula). Let G be a connected plane graph with p vertices, q
edges, and r regions, then

p− q + r = 2.

Corollary 6.72. Let G be a plane graph with p vertices, q edges, r regions, and k
connected components, then

p− q + r = k + 1.

6.3. UNDIRECTED GRAPHS 83

Theorem 6.73. Let G be a connected planar graph with p vertices and q edges, where
p ≥ 3, then

q ≤ 3p− 6.

(a maximal connected planar graph with p vertices has q = 3p− 6 edges.)

Corollary 6.74. If G is a planar graph, then δ(G) ≤ 5, where δ(G) is the minimal
degree of G. (every planar graph contains a vertex of degree less than 6)

Definition 6.75 (Subdivision of G). Given a graph G, a subdivision of G is a graph
that can be obtained by inserting any number of vertices of degree 2 along a edges of G.

Theorem 6.76 (Kuratowski Theorem). A graph G is planar if and only if it contains
no subgraph isomorphic to K5 or K3,3 or any subdivision of K5 or K3,3.

Note: If a graph G is nonplanar and G is a subgraph of G′, then G′ is also nonplanar.

Definition 6.77 (Colouring of a graph G). • assignment elements (colours) of some
sets to vertices of G.

• one colour to each vertex so that adjacent vertices are assigned to different colours.
(A colouring of a graph G is an assignment of colours to the vertices of G such that

adjacent vertices have different colours.)

Definition 6.78 (n−colouring of G). A n−colouring is a colouring of G using n
colours.

Definition 6.79 (n−colourable). G is n−colourable if there exists a colouring of G
using n colors.

Definition 6.80 (Chromatic number). The chromatic number χ(G) of a graph G is
the minimal value n for which an n−colouring of G exists.

Theorem 6.81 (Some properties). Let G = (V,E) be a graph, χ(G) its chromatic
number.

• χ(G) = 1 if and only if G has no edges.
• If G = Kn,m, then χ(G) = 2.
• If G = Kn, then χ(G) = n.
• For any graph G,

χ(G) ≤ 1 + ∆(G),

where ∆(G) is the maximum degree of G.
• If G is a planar graph, then χ(G) ≤ 4.

84 CHAPTER 6. GRAPH THEORY ... THEORY

Welch-Powell algorithm for coloring a graph G
1. Order the vertices of G in decreasing degree. Such an ordering may not be unique

since some vertices may have the same degree.
2. Use one colour to paint the first vertex and to paint, in sequential order, each

vertex on the list that is not adjacent to a vertex previously painted with this
colour.

3. Start again at the top of the list and repeat the process painting previously un-
painted vertices using a second colour.

4. Continue repeating with additional colours until all the vertices have been painted.

An actual real life colouring problem Let us consider the census divisions in
Manitoba. Census divisions are the administrative regions that Statistics Canada uses
when they are taking the census of the population of Canada every five years. Doing
so will also illustrate how one can deal with maps and spatial information in R.

> library(dplyr)
> library(sf)
> census_divisions = st_read("DATA/lcd_000b21a_e/lcd_000b21a_e.shp") %>%
+ filter(PRUID == 46)
> plot(census_divisions$geometry)

Right away, we notice an issue with this plot: the data is extracted from data for the
entire country. This means that the projection that was used is perhaps a little extreme:
Canada is a large country and most projections used to show the entire country distort
local objects. The southern and northern borders of Manitoba are the 49th and 60th
parallels, respectively. Both of these borders should be roughly horizontal. There are
several ways to deal with this: rotate coordinates or change the projection used. The
former is appealing in its simplicity, but the latter is more correct. And more annoying,
since you will need to work out which projection to use. Looking around, we find a
projection which should work.

6.3. UNDIRECTED GRAPHS 85

> proj = "+proj=utm +zone=14 +datum=NAD83 +units=m +no_defs +type=crs"
> census_divisions = st_transform(census_divisions,
+ crs = proj)

We add the census division centroids, for good measure. Centroids are the centres of
gravity of the regions, often used in the absence of more information about the largest
cities in a region.

> centroids = st_centroid(census_divisions$geometry)
> plot(census_divisions$geometry)
> plot(centroids, add = TRUE, pch = 19, col = "red")

What is the minimal number of colours needed to colour this map in such a way that
no two adjacent divisions have the same colour? To solve this problem, we need a
mathematical representation. We proceed as follows.

• Vertices correspond to census divisions (in our representation earlier, we will
choose the centroids of the regions).

• Two vertices are linked if the two census divisions are adjacent, i.e., they share a
border.

GIS functions are very useful for this. If we have a collection of polygons (as the regions
in the map are encoded), then st_intersects (in the sf library) finds polygons that
intersect.

> intersects = st_intersects(census_divisions$geometry)

The result is a matrix, with each row showing what polygons the given polygon inter-
sects with (including itself). Let us make a graph from this information. The matrix
is a matrix of TRUE/FALSE values, let us transform it into an adjacency matrix.

> intersects.adj = mat.or.vec(nr = dim(intersects)[1],
+ nc = dim(intersects)[2])
> intersects.adj[which(as.matrix(intersects) == TRUE)] = 1
> intersects.adj[which(as.matrix(intersects) == FALSE)] = 0

86 CHAPTER 6. GRAPH THEORY ... THEORY

Now let us create the graph. To plot it, we need to set the position of the vertices,
otherwise igraph will just lay them out randomly.

> g = graph_from_adjacency_matrix(intersects.adj, mode = "undirected")
> V(g)$x = unlist(centroids)[seq(1,length(unlist(centroids)), 2)]
> V(g)$y = unlist(centroids)[seq(2,length(unlist(centroids)), 2)]
> plot(census_divisions$geometry)
> plot(centroids, add = TRUE, pch = 19, col = "red")
> plot(g, add = TRUE, rescale = FALSE, vertex.label = NA)

What is the chromatic number of the graph associated to the map?
We colourise the graph:

> v_c = greedy_vertex_coloring(g)

The result is a vector with each vertex assigned an integer value, i.e., a colour. Let us
colour the vertices in the graph explicitly.

> colmap = rainbow(max(v_c))
> V(g)$col = colmap[v_c]
> plot(census_divisions$geometry)
> plot(centroids, add = TRUE, pch = 19, col = colmap[v_c])
> plot(g, add = TRUE, rescale = FALSE, vertex.label = NA)

6.3. UNDIRECTED GRAPHS 87

Et voilà! Actually, just to make it clearer, let us colour the actual regions and revert
to not colouring the vertices themselves.

> plot(census_divisions$geometry, col = colmap[v_c])
> plot(centroids, add = TRUE, pch = 19, col = "black")
> plot(g, add = TRUE, rescale = FALSE, vertex.label = NA)

88 CHAPTER 6. GRAPH THEORY ... THEORY

Now, those of you who know the geography of Manitoba will have realised that there is
an obvious problem here: this map is missing the two big lakes in the Province, Lake
Winnipeg and Lake Manitoba. This could easily be addressed: get the shape files for
lakes in the Province, add them to this map and impose that the vertices corresponding
to lakes should be of the same colour. I will leave this as an exercise.

6.4 Directed graphs

6.4.1 Directed graph

Definition 6.82 (Digraph). A directed graph (or digraph) is a pair G = (V,A) of sets
such that

• V is a set of points: V = {v1, v2, v3, .., vp}
• A is a set of ordered pairs of V : A = {(vi, vj), (vi, vk), . . . , (vn, vp)}, also noted
A = {vivj, vivk, . . . , vnvp}.

Definition 6.83 (Vertex). The elements of V are the vertices of the digraph G. V is
the vertex set of the digraph G, also noted V (G).

Definition 6.84 (Arc). The elements of A are the arcs (directed edges) of the digraph
G. A is the arc set of the digraph G, also noted A(G).

Digraph and binary relation A digraph D can be defined in term of a vertex set
V and an irreflexive relation R over V .

The defining relation R of the digraph G need not be symmetric.
Directed network

Definition 6.85 (Directed network). A directed network is a digraph together with a
function f ,

f : A → R,
which maps the arc set A into the set of real number. The value of the arc uv ∈ A is
f(uv).

Loops & Multiple arcs

Definition 6.86 (Loop). A loop is an arc with both the same ends; e.g. (u, u) is a
loop.

Definition 6.87 (Multiple arcs). Multiple arcs (or multi-arcs) are two or more arcs
connecting the same two vertices.

Definition 6.88 (Multidigraph). A multidigraph is a digraph which allows repetition
of arcs or loops.

Definition 6.89 (Digraph). In a digraph, no more than one arc can join any pair of
vertices.

6.4. DIRECTED GRAPHS 89

Examples

a

b

c

d

2
3

4

5

6

7

1
8

9

10

x1

x2 x3

x4 x5

x6

1

2

3

4

5 6

7

8

Let G = (V,A) be a digraph.

Definition 6.90 (Arc endpoints). For an arc u = (x, y), vertex x is the initial end-
point, and vertex y is the terminal endpoint

Definition 6.91 (Predecessor - Successor). If (u, v) ∈ A(G) is an arc of G, then
• u is a predecessor of v,
• v is a successor of u.

Definition 6.92 (Neighbours of a vertex). Let x ∈ V be a vertex. The neighbours of
x is the set Γ(x) = Γ+

G(x) ∪ Γ−G(x), where Γ+
G(x) and Γ−G(x) are, respectively, the set of

successors and predecessors of v.

Definition 6.93 (Directed away - Directed towards). If a = (u, v) ∈ A(G) is an arc of
G, then

• the arc a is said to be directed away from u,
• the arc a is said to be directed towards v.

Definition 6.94 (Source - Sink). • Any vertex which has no arcs directed towards
it is a source.

• Any vertex which has no arcs directed away from it is a sink.

Definition 6.95 (Adjacent arcs). Two arcs are adjacent if they have at least one
endpoint in common.

Definition 6.96 (Arc incident out of A ⊂ X). If the initial endpoint of an arc u belongs
to A, and if the terminal endpoint of arc u does not belong to A, then u is said to be
incident out of A, and we write u ∈ ω+(A). Similarly, we define an arc incident into
A, and the set ω−(A). Finally, the set of arcs incident to A is denoted

ω(A) = ω+(A) ∪ ω−(A).

Definition 6.97 (Symmetric graph). If m+
G(x, y) = m−G(x, y) for all x, y ∈ X, the

graph G is symmetric. A 1-graph G = (X,U) is symmetric if, and only if,

(x, y) ∈ U =⇒ (y, x) ∈ U

90 CHAPTER 6. GRAPH THEORY ... THEORY

Definition 6.98 (Anti-symmetric graph). If for each pair (x, y) ∈ X ×X,

m+
G(x, y) +m−G(x, y) ≤ 1

then the graph G is anti-symmetric. A 1-graph G = (X,U) is anti-symmetric if, and
only if,

(x, y) ∈ U =⇒ (y, x) ̸∈ U

An anti-symmetric 1-graph without its direction is a simple graph

Definition 6.99 (Subgraph of G generated by A ⊂ X). The subgraph of G generated
by A is the graph with A as its vertex set and with all the arcs in G that have both their
endpoints in A. If G = (X,Γ) is a 1-graph, then the subgraph generated by A is the
1-graph GA = (A,ΓA) where

ΓA(x) = Γ(x) ∩ A (x ∈ A)

Definition 6.100 (Partial graph of G generated by V ⊂ U). The graph (X, V) whose
vertex set is X and whose arc set is V . In other words, it is graph G without the arcs
U − V

Definition 6.101 (Partial subgraph of G). A partial subgraph of G is the subgraph of
a partial graph of G

6.4.2 Degrees in digraphs

Let v be a vertex of a digraph G = (V,A).

Definition 6.102 (Outdegree of a vertex). The number of arcs directed away from a
vertex v, in a digraph is called the outdegree of v and is written d+(v) or outdeg(v).

Definition 6.103 (Indegree of a vertex). The number of arcs directed towards a vertex
v, in a digraph is called the indegree of v and is written d−(v) or indeg(v).

Definition 6.104 (Degree). For any vertex v in a digraph, the degree of v is defined
as d(v) = d+(v) + d−(v).

Theorem 6.105. For any (di)graph, the sum of the degrees of the vertices equals twice
the number of edges (arcs).

Corollary 6.106. In any (di)graph, the sum of the degrees of the vertices is a nonneg-
ative even integer.

Theorem 6.107. If G is a digraph with a vertex set V (G) = {v1, . . . , vp} and having
q arcs then

p∑
i=1

d+(vi) =

p∑
i=1

d−(vi) = q.

Definition 6.108 (Regular digraph). A digraph G is r−regular if indeg(v) = outdeg(v) =
r for each vertex v of G.

6.4. DIRECTED GRAPHS 91

6.4.3 Walks, paths, etc.

Let G = (V,A) be a digraph.

Definition 6.109 (Directed walk). A directed walk in a digraph G is a non-empty
alternating sequence v0a0v1a1v2 . . . ak−1vk of vertices and arcs in G such that ai =
(vi, vi+1) for all i < k. This walk begins with v0 and ends with vk.

Definition 6.110 (Length of a directed walk). The length of a directed walk is equal
to the number of arcs in the directed walk.

Definition 6.111 (Closed walk). If v0 = vk, the walk is closed.

Definition 6.112 (Directed trail). A directed walk in G in which all arcs are distinct
is a directed trail in G.

Definition 6.113 (Directed path). A directed walk in G in which all vertices are dis-
tinct is a directed path in G.

Definition 6.114 (Directed cycle). A closed walk is a directed cycle if it contains at
least three vertices and all its vertices are distinct except for v0 = vk.

a b

c d

1

2 6 43

5 Cycles:
• µ1 = (1, 6, 2) = [abca]
• µ2 = (1, 6, 3) = [abca]
• µ3 = (2, 3) = [aca]
• µ4 = (1, 4, 5, 2) = [abdca]
• µ5 = (6, 5, 4) = [acdb]
• µ6 = (1, 4, 5, 3) = [abdca]

Given a cycle µ, denote µ+ the set of all arcs in µ that are in the direction that the
cycle is traversed and µ− the set of all the other arcs in µ

Number the arcs in G as 1, 2, . . . ,m, then the cycle µ is the vector

mµ = (µ1, . . . , µm)

where

µi =

0 if i ̸∈ µ+ ∪ µ−

+1 if i ∈ µ+

−1 if i ∈ µ−

Cocycles Let A ⊂ X be nonempty and denote ω+(A) the set of arcs that have only
their initial endpoint in A and ω−(A) the set of arcs that have only their terminal
endpoint in A. Let

ω(A) = ω+(A) ∪ ω−(A)

A cocycle is a nonempty set of arcs of the form ω(A), partitioned into two sets
ω+(A) and ω−(A)

An elementary cocycle is the set of arcs joining two connected subgraphs A1 and
A2 s.t.

92 CHAPTER 6. GRAPH THEORY ... THEORY

• A1, A2 ̸= ∅
• A1 ∩ A2 = ∅
• A1 ∪ A2 = C, with C a connected component of the graph
A colouring lemma

Lemma 6.115 (Arc colouring Lemma). Consider G with arcs 1, . . . ,m. Colour arc 1
black and arbitrarily colour the remaining arcs red, black or green. Then exactly one of
the following holds true:

1. there is an elementary cycle containing arc 1 and only red and black arcs with the
property that all black arcs in the cycle have the same direction

2. there is an elementary cocycle containing arc 1 and only green and black arcs,
with the property that all black arcs in the cocycle have the same direction

Independent cycles and cycle bases Consider cycles µ1,µ2, . . . ,µk. The cycles
are independent if

c1µ
1 + c2µ

2 + · · ·+ ckµ
k = 0

⇐⇒ c1 = c2 = · · · = ck = 0

A cycle basis is an independent set {µ1,µ2, . . . ,µk} of cycles such that any cycle µ
can be written as

µ = c1µ
1 + c2µ

2 + · · ·+ ckµ
k

for c1, . . . , ck ∈ R
The constant k is the cyclomatic number of G, denoted ν(G)

a b

c d

1

2 6 43

5 Elementary cycles:
• µ1 = (1, 6, 2) = [abca]
• µ2 = (1, 6, 3) = [abca]
• µ3 = (2, 3) = [aca]
• µ4 = (1, 4, 5, 2) = [abdca]
• µ5 = (6, 5, 4) = [acdb]
• µ6 = (1, 4, 5, 3) = [abdca]

We have µ1 − µ2 + µ3 = 0

Theorem 6.116. Let G be a graph with n vertices, m arcs and p connected components.
Then the cyclomatic number of G is

ν(G) = m− n+ p.

6.4.4 Connectivity in digraphs

Definition 6.117 (Underlying graph). Given a digraph, the undirected graph with each
arc replaced by an edge is called the underlying graph.

Definition 6.118 (Weakly connected digraph). If the underlying graph is a connected
graph, then the digraph is weakly connected.

6.4. DIRECTED GRAPHS 93

Definition 6.119 (Strongly connected digraph). A digraph G is strongly connected
if for every two distinct vertices u and v of G, there exists a directed path from u to v.

Definition 6.120 (Disconnected digraph). A digraph is said to be disconnected if it
is not weakly connected.

Strong connectedness is an equivalence relation Denote x ≡ y the relation
“x = y, or x ̸= y and there exists a directed path in G from x to y”. ≡ is an equivalence
relation since

1. x ≡ y [reflexivity]
2. x ≡ y =⇒ y ≡ x [symmetry]
3. x ≡ y, y ≡ z =⇒ x ≡ z [transitivity]

Definition 6.121 (Connected component of a graph). Sets of the form

A(x0) = {x : x ∈ X, x ≡ x0}

are equivalence classes. They partition X into strongly connected sub-digraphs of G
called strongly connected components (or strong components) of G.

A strong component in G is a maximal strongly connected subdigraph of G.
Let G = (V,A) be a digraph.

Theorem 6.122. Properties
• If a digraph is strongly connected, it has only one strongly connected component.
• The strongly connected components partition the vertices in the digraph, with every

vertex in exactly one strongly connected component.

Algorithm for determining strongly connected components in G = (V,A)
• Determine the strongly connected component C(v) containing the vertex v; if
V − C(v) is non-empty, re-do the same operation on the sub-digraph G′ = (V −
C(v), A′).

• To determine C(v), the strongly connected component containing v: let v be a
vertex of a digraph , which is not already in any strongly connected component.

1. Mark the vertex v with ±
2. Mark with + all successors (not already marked with +) of a vertex marked

with +
3. Mark with − all predecessors (not already marked with −) of a vertex marked

with −
4. Repeat until no more possible marking with + or −

All vertices marked with ± belong to the same strongly connected component
C(v) containing the vertex v.

Definition 6.123 (Condensation of a digraph). The condensation G∗ of a digraph G
is a digraph having as vertices the strongly connected components (SCC) of G and such
that there exists an arc in G∗ from a SCC Ci to another SCC Cj if there is an arc in
G from some vertex of Si to a vertex of Sj.

94 CHAPTER 6. GRAPH THEORY ... THEORY

Definition 6.124 (Articulation set). For a connected graph, a set A of vertices is
called an articulation set (or a cutset) if the subgraph of G generated by X − A is
not connected.

Definition 6.125 (Stable set). A set S of vertices is called a stable set if no arc joins
two distinct vertices in S.

6.4.5 Orientable graphs

In much the same way as a directed graph can be considered as an undirected one by
considering the underlying graph (Definition 6.117), one can transform an undirected
graph into a directed one.

Definition 6.126 (Orienting a graph). Given a connected graph, we describe the act
of assigning a direction to each edge as orienting the graph.

Definition 6.127 (Strong orientation). If orienting the graph gives a digraph that is
strongly connected, the orientation is a strong orientation.

Definition 6.128 (Orientable graph). A connected graph G = (V,E) is orientable
if it is possible to assign a direction to each edge of G to produce a strongly connected
digraph G = (V,A). (If there exists a strong orientation of a connected graph, then the
graph is orientable.)

Theorem 6.129. A connected graph G is orientable (has a strong orientation) if and
only if G contains no bridges; that is every edge is contained in a cycle.

6.5 Trees
Definition 6.130 (Forest, trees and branches). • A connected graph with no cycle

is a tree.
• A tree is a connected acyclic graph, its edges are called branches.
• A graph (connected or not) without any cycle is a forest. Each component is a

tree. (A forest is a graph whose connected components are trees)

Theorem 6.131 (Properties). • Every edge of a tree is a bridge (the deletion of
any edge of a tree diconnects it)

• Given two vertices u and v of a tree, there is an unique path linking u to v.
• A tree with p vertices and q edges satisfies q = p − 1. Thus, a tree is minimally

connected.

Definition 6.132 (Spanning tree). A spanning tree of a connected graph G is a
subgraph of G that contains all the vertices of G and is a tree.

A graph may have many spanning trees.

6.5. TREES 95

Definition 6.133 (Value of a spanning tree). The value of a spanning tree T of
order p is

p−1∑
i=1

f(ei)

where f is the function that maps the edge set into the set of real number.

Definition 6.134 (Minimal spanning tree). Let G be an undirected network, and let
T be a minimal spanning tree of G. Then T is a spanning tree whose the value is
minimum.

Algorithm to find a minimal spanning tree Let G = (V,E) be an undirected
network, and let T be a minimal spanning tree.

1. sort the edges of G in increasing order by value
2. T = (V (G), ∅)
3. for each edge e in sorted order if the endpoints of e are disconnected in T add e

to T

Minimal connector problem
• Model: a graph G such that edges represent all possible connections, and each

edge has a positive value which represents its cost; an undirected network G
• Solution: a minimal spanning tree T of G

– a spanning tree of G is a subgraph of G that contains all the vertices of G
and is a tree.

– the cost of the spanning tree is the sum of values of the edges of T
– a spanning tree such that no other spanning tree has a smaller cost is a

minimmal spanning tree.

Theorem 6.135 (Characterisation of trees). H = (X,U) a graph of order |X| = n > 2.
The following are equivalent and all characterise a tree :

1. H connected and has no cycles
2. H has n− 1 arcs and no cycles
3. H connected and has exactly n− 1 arcs
4. H has no cycles, and if an arc is added to H, exactly one cycle is created
5. H connected, and if any arc is removed, the remaining graph is not connected
6. Every pair of vertices of H is connected by one and only one chain

Proof of Theorem 6.135. We make abundant use of Theorem 6.116
(1 =⇒ 2) Let p be the number of connected components, m the number of arcs and
ν(H) the cyclomatic number. Since H connected, p = 1. Since H has no cycles,
ν(H) = m− n+ p = 0 =⇒ m = n− p = n− 1
(2 =⇒ 3) Assume H has no cycles (ν(H) = 0) and has n− 1 arcs (m = n− 1). Then,
since

ν(H) = m− n+ p,

96 CHAPTER 6. GRAPH THEORY ... THEORY

p = ν(H)−m+ n = 0− (n− 1)− n = 1, i.e., H is connected.
(3 =⇒ 4) Assume H connected (p = 1) and contains exactly n− 1 arcs (m = n− 1).
Then

ν(H) = m− n+ p = (n− 1)− n+ 1 = 0

and H has no cycles. Now add an arc, i.e., suppose m = n. Then ν(H) = m− n+ p =
n− n+ 1 = 1 and there is one cycle in the new graph.
(4 =⇒ 5) Assume H has no cycles (ν(H) = 0) and that addition of an arc to H creates
exactly one cycle. Suppose H not connected. Then there are two vertices, say a and b,
that are not connected and adding the arc (a, b) does not create a cycle, a contradiction
with “addition of an arc to H creates exactly one cycle”. =⇒ p = 1. Since ν(H) = 0,
this implies that m = n− 1. Now suppose we remove an arc. We obtain graph H ′ with

m′ = n′ − 2 and ν(H ′) = 0.

So
p′ = ν(H ′)−m′ + n′ = 2,

which implies that H ′ is not connected.
(5 =⇒ 6) Assume H connected and if any arc is removed, the remaining graph is not
connected.

Any vertices a, b ∈ X are connected by a chain (since H connected). That chain
is unique: suppose there is a second chain connecting a to b; then removing an arc
from that chain does not disconnect the graph, since there is still the original chain
connecting a and b.
(6 =⇒ 1) Assume every pair of vertices of H is connected by one and only one chain.
Now assume H has a cycle. Then at least one pair of vertices would be connected by
two distinct chains, a contradiction.

Definition 6.136 (Pendant vertex). A vertex is pendant if it is adjacent to exactly
one other vertex.

Theorem 6.137. A tree of order n ≥ 2 has at least two pendant vertices.

Proof. Suppose H is a tree of order n ≥ 2 with 0 or 1 pendant vertices. Consider a
traveller traversing the graph edges, starting from a pendant vertex (if there is one) or
anywhere if there is no pendant vertex. If the traveller does not allow himself to use
same edge twice, he cannot go to the same vertex twice, since H has no cycle. If he
arrives at vertex x, he can depart x using a new edge (x is not a pendant vertex as
there are 0 or 1 pendant vertex and if there is 1, that’s where he started). So the trip
continues without end, which is impossible, as H finite.

Theorem 6.138. A graph G = (X,U) has a partial graph that is a tree ⇐⇒ G
connected

Recall that a partial graph is a graph generated by a subset of the arcs (Defini-
tion 6.100 slide 90)

6.5. TREES 97

Proof. Suppose that G is not connected. Then no partial graph of G is connected =⇒
there is no partial graph of G that is a tree. [We want to show P ⇐⇒ Q, we start
with ∧Q =⇒ ∧P (which ⇐⇒ P =⇒ Q)] Suppose that G connected. Look for an
arc whose removal does not disconnect G

• if there is none, G is a tree by Theorem 6.135(5)
• if there is, remove it and look for another one, etc. When no more arcs can be

removed, the remaining graph is a tree with vertex set X.

The procedure in the proof of Theorem 6.138 gives a spanning tree It is also
possible to build a spanning tree as follows:

• Consider any arc u0.
• Find arc u1 that does not form a cycle with u0.
• Find arc u2 that does not form a cycle with {u0, u1}.
• Continue.
• When you cannot continue anymore, you have a spanning tree.

Theorem 6.139. G connected graph with ≥ 1 arc. The following are equivalent.
1. G is strongly connected.
2. Every arc lies on a circuit.
3. G contains no cocircuits.

Proof. (1 =⇒ 2) (x, y) an arc of G; there is a path from y to x (G strongly connected),
so arc (x, y) is contained in a circuit of G.

(2 =⇒ 3) Suppose G has a cocircuit containing arc (x, y); then G cannot have a
circuit containing this arc by the Arc Colouring Lemma (Lemma 6.115 with all arcs
coloured black. This contradicts (2).

(3 =⇒ 1) Assume G is a connected graph without cocircuits, but that G is not
strongly connected. Since G is not strongly connected, it has more than one strongly
connected component. Since G is connected, there exist two distinct strongly connected
components that are joined by an arc (a, b). The arc (a, b) is not contained in any
circuit; indeed, otherwise a and b would be in the same strongly connected component.
By Lemma 6.115, arc (a, b) is contained in some cocircuit. This contradicts (3).

Theorem 6.140. G graph with ≥ 1 arc. The following are equivalent.
1. G is a graph without circuits.
2. Each arc is contained in a cocircuit.

Theorem 6.141. If G is a strongly connected graph of order n, then G has a cycle
basis of ν(G) circuits.

Definition 6.142 (Node, anti-node, branch). G = (X,U) strongly connected without
loops and > 1 vertex. For each x ∈ X, there is a path from it and a path to it so x has
at least 2 incident arcs. Specifically,

• x ∈ X with > 2 incident arcs is a node
• x ∈ X with 2 incident arcs is an anti-node

98 CHAPTER 6. GRAPH THEORY ... THEORY

A path whose only nodes are its endpoints is a branch

Definition 6.143 (Minimally connected graph). G is minimally connected if it is
strongly connected and removal of any arc destroys strong-connectedness

A minimally connected graph is 1-graph without loops

Definition 6.144 (Contraction). G = (X,U). The contraction of the set A ⊂ X of
vertices consists in replacing A by a single vertex a and replacing each arc into (resp.
out of) A by an arc with same index into (resp. out of) a

Theorem 6.145. G minimally connected, A ⊂ X generating a strongly connected
subgraph of G. Then the contraction of A gives a minimally connected graph

Proof. First, show that contraction of A yields a 1-graph. If this were not the case,
there would exist x ̸∈ A and a, a′ ∈ A s.t. (x, a), (x, a′) ∈ U (or, with (a, x), (a′, x) ∈ U
but this would not change the proof). If one of these arcs is removed, the graph remains
strongly connected. Thus, G is not minimally connected, a contradiction

Now show that the contraction of A yields a graph G′ that is minimally connected.
Clearly, G′ strongly connected. If an arc u is removed, the remaining graph is not
strongly connected, since the graph (X,U − {u}) not strongly connected.

Theorem 6.146. G a minimally connected graph, G′ be the minimally connected graph
obtained by the contraction of an elementary circuit of G. Then

ν(G) = ν(G′) + 1

Theorem 6.147. G minimally connected of order n ≥ 2 =⇒ G has ≥ 2 anti-nodes

Theorem 6.148. G = (X,U). Then the graph C ′ obtained by contracting each strongly
connected component of G contains no circuits

Definition 6.149 (Root). Vertex a ∈ X in G = (X,U) is a root if all vertices of G
can be reached by paths starting from a

Not all graphs have roots.

Definition 6.150 (Quasi-strong connectedness). G is quasi-strongly connected if
∀x, y ∈ X, exists z ∈ X (denoted z(x, y) to emphasize dependence on x, y) from which
there is a path to x and a path to y

Strongly connected =⇒ quasi-strongly connected (take z(x, y) = x); converse not
true

Quasi-strongly connected =⇒ connected.

Definition 6.151 (Arborescence). An arborescence is a tree that has a root.

Lemma 6.152. G = (X,U) has a root ⇐⇒ G quasi-strongly connected.

6.5. TREES 99

Theorem 6.153. H graph of order n > 1. TFAE (and all characterise an arborescence)
1. H quasi-strongly connected without cycles
2. H quasi-strongly connected with n− 1 arcs
3. H tree having a root a
4. ∃a ∈ X s.t. all other vertices are connected with a by 1 and only 1 path from a
5. H quasi-strongly connected and loses quasi-strong connectedness if any arc is re-

moved
6. H quasi-strongly connected and ∃a ∈ X s.t.

d−H(a) = 0

d−H(x) = 1 ∀x ̸= a

7. H has no cycles and ∃a ∈ X s.t.

d−H(a) = 0

d−H(x) = 1 ∀x ̸= a

Theorem 6.154. G has a partial graph that is an arborescence ⇐⇒ G quasi-strongly
connected.

Theorem 6.155. G = (X,E) simple connected graph and x1 ∈ X. It is possible to
direct all edges of E so that the resulting graph G0 = (X,U) has a spanning tree H s.t.

1. H is an arborescence with root x1

2. The cycles associated with H are circuits
3. The only elementary circuits of G0 are the cycles associated with H

Counting trees

Proposition 6.156. X a set with n distinct objects, n1, . . . , np nonnegative integers
s.t. n1+· · ·+np = n. The number of ways to place the n objects into p boxes X1, . . . , Xp

containing n1, . . . , np objects respectively is(
n

n1, . . . , np

)
=

n!

n1! · · ·np!

Proposition 6.157 (Multinomial formula). Let a1, . . . , ap ∈ R be p real numbers, then

(a1 + · · ·+ ap)
n =

∑
n1,...,np≥0

(
n

n1, . . . , np

)
(a1)

n1 · · · (ap)np

Theorem 6.158. Denote T (n; d1, . . . , dn) the number of distinct trees H with vertices
x1, . . . , xn and with degrees dH(x1) = d1, . . . , dH(xn) = dn. Then

T (n; d1, . . . , dn) =

(
n− 2

d1 − 1, . . . , dn − 1

)
Theorem 6.159. The number of different trees with vertices x1, . . . , xn is nn−2

There is a whole industry of similar results (as well as for arborescences), but we will
stop here. The main point is that we are talking about a large number of possibilities.

100 CHAPTER 6. GRAPH THEORY ... THEORY

6.6 Matrices associated to a graph/digraph

There are multiple matrices associated to a graph/digraph. The branch of graph theory
that studies the properties of matrices derived from graphs and uses of these matrices
in determining graph properties is spectral graph theory. Graphs greatly simplify some
problems in linear algebra and vice versa. We briefly explore some of these relationships
here.

6.6.1 Adjacency matrices

Adjacency matrix (undirected case) Let G = (V,E) be a graph of order p and
size q, with vertices v1, v2, . . . , vp and edges e1, e2, . . . , eq.

Definition 6.160 (Adjacency matrix). The adjacency matrix is

MA = MA(G) = [mij]

is a p× p matrix in which

mij =

{
1 if vi and vj are adjacent
0 otherwise

Theorem 6.161 (Adjacency matrix and degree). The sum of the entries in row i of
the adjacency matrix is the degree of vi in the graph.

Adjacency matrix of a multigraph

Definition 6.162 (Multiplicity of a pair). The multiplicity of a pair x, y is the number
m+

G(x, y) of arcs with initial endpoint x and terminal endpoint y. Let

m−G(x, y) = m+
G(y, x)

mG(x, y) = m+
G(x, y) +m−G(x, y)

If x ̸= y, then mG(x, y) is number of arcs with both x and y as endpoints. If x = y, then
mG(x, y) equals twice the number of loops attached to vertex x. If A,B ⊂ X, A ̸= B,
let

m+
G(A,B) = {u : u ∈ U, u = (x, y), x ∈ A, y ∈ B}

mG(A,B) = m+
G(A,B) +m+

G(A,B)

Definition 6.163 (Matrix associated with G). If G has vertices x1, x2, . . . , xn, then
the matrix associated with G is

aij = m+
G(xi, xj)

6.6. MATRICES ASSOCIATED TO A GRAPH/DIGRAPH 101

Definition 6.164 (Adjacency matrix). The matrix aij + aji is the adjacency matrix
associated with G

Let D = (V,A) be a digraph of order p with vertices denoted by v1, v2, . . . , vp.

Definition 6.165 (Adjacency matrix). The adjacency matrix M = M(D) = [mij] is a
p× p matrix in which

mij =

{
1 if arc vivj ∈ A
0 otherwise

Theorem 6.166 (Properties). • M is not necessarily symmetric.
• The sum of any column of M is equal to the number of arcs directed towards vj
• The sum of the entries in row i is equal to the number of arcs directed away from

vertex vi.
• The (i, j)−entry of Mn is equal to the number of walks of length n from vertex vi

to vj.

Incidence matrix Let D = (V,A) be a digraph of order p, and size q, with vertices
denoted by v1, v2, . . . , vp, and arcs denoted a1, a2, . . . , aq.

Definition 6.167. Definition The incidence matrix B = B(D) = [bij] is a p× q matrix
in which

bij =

1 if arc aj is directed away from a vertex vi
−1 if arc aj is directed towards a vertex vi
0 otherwise

We have already seen adjacency matrices, let us recall the definition here

Definition 6.168 (Adjacency matrix). G a 1-graph, then the adjacency matrix A =
[aij] is defined as follows

aij =

{
1 if arc (i, j) ∈ U

0 otherwise

We often write A(G) and, reciprocally, if A is an adjacency matrix, G(A) the cor-
responding graph

G undirected =⇒ A(G) symmetric
A(G) has nonzero diagonal entries if G is not simple
Adjacency matrix (multigraph case)

Definition 6.169 (Adjacency matrix of a multigraph). G an ℓ-graph, then the adja-
cency matrix MA = [mij] is defined as follows

mij =

{
k if arc there are k arcs (i, j) ∈ U

0 otherwise

with k ≤ ℓ

102 CHAPTER 6. GRAPH THEORY ... THEORY

G undirected =⇒ MA(G) symmetric
MA(G) has nonzero diagonal entries if G is not simple.
Weighted adjacency matrices Sometimes, adjacency matrices (typically for 1-graphs)

have real entries, usually positive
This means that the arcs/edges have been given a weight

Theorem 6.170 (Number of walks of length n). Let A be the adjacency matrix of a
graph G = (V (G), E(G)), where V (G) = {v1, v2, . . . , vp}. Then the (i, j)−entry of An,
n ≥ 1, is the number of different walks linking vi to vj of length n in G.

(two walks of the same length are equal if their edges occur in exactly the same
order)

Example: let A be the adjacency matrix of a graph G = (V (G), E(G)).
• the (i, i)−entry of A2 is equal to the degree of vi.
• the (i, i)−entry of A3 is equal to twice the number of C3 containing vi.

6.6.2 Other matrices associated to a graph/digraph

Let G = (V,E) be a graph of order p and size q, with vertices v1, v2, . . . , vp, and edges
e1, e2, . . . , eq.

Definition 6.171 (Incidence matrix). The incidence matrix is

B = B(G) = [bij]

is that p× q matrix in which

bij =

{
1 if vi is incident with ej
0 otherwise

Theorem 6.172 (Incidence matrix and degrees). The sum of the entries in row i of
the incidence matrix is the degree of vi in the graph.

Definition 6.173 (Incidence matrix – Undirected case). G = (X,E) an undirected
graph of order n with p edges. The incidence matrix of G is an n × p matrix with
vertices as rows and edges as columns and where B = [bij] satisfies

bij =

{
1 if edge j is incident to vertex i

0 otherwise

Definition 6.174 (Incidence matrix – Directed case). G = (X,U) a directed graph of
order n with p arcs. The incidence matrix of G is an n × p matrix with vertices as
rows and edges as columns and where B = [bij] satisfies

bij =

1 if arc j “enters” vertex i

−1 if arc j “leaves” vertex i

0 otherwise

6.6. MATRICES ASSOCIATED TO A GRAPH/DIGRAPH 103

Definition 6.175 (Spectrum of a graph). The spectrum of a graph G = (V,X) is
the spectrum (set of eigenvalues) of its associated adjacency matrix A(G)

This is regardless of the type of adjacency matrix or graph.

Definition 6.176 (Degree matrix). The degree matrix D = [dij] for G is a n × n
diagonal matrix defined as

dij =

{
dG(vi) if i = j

0 otherwise

In an undirected graph, this means that each loop increases the degree of a vertex
by two. In a directed graph, the term “degree” may refer either to indegree (the number
of incoming edges at each vertex) or outdegree (the number of outgoing edges at each
vertex).

Definition 6.177 (Laplacian matrix). Let G = (X,U) be a simple graph of order n.
The Laplacian matrix is

L(G) = D(G)− A(G),

where D(G) is the degree matrix and A(G) is the adjacency matrix.

G simple graph =⇒ A(G) only contains 1 or 0 and its diagonal elements are all
0. For directed graphs, either the indegree or outdegree is used, depending on the
application. The elements of L are given by,

ℓij =

dG(vi) if i = j

−1 if i ̸= j and vi is adjacent to vj

0 otherwise.

Distance matrix Let G be a graph of order p with vertices denoted by v1, v2, . . . , vp.

Definition 6.178 (Distance matrix). The distance matrix DIST = DIST (D) = [dij]
is a p× p matrix in which

dij = dist(vi, vj).

Note dii = 0 for i = 1, · · · , p.

Definition 6.179 (Properties). • M is not necessarily symmetric.
• The sum of any column of M is equal to the number of arcs directed towards vj
• The sum of the entries in row i is equal to the number of arcs directed away from

vertex vi.
• The (i, j)−entry of Mn is equal to the number of walks of length n from vertex vi

to vj.

104 CHAPTER 6. GRAPH THEORY ... THEORY

6.6.3 Linking graphs and linear algebra

Counting paths To count paths between vertices x and y in a graph, we use the
adjacency matrix

Theorem 6.180. G = (V,X) a graph and A(G) its adjacency matrix. Denote P = [pij]
the matrix P = Ak. Then pij is the number of distinct paths of length k from i to j in
G.

In the case of a digraph, pij is the number of directed paths. In linear algebra, there
is a corresponding notion, the (ir)reducibility of a matrix.

Definition 6.181 (Irreducible matrix). A matrix A ∈ Mn is reducible if ∃P ∈ Mn,
permutation matrix, such that P TAP can be written in block triangular form. If no
such P exists, A is irreducible.

The following result then provides a fundamental connection between graphs and
matrices.

Theorem 6.182. A irreducible ⇐⇒ G(A) strongly connected.

If A is pattern-wise symmetric, i.e., has the same zero/nonzero patterns above and
below the main diagonal, then G(A) is an undirected graph and the condition then
becomes that G(A) be connected. This provides a matrix criterion for a graph/digraph
to be connected/strongly connected.

Theorem 6.183. Let A := A(G) be the adjacency matrix of a graph G = (V,X) of
order p. The graph (resp. digraph) G is connected (resp. strongly connected) if and
only if

I + A+ A2 + · · ·+ Ap−1 = C

has no zero entries.

The Perron-Frobenius theorem A = [aij] ∈ Mn(R) nonnegative if aij ≥ 0
∀i, j = 1, . . . , n; v ∈ Rn nonnegative if vi ≥ 0 ∀i = 1, . . . , n. Spectral radius of A

ρ(A) = max
λ∈Sp(A)

{|λ|}

Sp(A) the spectrum of A

Theorem 6.184 (PF – Nonnegative case). 0 ≤ A ∈ Mn(R). Then ∃v ≥ 0 s.t.

Av = ρ(A)v

Theorem 6.185 (PF – Irreducible case). Let 0 ≤ A ∈ Mn(R) irreducible. Then
∃v > 0 s.t.

Av = ρ(A)v

ρ(A) > 0 and with algebraic multiplicity 1. No nonnegative eigenvector is associated to
any other eigenvalue of A

6.6. MATRICES ASSOCIATED TO A GRAPH/DIGRAPH 105

Primitive matrices

Definition 6.186. 0 ≤ A ∈ Mn(R) primitive (with primitivity index k ∈ N∗+) if
∃k ∈ N∗+ s.t.

Ak > 0,

with k the smallest integer for which this is true. A imprimitive if it is not primitive

A primitive =⇒ A irreducible; converse false

Theorem 6.187. A ∈ Mn(R) irreducible and ∃i = 1, . . . , n s.t. aii > 0 =⇒ A
primitive

Here d is the index of imprimitivity (i.e., the number of eigenvalues that have the
same modulus as λp = ρ(A)). If d = 1, then A is primitive. We have that d = gcd of
all the lengths of closed walks in G(A)

1 2

3

Adjacency matrix

A =

0 1 0
0 0 1
1 0 0

Closed walks in G(A) (lengths): 1 → 1 (3), 2 → 2 (3), 2 → 2 (3) =⇒ gcd = 3

=⇒ d = 3 (here, all eigenvalues have modulus 1)

1 2

3

A =

1 1 0
0 0 1
1 0 0

Closed walk 1 → 1 has length 1 =⇒ gcd of lengths of closed walks is 1 =⇒ A
primitive

Theorem 6.188. 0 ≤ A ∈ Mn. A primitive =⇒ Ak > 0 for some 0 < k ≤ (n− 1)nn

Theorem 6.189. A ≥ 0 primtive. Suppose the shortest simple directed cycle in G(A)
has length s, then primitivity index is ≤ n+ s(n− 1)

Theorem 6.190. 0 ≤ A ∈ Mn primitive ⇐⇒ An2−2n+2 > 0

Theorem 6.191. 0 ≤ A ∈ Mn irreducible. A has d positive entries on the diagonal
=⇒ primitivity index ≤ 2n− d− 1

Theorem 6.192. 0 ≤ A ∈ Mn, λP = ρ(A) the Perron root of A, vP and wP the corre-
sponding right and left Perron vectors of A, respectively, d the index of imprimitivity of

106 CHAPTER 6. GRAPH THEORY ... THEORY

A (with d = 1 when A is primitive) and λj ∈ σ(A) the spectrum of A, with j = 2, . . . , n
unless otherwise specified (assuming λ1 = λP)

Nonnegative

Reducible
• λP ≥ 0
• wP ≥ 0
• vP ≥ 0
• λP ≥ |λj|

IrreducibleImprimitive
• λP > 0
• wP > 0
• vP > 0
• λP = |λj|,
j =
2, . . . , d

• λP > |λj|,
j > d

Primitive
• λP > 0
• wP > 0
• vP > 0
• λP > |λj|,
j ̸= P

Chapter 7

Quantifying graphs

Why and how to characterise a graph Graphs are everywhere! To compare
graphs, understand their properties, we need ways to describe their shape and charac-
teristics.

Figure 7.1: The global air transportation network. The size of the vertices indicate the
degree of an airport.

Some “measures” concern the vertices, others the graph as a whole. In all that
follows, unless otherwise indicated, G = (X,A) is a digraph. If undirected, we write
G = (X,E).

107

108 CHAPTER 7. QUANTIFYING GRAPHS

7.1 Measures specific to vertices

7.1.1 Centre of a graph

Definition 7.1 (Geodesic distance). For x, y ∈ X, the geodesic distance d(x, y) is
the length of the shortest path from x to y, with d(x, y) = ∞ if no such path exists

• d(x1, x2) = 1
• d(x1, x3) = 2
• · · ·

0 1 2 2 4 3
1 0 1 1 3 2
3 4 0 5 2 1
4 5 1 0 3 2
1 2 3 3 0 4
2 3 4 4 1 0

 x1

x2 x3

x4 x5

x6

• d(x5, x1) = ∞
• d(x3, x1) = ∞
• · · ·

0 1 2 2 4 3
1 0 1 1 3 2
∞ ∞ 0 ∞ 2 1
∞ ∞ 1 0 3 2
∞ ∞ ∞ ∞ 0 ∞
∞ ∞ ∞ ∞ 1 0

 x1

x2 x3

x4 x5

x6

Definition 7.2 (Vertex eccentricity). The eccentricity e(x) of vertex x ∈ X is

e(x) = max
y∈X

y ̸=x

d(x, y)

0 1 2 2 4 3
1 0 1 1 3 2
3 4 0 5 2 1
4 5 1 0 3 2
1 2 3 3 0 4
2 3 4 4 1 0

x1

x2 x3

x4 x5

x6

Definition 7.3 (Central point). A central point of G is a vertex x0 with smallest
eccentricity

7.1. MEASURES SPECIFIC TO VERTICES 109

Definition 7.4 (Radius). The radius of G is ρ(G) = e(x0), where x0 is a centre of G
In other words,

ρ(G) = min
x∈X

e(x)

Definition 7.5 (Centre). The centre of G is the set of vertices that are central points
of G, i.e.,

{x ∈ X : e(x) = ρ(G)}
0 1 2 2 4 3
1 0 1 1 3 2
3 4 0 5 2 1
4 5 1 0 3 2
1 2 3 3 0 4
2 3 4 4 1 0

Radius is 3, x2 is a central point (the only
one) and the centre is {x2}

x1

x2 x3

x4 x5

x6

7.1.2 Centrality – Betweenness and closeness

We have seen that some vertices could be labelled as being in the centre of a graph,
others as being on the periphery of it. However, more generally, one can wonder about
the influence of vertices. This falls under the general term of centrality. We have seen
central vertices and vertices on the periphery, let us consider two other measures of
centrality

• Betweenness centrality
• Closeness centrality

Many other forms (we will come back to this, e.g., degree centrality)
Betweenness

Definition 7.6 (Betweenness). G = (X,U) a graph, x ∈ X. The betweenness of v is

bD(v) =
∑

s ̸=t̸=v∈X

σst(v)

σst

where
• σst number of shortest geodesic paths from s to t
• σst(v) number of shortest geodesic paths from s to t through v

In other words
• For each pair of vertices (s, t), compute the shortest paths between them
• For each pair of vertices (s, t), determine the fraction of shortest paths that pass

through vertex v
• Sum this fraction over all pairs of vertices (s, t)

110 CHAPTER 7. QUANTIFYING GRAPHS

Normalising betweenness Betweenness may be normalized by dividing through the
number of pairs of vertices not including v:

• for directed graphs, (n− 1)(n− 2)
• for undirected graphs, (n− 1)(n− 2)/2

Example of betweenness

distances(G, mode="out")
0 1 2 2 4 3
1 0 1 1 3 2
3 4 0 5 2 1
4 5 1 0 3 2
1 2 3 3 0 4
2 3 4 4 1 0

 x1

x2 x3

x4 x5

x6

Number of shortest paths Recall we found distances(G, mode="out")

D =

0 1 2 2 4 3
1 0 1 1 3 2
3 4 0 5 2 1
4 5 1 0 3 2
1 2 3 3 0 4
2 3 4 4 1 0

To find the number of shortest paths between pairs of vertices, we can use powers

of the adjacency matrix
Write D = [dij], for a given (i, j) (i ̸= j), if dij = k, then pick the (i, j) in Ak

We find
0 1 1 1 1 1
1 0 1 1 1 1
1 1 0 1 1 1
1 1 1 0 1 1
1 1 1 1 0 1
1 1 1 1 1 0

Recall that betweenness of v is

bD(v) =
∑

s ̸=t̸=v∈X

σst(v)

σst

σst (# shortest paths from s to t) is found in the matrix above
What about σst(v), # of those shortest paths that go through v?
We can use all_shortest_paths(G, from = s, to = t, mode = "out")

7.1. MEASURES SPECIFIC TO VERTICES 111

Example of betweenness
betweenness(G, directed =
FALSE, normalized = TRUE)
Values shown in the vertices.

0.5

0.5 0.45

0 0.45

0.45

Closeness

Definition 7.7. G = (X,U), v ∈ X. The closeness of v is

cD(v) =
1

n− 1

∑
t∈X\{v}

dD(v, t)

i.e., mean geodesic distance between a vertex v and all other vertices it has access to

Another definition is

cD(v) =
1∑

t∈X\{v}

dD(v, t)

Example of (out) closeness
closeness(G, normalized = TRUE, mode="out")

0.417

0.625 0.333

0.333 0.385

0.357

7.1.3 Periphery of a graph

Diametre and periphery of a graph

Definition 7.8 (Diametre of a graph). The diametre of G is

δ(G) = max
x,y∈X

x ̸=y

d(x, y)

112 CHAPTER 7. QUANTIFYING GRAPHS

or, in other words,
δ(G) = max

x∈X
e(x)

δ(G) < ∞ ⇐⇒ G strongly connected

Definition 7.9 (Periphery). The periphery of a graph is the set of vertices whose
eccentricity achieves the diametre, i.e.,

{x ∈ X : e(x) = δ(G)}

0 1 2 2 4 3
1 0 1 1 3 2
3 4 0 5 2 1
4 5 1 0 3 2
1 2 3 3 0 4
2 3 4 4 1 0

Diametre is 5 and the periphery is {x3, x4}

x1

x2 x3

x4 x5

x6

Definition 7.10 (Antipodal vertices). A pair of vertices x and y are antipodal if they
satisfy d(x, y) = δ(G).

7.1.4 Degree distribution

Degree distribution

Definition 7.11 (Arc incident to a vertex). If a vertex x is the initial endpoint of an
arc u, which is not a loop, the arc u is incident out of vertex x

The number of arcs incident out of x plus the number of loops attached to x is
denoted d+G(x) and is the outer demi-degree of x

An arc incident into vertex x and the inner demi-degree d−G(x) are defined
similarly

Definition 7.12 (Degree). The degree of vertex x is the number of arcs with x as an
endpoint, each loop being counted twice. The degree of x is denoted dG(x) = d+G(x) +
d−G(x)

If each vertex has the same degree, the graph is regular

Definition 7.13 (Isolated vertex). A vertex of degree 0 is isolated.

Definition 7.14 (Average degree of G). d(G) = 1
|V |

∑
v∈V degG(v).

Definition 7.15 (Minimum degree of G). δ(G) = min{degG(v)|v ∈ V }.

7.1. MEASURES SPECIFIC TO VERTICES 113

Definition 7.16 (Maximum degree of G). ∆(G) = max{degG(v)|v ∈ V }.

Degrees in an undirected graph
2

3 3

2 2

2

Here, vertices are labelled
using the degree

Degrees in a directed graph
d+ = 1
d− = 2

d+ = 3
d− = 1

d+ = 1
d− = 2

d+ = 1
d− = 1

d+ = 1
d− = 1

d+ = 1
d− = 1

d+ = 1
d− = 2

d+ = 4
d− = 2

d+ = 1
d− = 2

d+ = 1
d− = 1

d+ = 1
d− = 1

d+ = 2
d− = 2

What to consider about degrees? Degrees are often considered as a measure of
popularity

Often write k(i) (or ki) for “degree of vertex i”, k−(i) and k+(i) for in- and out-degree
• Minimum and maximum degree
• Minimum and maximum in/out-degree. E.g., if you consider the global air trans-

portation network and the in/out-degree of airports, in-degree is a measure of a
location’s “popularity” as a travel destination

• Range of degrees in a graph: are there large discrepancies in connectivity between
vertices in the graph?

• Average degree (often denoted ⟨k⟩ because of physicists)
• Average in/out-degree
• Variance of the degrees or in/out-degrees
• Average (nearest) neighbour degree, to encode for preferential attachment (one

prefers to hang out with popular people)

knn
i =

1

k(i)

∑
j∈N (i)

k(j)

or, in terms of the adjacency matrix A = [aij],

knn
i =

1

k(i)

∑
j

aijk(j)

• Excess degree: take nearest neighbour degree but do not consider the edge/arc
followed to get to the neighbour

114 CHAPTER 7. QUANTIFYING GRAPHS

• Degree, nearest neighbour and excess degree distributions
Degrees in igraph
• degree gives the degrees of the vertices
• degree_distribution gives numeric vector of the same length as the maximum

degree plus one. The first element is the relative frequency zero degree vertices,
the second vertices with degree one, etc.

• knn calculate the average nearest neighbor degree of the given vertices and the
same quantity in the function of vertex degree

• strength sums up the edge weights of the adjacent edges for each vertex
Degree from adjacency matrix Suppose adjacency matrix take the form A = [aij]

with aij = 1 if there is an arc from the vertex indexed i to the vertex indexed j and 0
otherwise. (Could be the other way round, using AT , just make sure)

Let e = (1, . . . , 1)T be the vector of all ones
Ae = (d+G(1), . . . , d

+
G(1))

T (out-degree)
eTA = (d−G(1), . . . , d

−
G(1)) (in-degree)

7.2 Measures at the graph level

7.2.1 Circumference & Girth

Circumference

Definition 7.17 (Circumference). In an undirected (resp. directed) graph, the total
number of edges (resp. arcs) in the longest cycle of graph G is the circumference of
G

Circumference is 6.
x1

x2 x3

x4 x5

x6

Girth

Definition 7.18 (Girth). The total number of edges in the shortest cycle of graph G
is the girth g(G)

Girth is 2.
x1

x2 x3

x4 x5

x6

7.2. MEASURES AT THE GRAPH LEVEL 115

7.2.2 Graph density

Completeness

Definition 7.19 (Complete undirected graph). An undirected graph is complete if every
two of its vertices are adjacent.

Definition 7.20 (Complete digraph). A digraph D(V,A) is complete if ∀u, v ∈ V ,
uv ∈ A.

In case of simple graphs, completeness effectively means that “information” can be
transmitted from every vertex to every other vertex quickly (1 step)

It can be useful to know how far away we are from being complete
Number of edges/arcs in a complete graph G = (X,E) undirected and simple of

order n has at most
n(n− 1)

2

edges, while G = (X,A) directed and simple of order n has at most

n(n− 1)

arcs
Density of a graph

Definition 7.21 (Density). The fraction of maximum number of edges or arcs present
in the graph is the density of the graph.

If the graph has p edges or arcs, then its density is, respectively,

2p

n(n− 1)

or
p

n(n− 1)

Example of density
x1

x2 x3

x4 x5

x6

Graph has order 6 and
thus a max of 30 arcs.
Here, 8 arcs =⇒ density
0.267
(26.7% of arcs are present)

116 CHAPTER 7. QUANTIFYING GRAPHS

7.2.3 Graph connectivity

Connectedness We have already seen connectedness (quasi- or strong in the oriented
case)

Connectedness is important in terms of characteristing graph properties, as it shows
the capacity of the graph to convey information to all the members of the graph (the
vertices)

Definition 7.22 (Connected graph). A connected graph is a graph that contains a
chain µ[x, y] for each pair x, y of distinct vertices

Denote x ≡ y the relation “x = y, or x ̸= y and there exists a chain in G connecting
x and y”. ≡ is an equivalence relation since

1. x ≡ y [reflexivity]
2. x ≡ y =⇒ y ≡ x [symmetry]
3. x ≡ y, y ≡ z =⇒ x ≡ z [transitivity]

Definition 7.23 (Connected component of a graph). The classes of the equivalence
relation ≡ partition X into connected sub-graphs of G called connected components

Articulation set

Definition 7.24 (Articulation set). For a connected graph, a set A of vertices is called
an articulation set (or a cutset) if the subgraph of G generated by X − A is not
connected

articulation_points(G) in igraph (assumes the graph is undirected, makes it so
if not)

Strongly connected graphs G = (X,U) connected. A path of length 0 is any
sequence {x} consisting of a single vertex x ∈ X

For x, y ∈ X, let x ≡ y be the relation “there is a path µ1[x, y] from x to y as well as
a path µ2[y, x] from y to x”. This is an equivalence relation (it is reflexive, symmetric
and transitive)

Definition 7.25 (Strong components). Sets of the form

A(x0) = {x : x ∈ X, x ≡ x0}

are equivalence classes; they partition X and are the strongly connected components
of G

Definition 7.26 (Strongly connected graph). G strongly connected if it has a single
strong component

Definition 7.27 (Minimally connected graph). G is minimally connected if it is
strongly connected and removal of any arc destroys strong-connectedness

7.2. MEASURES AT THE GRAPH LEVEL 117

Definition 7.28 (Contraction). G = (X,U). The contraction of the set A ⊂ X of
vertices consists in replacing A by a single vertex a and replacing each arc into (resp.
out of) A by an arc with same index into (resp. out of) a

Quasi-strong connectedness

Definition 7.29 (Quasi-strong connectedness). G quasi-strongly connected if ∀x, y ∈
X, exists z ∈ X (denoted z(x, y) to emphasize dependence on x, y) from which there is
a path to x and a path to y

Strongly connected =⇒ quasi-strongly connected (take z(x, y) = x); converse not
true

Quasi-strongly connected =⇒ connected

Lemma 7.30. G = (X,U) has a root ⇐⇒ G quasi-strongly connected

Weak-connectedness

Definition 7.31 (Weakly connected graph). G = (X,U) weakly connected if G =
(X,E) connected, where E is obtained from U by ignoring the direction of arcs

x1

x2 x3

x4 x5

x6

=⇒

x1

x2 x3

x4 x5

x6

Weak components Define for x, y ∈ X the relation x ≡ y as “x = y or x ̸= y and
there is a chain in G connecting x and y” [like for components in an undirected graph,
except the graph is directed here]

This defines an equivalence relation

Definition 7.32 (Weak components). Sets of the form

A(x0) = {x : x ∈ X, x ≡ x0}

are equivalence classes partitioning X into the weakly connected components of G

G = (X,U) is weakly connected if there is a single weak component
Components in igraph
• is_connected decides whether the graph is weakly or strongly connected
• components finds the maximal (weakly or strongly) connected components of a

graph
• count_components does almost the same as components but returns only the

number of clusters found instead of returning the actual clusters
• component_distribution creates a histogram for the maximal connected com-

ponent sizes
• decompose creates a separate graph for each component of a graph
• subcomponent finds all vertices reachable from a given vertex, or the opposite:

all vertices from which a given vertex is reachable via a directed path

118 CHAPTER 7. QUANTIFYING GRAPHS

7.2.4 Cliques

Cliques

Definition 7.33 (Clique in undirected graphs). G = (X,E) a simple undirected graph.
A clique is a subgraph G′ of G such that all vertices in G′ are adjacent

Definition 7.34 (n-clique). A simple, complete graph on n vertices is called an n-
clique and is often denoted Kn

Definition 7.35 (Clique in directed graphs). G = (X,U) a simple directed graph. A
clique is a subgraph G′ of G such that all vertices in G′ are mutually adjacent

Definition 7.36 (Maximal clique). A maximal clique is a clique that cannot be
extended by adding another adjacent vertex

x1

x2 x3

x4 x5

x6

x1

x2 x3

x4 x5

x6

Cliques in igraph
• cliques find all complete subgraphs in the input graph, obeying the size limita-

tions given in the min and max arguments
• largest_cliques finds all largest cliques in the input graph
• max_cliques finds all maximal cliques in the input graph (The largest cliques are

always maximal, but a maximal clique is not necessarily the largest)
• count_max_cliques counts the maximal cliques
• clique_num calculates the size of the largest clique(s)

7.2.5 k-cores

k-core

Definition 7.37 (k-core of a graph). G = (X,U) a graph. The k-core of G is a
maximal subgraph in which each vertex has degree at least k

Definition 7.38 (Coreness of a vertex). G = (X,U) a graph, x ∈ X. The coreness
of x is k if x belongs to the k-core of G but not to the k + 1 core of G

For directed graphs, in-cores or out-cores depending on whether in-degree or out-
degree is used

In igraph: coreness
Coreness in the directed case

7.2. MEASURES AT THE GRAPH LEVEL 119

x1

x2 x3

x4 x5

x6

G has only a 1-in-core and 1-out-core: there is no (maximal) subgraph in which the
in- or out-degree is larger than 1

In-coreness in the directed case

x1

x2 x3

x4 x5

x6

=⇒

1

2 2

1 1

2

Coreness in the undirected case

2

2 2

2 2

2

=⇒
2

3 3

2 2

3

120 CHAPTER 7. QUANTIFYING GRAPHS

Chapter 8

The PageRank algorithm

What makes an important webpage? In days of yore, the web was a small thing
Alta Vista was the search engine of choice
Google started in 1998, based on an algorithm (PageRank) described in a paper of

Page, Brin, Motwani and Winograd

Overview Give each page a rating (of its importance), a recursively defined measure
whereby a page becomes important if important pages link to it

Recursive definition: the importance of a page refers back to the importance of other
pages that link to it

Random surfer model: a random surfer on the web follows links from page to
page. Page rank ≃ P random surfer lands on a particular page. Popular page =⇒
higher probability to go there

Example of a Markov chain

8.1 Markov chains
Markov chain A Markov chain is a stochastic process in which the evolution through
time depends only on the current state of the system (we say the process is memoryless)

Markov chains are an interesting combination of matrix theory and graph theory
They form the theoretical foundation for Hidden Markov processes or Markov Chain

Monte Carlo (MCMC) methods, are used in ML
Conduct an experiment with a set of r possible outcomes

S = {S1, . . . , Sr}

Experiment repeated n times (with n large, potentially infinite)
System has no memory : the next state depends only on the present state
Probability of Sj occurring on the next step, given that Si occurred on the last step,

is
pij = p(Sj|Si)

121

122 CHAPTER 8. THE PAGERANK ALGORITHM

Suppose that Si is the current state, then one of S1, . . . , Sr must be the next state; so

pi1 + pi2 + · · ·+ pir = 1, 1 ≤ i ≤ r

(Some of the pij can be zero, all that is needed is that
∑r

j=1 pij = 1 for all i)

Definition 8.1. An experiment with finite number of possible outcomes S1, . . . , Sr is
repeated. The sequence of outcomes is a Markov chain if there is a set of r2 num-
bers {pij} such that the conditional probability of outcome Sj on any experiment given
outcome Si on the previous experiment is pij, i.e., for 1 ≤ i, j ≤ r, n = 1, . . .,

pij = Pr(Sj on experiment n+ 1 |
Si on experiment n)

Outcomes S1, . . . , Sr are states and pij are transition probabilities. P = [pij] the
transition matrix

The matrix

P =

p11 p12 · · · p1r
p21 p22 · · · p2r

pr1 pr2 · · · prr

has

• nonnegative entries, pij ≥ 0
• entries less than 1, pij ≤ 1
• row sum 1, which we write

r∑
j=1

pij = 1, i = 1, . . . , r

or, using the notation 1lT = (1, . . . , 1),

P1l = 1l

8.2 Running example – Mendelian inheritance
(super simple) Mendelian genetics A phenotypic trait (eye colour, hair colour,
etc.) is determined by a specific pair of alleles, each of which may be two types, say G
and g

Each individual can have
• GG combination (dominant)
• Gg or gG, considered equivalent genetically (hybrid)
• gg combination (recessive)

8.2. RUNNING EXAMPLE – MENDELIAN INHERITANCE 123

Individuals bearing GG or gg alleles are homozygotes, hybrids with Gg alleles are
called heterozygotes

GG and gg combinations lead to different phenotypes, Gg combination leads to
expressing the same phenotype as individuals bearing a GG combination, hence the
name dominant given to GG

In sexual reproduction, offspring inherit one allele of the pair from each parent
Alleles inherited from each parent are selected at random, independently of each

other
This determines probability of occurrence of each type of offspring. The offspring
• of two GG parents must be GG
• of two gg parents must be gg
• of one GG and one gg parent must be Gg
• other cases must be examined in more detail

GG and Gg parents Suppose one parent GG and the other Gg

G G G g

G g

Parents

G G G gG G Offspring

Parent 1

Parent 2
G G

G GG GG
g Gg Gg

To determine P that offspring is of a certain type, count number of outcomes of each
type (GG and Gg) and divide by 4

=⇒ offspring have probability
• 1/2 of being GG
• 1/2 of being Gg

Gg and Gg parents Both parents are hybrid

G g G g

G g

Parents

g G g gG G Offspring

124 CHAPTER 8. THE PAGERANK ALGORITHM

=⇒ offspring have probability
• 1/4 of being GG
• 1/2 of being Gg
• 1/4 of being gg

gg and Gg parents Recessive and hybrid parents

g g G g

g g

Parents

g G g gg G Offspring

=⇒ offspring have probability
• 1/2 of being Gg
• 1/2 of being gg

8.3 Repetition of the process
General case pi(n): probability that state Si occurs on the nth repetition of the
experiment, 1 ≤ i ≤ r

Since one the states Si must occur on the nth repetition

p1(n) + p2(n) + · · ·+ pr(n) = 1

pi(n + 1): probability that state Si, 1 ≤ i ≤ r, occurs on (n + 1)th repetition of the
experiment

r ways to be in state Si at step n+ 1:
1. Step n is S1. Probability of getting S1 on nth step is p1(n), and probability of

having Si after S1 is p1i. Therefore P (Si|S1) = p1ip1(n)
2. We get S2 on step n and Si on step (n+ 1). Then P (Si|S2) = p2ip2(n)
..
r. Probability of occurrence of Si at step n+1 if Sr at step n is P (Si|Sr) = pripr(n)

=⇒ pi(n+ 1) = P (Si|S1) + · · ·+ P (Si|Sr)

= p1ip1(n) + · · ·+ pripr(n)

Therefore,

p1(n+ 1) = p11p1(n) + p21p2(n) + · · ·+ pr1pr(n)

...
pr(n+ 1) = p1rp1(n) + p2rp2(n) + · · ·+ prrpr(n)

8.3. REPETITION OF THE PROCESS 125

In matrix form
p(n+ 1) = p(n)P, n = 1, 2, 3, . . .

where p(n) = (p1(n), p2(n), . . . , pr(n)) is a (row) probability vector and P = (pij) is a
r × r transition matrix,

P =

p11 p12 · · · p1r
p21 p22 · · · p2r

pr1 pr2 · · · prr

So

(p1(n+ 1), . . . , pr(n+ 1))

= (p1(n), . . . , pr(n))

p11 p12 · · · p1r
p21 p22 · · · p2r

pr1 pr2 · · · prr

Easy to check that this gives the same expression as before

Stochastic matrices

Definition 8.2 (Stochastic matrix). The nonnegative r× r matrix M is stochastic if∑r
j=1 aij = 1 for all i = 1, 2, . . . , r

If each row sum and each column sum equals one, the matrix is doubly stochastic

Theorem 8.3. Let M be a stochastic matrix. Then all eigenvalues λ of M are such
that |λ| ≤ 1. Furthermore, λ = 1 is an eigenvalue of M

Long time behaviour Let p(0) be the initial distribution (row) vector. Then

p(1) = p(0)P

p(2) = p(1)P

= (p(0)P)P

= p(0)P 2

Iterating, we get, for any n,
p(n) = p(0)P n

Therefore,

lim
n→+∞

p(n) = lim
n→+∞

p(0)P n

= p(0) lim
n→+∞

P n

if this limit exists
lim

n→+∞
p(n) = p(0) lim

n→+∞
P n

Does the limit exist?

126 CHAPTER 8. THE PAGERANK ALGORITHM

Theorem 8.4. If M,N are nonsingular stochastic matrices, then MN is a stochastic
matrix

So the product of any number of stochastic matrices is also stochastic

Corollary 8.5. If M is a nonsingular stochastic matrix, then for any k ∈ N, Mk is a
stochastic matrix

8.4 Regular Markov chains

Definition 8.6 (Regular Markov chain). A regular Markov chain has P k (entry-wise)
positive for some integer k > 0, i.e., P k has only positive entries

Definition 8.7 (Primitive matrix). A nonnegative matrix M is primitive if, and only
if, there is an integer k > 0 such that Mk is positive.

Theorem 8.8. Markov chain regular ⇐⇒ transition matrix P primitive

Behaviour of a regular MC

Theorem 8.9. If P is the transition matrix of a regular Markov chain, then
1. the powers P n approach a stochastic matrix W
2. each row of W is the same (row) vector w = (w1, . . . , wr)
3. the components of w are positive

So if the Markov chain is regular

lim
n→+∞

p(n) = p(0) lim
n→+∞

P n = p(0)W

Computing W If p(n) converges, then p(n + 1) = p(n)P , so w is a fixed point of
the system. Write

wP = w

and solve for w, i.e., find w as left eigenvector corresponding to the eigenvalue 1 or as
(right) eigenvector associated to eigenvalue 1 for the transpose of P

P TwT = wT

w might have to be normalized (you want a probability vector). Check that the norm
∥w∥ defined by

∥w∥ = w1 + · · ·+ wr

is equal to one. If not, use
w

∥w∥

8.5. BACK TO THE GENETICS EXAMPLE 127

8.5 Back to the genetics example

Suppose we want to understand what it means to have hybrid individuals in the pop-
ulation

Investigate this using a process of continued matings
• Start with an individual of known or unknown genetic character (dominant, hybrid

or recessive) and mate it with a hybrid
• Assume that the mating results in at least one offspring; choose one of the offspring

at random and mate it with a hybrid
• Repeat this process through a number of generations

What can we expect in terms of the genetic composition of the population after a while?
=⇒ consider MC with states GG, Gg and gg

3 states: S1 = GG, S2 = Gg and S3 = gg; we use GG, Gg and gg as well to name
the states

↗ GG Gg gg
GG 0.5 0.5 0
Gg 0.25 0.5 0.25
gg 0 0.5 0.5

The transition probabilities are thus

P =

1

2

1

2
0

1

4

1

2

1

4

0
1

2

1

2

P =

1

2

1

2
0

1

4

1

2

1

4

0
1

2

1

2

so

P 2 =

3

8

1

2

1

8
1

4

1

2

1

4
1

8

1

2

3

8

=⇒ P primitive =⇒ Markov chain regular

128 CHAPTER 8. THE PAGERANK ALGORITHM

Theorem 8.10. M primitive if the associated connection graph is strongly connected
and there is at least one positive entry on the diagonal of M

This is checked directly on the transition graph

GG Gg gg

0.5

0.5

0.25

0.25

0.5

0.5

0.5

Compute left eigenvector associated to 1

(w1, w2, w3)

1
2

1
2

0
1
4

1
2

1
4

0 1
2

1
2

 = (w1, w2, w3)

1

2
w1 +

1

4
w2 = w1

1

2
w1 +

1

2
w2 +

1

2
w3 = w2

1

4
w2 +

1

2
w3 = w3

So w1 = w2/2, w3 = w2/2 and thus

1

4
w2 +

1

2
w2 +

1

4
w2 = w2,

that is, w2 = w2, i.e., w2 can take any value

=⇒ w =

(
1

4
,
1

2
,
1

4

)

8.6 Changing the setting of the genetic experiment
Suppose now the same type of experiment, but mate each new generation with a GG
individual instead of a Gg individual

GG Gg gg

1

0.5

0.5

1

8.7. ABSORBING MARKOV CHAINS 129

↗ GG Gg gg
GG 1 0 0
Gg 0.5 0.5 0
gg 0 1 0

P =

1 0 0
1

2

1

2
0

0 1 0

• leave gg after 1 iteration and can never return
• when we leave Gg, we can never return
• we can never leave GG when we get there

8.7 Absorbing Markov chains
Definition 8.11 (Absorbing state). A state Si in a Markov chain is absorbing if
whenever it occurs on the nth generation of the experiment, it then occurs on every
subsequent step. In other words, Si is absorbing if pii = 1 and pij = 0 for i ̸= j

Definition 8.12 (Absorbing chain). A Markov chain is absorbing if it has at least
one absorbing state, and if from every state it is possible to go to an absorbing state.
In an absorbing Markov chain, a state that is not absorbing is called transient

Suppose we have a chain like the following

1 2 3 4

1. Does the process eventually reach an absorbing state?
2. What is the average number of steps spent in a transient state, if starting in a

transient state?
3. What is the average number of steps before entering an absorbing state?
4. What is the probability of being absorbed by a given absorbing state, when there

are more than one, when starting in a given transient state?
The answer to the first question (“Does the process eventually reach an absorbing
state?”) is given by the following result

Theorem 8.13. In an absorbing Markov chain, the probability of reaching an absorbing
state is 1

To answer the other questions, write the transition matrix in standard form
For an absorbing chain with k absorbing states and r − k transient states, write

transition matrix as
P =

(
Ik 0
R Q

)
with following meaning

Absorbing states Transient states
Absorbing states Ik 0
Transient states R Q

130 CHAPTER 8. THE PAGERANK ALGORITHM

with Ik the k × k identity matrix, 0 an k × (r − k) matrix of zeros, R an (r − k) × k
matrix and Q an (r − k)× (r − k) matrix. The matrix Ir−k −Q is invertible. Let

• N = (Ir−k −Q)−1 the fundamental matrix of the MC
• Ti sum of the entries on row i of N
• B = NR

Answers to our remaining questions:
2. Nij average number of times the process is in the jth transient state if it starts

in the ith transient state
3. Ti average number of steps before the process enters an absorbing state if it starts

in the ith transient state
4. Bij probability of eventually entering the jth absorbing state if the process starts

in the ith transient state

Back to the genetic example The matrix is already in standard form

P =

 1 0 0
1
2

1
2

0
0 1 0

 =

(
I1 0
R Q

)

with I1 = 1, 0 = (0 0) and

R =

(
1
2

0

)
Q =

(
1
2

0
1 0

)
We have

I2 −Q =

(
1 0
0 1

)
−
(

1
2

0
1 0

)
=

(
1
2

0
−1 1

)
so

N = (I2 −Q)−1 = 2

(
1 0
1 1

2

)
=

(
2 0
2 1

)
Then

T = N1l =

(
2
3

)
and

B = NR =

(
2 0
2 1

)(
1
2

0

)
=

(
1
1

)
2. Nij average number of times the process is in the jth transient state if it starts

in the ith transient state
N =

(
2 0
2 1

)
3. Ti average number of steps before the process enters an absorbing state if it starts

in the ith transient state
T =

(
2
3

)

8.7. ABSORBING MARKOV CHAINS 131

4. Bij probability of eventually entering the jth absorbing state if the process starts
in the ith transient state

B

(
1
1

)

132 CHAPTER 8. THE PAGERANK ALGORITHM

Appendix A

Review/presentation of some required
concepts

In this course, we rely on notions you acquired in first year Linear Algebra. So let us
(briefly) go over material in these courses. I also add (for some of you) a few things
that will be handy and establish some terminology that we use throughout the course.
Some of the results in this appendix will be studied and proved in class, others you can
just admit.

A.1 Sets

A.1.1 Sets and elements

Sets are some of the most elementary structures used in mathematics. They are also
extremely useful in programming languages.

Definition A.1 (Set). A set X is a collection of elements.

We write x ∈ X or x ̸∈ X to indicate that the element x belongs to the set X or
does not belong to the set X, respectively.

Definition A.2 (Subset). Let X be a set. The set S is a subset of X, which is denoted
S ⊆ X, if all its elements belong to X. We say that the subset S is a proper subset
of X and write S ⊊ X, if it is a subset of X and not equal to X.

Let A and B two sets. U the universal set (A ⊆ U and B ⊆ U).

Definition A.3. Union of A and B A ∪ B = {x : x ∈ A or x ∈ B} set consisting of
elements belonging to A or B

Definition A.4 (Intersection of A and B). A ∩ B = {x : x ∈ A and x ∈ B} set
containing those elements belonging to both A and B

Definition A.5 (Empty set). The empty set ∅ contains no element.

133

134APPENDIX A. REVIEW/PRESENTATION OF SOME REQUIRED CONCEPTS

Definition A.6 (Disjoints sets). If A ∩ B = ∅, then A and B are disjoints sets. (A
and B have no elements in common).

Definition A.7 (Complement of A). Ā = {x : x ∈ U and x ̸∈ A} set consisting of all
elements of U not belonging to A.

Definition A.8 (Difference). A\B = {x : x ∈ A and x ̸∈ B} set containing those
elements of A that do not belong to B

Definition A.9 (Partition). Let A be a non-empty set. A partition of A is the set
{A1, A2, . . . , An} such that

• ∀i ∈ {1, . . . , n}, Ai ̸= ∅ and Ai ⊂ A (non-empty and subset of A)
• If Ai ̸= Aj then Ai ∩ Aj = ∅ (every two subsets are disjoint)
• A1 ∪ A2 ∪ · · · ∪ An = A

A.1.2 Quantifiers

A shorthand notation for “for all elements x belonging to X” is ∀x ∈ X. For example,
if X = R, the field of real numbers, then ∀x ∈ R means “for all real numbers x”.

A shorthand notation for “there exists an element x in the set X” is ∃x ∈ X. ∀ and
∃ are quantifiers.

A.1.3 Intersection and union of sets

Let X and Y be two sets.

Definition A.10 (Intersection). The intersection X ∩ Y of X and Y is the set of
elements that belong to X and to Y ,

X ∩ Y = {x : x ∈ X and x ∈ Y }.

Definition A.11 (Union). The union X ∪ Y of X and Y is the set of elements that
belong to X or to Y ,

X ∪ Y = {x : x ∈ X or x ∈ Y }.

In mathematics, or=and/or in common parlance and I tend to get angry when the
latter formulation is used. If you want to specify that elements should belong to one of
the sets but not to both, the notion of exclusive or (xor) also exists, which is defined
as

(X ∪ Y) \ (X ∩ Y).

A.2. JUST ENOUGH LOGIC TO GET BY 135

A.2 Just enough logic to get by

A proposition is an assertion (or statement) whose truth value (true or false) can be
asserted. For example, a theorem is a proposition that has been shown to be true. “The
sky is blue” is also a proposition. Let A be a proposition. We generally write

A

to mean that A is true, and
not A

to mean that A is false. not A is the negation of A (or not A is the negative of A).
Let A,B be propositions. Then
• A ⇒ B (read A implies B) means that whenever A is true, then so is B.
• A ⇔ B, also denoted A if and only if B (A iff B for short), means that A ⇒ B

and B ⇒ A
We also say that A and B are equivalent.

Let A and B be propositions. Then

(A ⇒ B) ⇔ (not B ⇒ not A).

Necessary or sufficient conditions Suppose we want to establish whether a given
statement P is true, depending on the truth value of a statement H. Then we say that

• H is a necessary condition if P ⇒ H
(It is necessary that H be true for P to be true; so whenever P is true, so is H)

• H is a sufficient condition if H ⇒ P
(It suffices for H to be true for P to also be true)

• H is a necessary and sufficient condition if H ⇔ P , i.e., H and P are
equivalent

Playing with quantifiers For the quantifiers ∀ (for all) and ∃ (there exists),

∃ is the contraposite of ∀

Therefore, for example, the contraposite of

∀x ∈ X, ∃y ∈ Y

is
∃x ∈ X, ∀y ∈ Y

136APPENDIX A. REVIEW/PRESENTATION OF SOME REQUIRED CONCEPTS

A.3 Vectors and vector spaces

A.3.1 Vectors

A vector v is an ordered n-tuple of real or complex numbers
Denote F = R or C (real or complex numbers). For v1, . . . , vn ∈ F,

v = (v1, . . . , vn) ∈ Fn

is a vector. v1, . . . , vn are the components of v
If unambiguous, we write v. Otherwise, v or v⃗

A.3.2 Vector space

Definition A.12 (Vector space). A vector space over F is a set V together with
two binary operations, vector addition, denoted +, and scalar multiplication, that
satisfy the relations:

1. ∀u,v,w ∈ V , u+ (v +w) = (u+ v) +w
2. ∀v,w ∈ V , v +w = w + v
3. ∃0 ∈ V , the zero vector, such that v + 0 = v for all v ∈ V
4. ∀v ∈ V , there exists an element w ∈ V , the additive inverse of v, such that

v +w = 0
5. ∀α ∈ R and ∀v,w ∈ V , α(v +w) = αv + αw
6. ∀α, β ∈ R and ∀v ∈ V , (α + β)v = αv + βv
7. ∀α, β ∈ R and ∀v ∈ V , α(βv) = (αβ)v
8. ∀v ∈ V , 1v = v

A.3.3 Norms

Definition A.13 (Norm). Let V be a vector space over F, and v ∈ V be a vector. The
norm of v, denoted ∥v∥, is a function from V to R+ that has the following properties:

1. For all v ∈ V , ∥v∥ ≥ 0 with ∥v∥ = 0 iff v = 0.
2. For all α ∈ F and all v ∈ V , ∥αv∥ = |α| ∥v∥.
3. For all u,v ∈ V , ∥u+ v∥ ≤ ∥u∥+ ∥v∥.

Let V be a vector space (for example, R2 or R3)
The zero element (or zero vector) is the vector 0 = (0, . . . , 0)
The additive inverse of v = (v1, . . . , vn) is −v = (−v1, . . . ,−vn)
For v = (v1, . . . , vn) ∈ V , the length (or Euclidean norm) of v is the scalar

∥v∥ =
√

v21 + · · ·+ v2n

To normalize the vector v consists in considering ṽ = v/∥v∥, i.e., the vector in
the same direction as v that has unit length

A.3. VECTORS AND VECTOR SPACES 137

A.3.4 Standard basis vectors

Vectors i = (1, 0, 0), j = (0, 1, 0) and k = (0, 0, 1) are the standard basis vectors of
R3. A vector v = (v1, v2, v3) can then be written as the linear combination of i, j,k,

v = v1i+ v2j+ v3k.

That representation is unique (in the basis {i, j,k}). For V (Rn), the standard basis
vectors are usually denoted e1, . . . , en, with

ek = (0, . . . , 0︸ ︷︷ ︸
k−1

, 1, 0, . . . , 0︸ ︷︷ ︸
n−k+1

).

A.3.5 Dot product

Definition A.14 (Dot product). Let a = (a1, . . . , an) ∈ Rn, b = (b1, . . . , bn) ∈ Rn.
The dot product of a and b is the scalar

a • b =
n∑

i=1

aibi = a1b1 + · · ·+ anbn

The dot product is a special case of inner product.

Theorem A.15 (Properties of the dot product). For a,b, c ∈ Rn and α ∈ R,
• a • a = ∥a∥2 (so a • a ≥ 0, with a • a = 0 ⇐⇒ a = 0)
• a • b = b • a (• is commutative)
• a • (b+ c) = a • b+ a • c (• distributive over +)
• (αa) • b = α(a • b) = a • (αb)
• 0 • a = 0

A.3.6 Some results stemming from the dot product

Theorem A.16. If θ is the angle between the vectors a and b, then

a • b = ∥a∥ ∥b∥ cos θ

Corollary A.17 (Cauchy-Schwarz inequality). For any two vectors a and b, we have

|a • b| ≤ ∥a∥ ∥b∥

with equality if and only if a is a scalar multiple of b, or one of them is 0.

Theorem A.18. a and b are orthogonal if and only if a • b = 0.

A.3.7 Scalar and vector projections

Let a,v be vectors.

138APPENDIX A. REVIEW/PRESENTATION OF SOME REQUIRED CONCEPTS

The scalar projection of v onto a (or component of v
along a) is given by

compav =
a • v
∥a∥

(A.1)

The vector projection (or orthogonal projection) of v
onto a is given by

projav =

(
a • v
∥a∥

)
a

∥a∥
=

a • v
∥a∥2

a (A.2)

A.4 Complex numbers
Definition A.19 (Complex numbers). A complex number is an ordered pair (a, b),
where a, b ∈ R. Usually written a + ib or a + bi, where i2 = −1 (i.e., i =

√
−1). The

set of all complex numbers is denoted C,

C = {a+ ib : a, b ∈ R}.

Definition A.20 (Addition and multiplication on C). Letting a + ib and c + id ∈ C,
addition on C is defined by

(a+ ib) + (c+ id) = (a+ c) + i(b+ d)

and multiplication on C is defined by

(a+ ib)(c+ id) = (ac− bd) + i(ad+ bc).

Note that the latter is easy to obtain using regular multiplication and the fact that
i2 = −1.

Proposition A.21. 1. ∀α, β, γ ∈ C,
2. α + β = β + α and αβ = βα [commutativity]
3. (α + β) + γ = α + (β + γ) and (αβ)γ = α(βγ) [associativity]
4. γ + 0 = γ and γ1 = γ [identities]
5. ∀α ∈ C, ∃β ∈ C unique s.t. α + β = 0 [additive inverse]
6. ∀α ̸= 0 ∈ C, ∃β ∈ C unique s.t. αβ = 1 [multiplicative inverse]
7. γ(α + β) = γα + γβ [distributivity]

Additive & multiplicative inverse, subtraction, division

Definition A.22. Let α, β ∈ C
• −α is the additive inverse of α, i.e., the unique number in C s.t. α+(−α) = 0
• Subtraction on C:

β − α = β + (−α)

A.4. COMPLEX NUMBERS 139

• For α ̸= 0, 1/α is the multiplicative inverse of α, i.e., the unique number in
C s.t.

α(1/α) = 1

• Division on C:
β/α = β(1/α)

Definition A.23 (Real and imaginary parts). Let z = a + ib. Then ℜ(z) = a is real
part and ℑ(z) = b is imaginary part of z.

Definition A.24 (Conjugate and Modulus). Let z = a+ ib ∈ C. Then
• The complex conjugate of z is

z̄ = a− ib.

• The modulus (or absolute value) of z is

|z| =
√
a2 + b2 ≥ 0.

Property A.25 (Properties of complex numbers). Let w, z ∈ C, then
• z + z̄ = 2ℜz
• z − z̄ = 2iℑz
• zz̄ = |z|2
• w + z = w̄ + z̄ and wz = w̄z̄
• z̄ = z
• |ℜz| ≤ |z| and |ℑz| ≤ |z|
• |z̄| = |z|
• |wz| = |w| |z|
• |w + z| ≤ |w|+ |z| [triangle inequality]

A.4.1 Solving quadratic equations

The interest of complex numbers is easily illustrated as follows. Consider the polynomial

P (x) = a0 + a1x+ a2x
2, (A.3)

where x, a0, a1, a2 ∈ R. Letting

∆ = a21 − 4a0a2,

we know from high school mathematics that if ∆ > 0, then

P (x) = 0

has two distinct real solutions,

x1 =
−a1 −

√
∆

2a2
and x2 =

−a1 +
√
∆

2a2
,

140APPENDIX A. REVIEW/PRESENTATION OF SOME REQUIRED CONCEPTS

while if ∆ = 0, then there is a (multiplicity 2) unique real solution

x1 =
−a1
2a2

.

Finally, if ∆ < 0, then there is no (real) solution. Now suppose that instead of seeking
real roots, we allow roots to be complex numbers. For this, consider again the polyno-
mial (A.3). If instead of seeking x ∈ R, we seek x ∈ C, then the situation is the same,
except when ∆ < 0. In the latter case, note that

√
∆ =

√
(−1)(−∆) =

√
−1

√
−∆ = i

√
−∆.

As a consequence, when ∆ < 0, −∆ > 0 and the square root is the usual one. To
summarize, consider the polynomial (A.3). Letting

∆ = a21 − 4a0a2,

then
P (x) = 0

has two solutions,

x1,2 =
−a1 ±

√
∆

2a2
,

where, if ∆ < 0, x1, x2 ∈ C and take the form

x1,2 =
−a1 ± i

√
−∆

2a2
.

A.4.2 Why this matters

Recall that the eigenpairs of the matrix

A =

(
a11 a12
a21 a22

)
, (A.4)

are the λ and v ̸= 0 solutions to
Av = λv.

We come back to this later in Section A.7.1, but let us recall how one treats this
problem. Finding λ and v ̸= 0 such that Av = λv is equivalent, of course, to finding
λ and v ̸= 0 such that

(A− λI)v = 0. (A.5)

Since we seek nonzero v, we must invoke the contraposite of Theorem A.62 and in
particular, the following:

Av = 0 has infinitely many solutions ⇐⇒ det(A) = 0.

A.5. LINEAR SYSTEMS AND MATRICES 141

(Note that the contrapositive of the statement “Av = 0 has the unique solution v = 0”
in Theorem A.62 is “Av = 0 has either no or infinitely many solutions”. However, we
know that v = 0 is always solution to the homogeneous linear system Av = 0 and as
a consequence, the contraposite just states there are infinitely many solutions.)

As a consequence, we find the eigenvalues λ by solving det(A−λI) = 0, i.e., finding
the λ solutions to

|A− λI| =
∣∣∣∣a11 − λ a12

a21 a22 − λ

∣∣∣∣ = (a11 − λ)(a22 − λ)− a12a21 = 0.

Simplifying the latter polynomial,

λ2 − (a11 + a22)λ+ a11a22 − a12a21 = 0.

Let
P (λ) = λ2 − (a11 + a22)λ+ a11a22 − a12a21

From previous discussion, letting

∆ = (a11 + a22)
2 − 4(a11a22 − a12a21)

= a211 + a222 + 2a11a22 − 4a11a22 + 4a12a21

= a211 + a222 − 2a11a22 + 4a12a21

= (a11 − a22)
2 + 4a12a21,

we have two (potentially equal) solutions to P (λ) = 0

x1,2 =
a11 + a22 ±

√
∆

2

that are complex if ∆ < 0.

Example:
(
0 −1
1 0

)

A.5 Linear systems and matrices

A.5.1 Linear systems

Definition A.26 (Linear system). A linear system of m equations in n unknowns
takes the form

a11x1 + a12x2 + · · · + a1nxn = b1
a21x1 + a22x2 + · · · + a2nxn = b2

...
...

...
...

...
am1x1 + am2x2 + · · · + amnxn = bn

(A.6)

The aij, xj and bj could be in R or C, although here we typically assume they are
in R

The aim is to find x1, x2, . . . , xn that satisfy all equations simultaneously

142APPENDIX A. REVIEW/PRESENTATION OF SOME REQUIRED CONCEPTS

Theorem A.27 (Nature of solutions to a linear system). A linear system can have
• no solution
• a unique solution
• infinitely many solutions

Operations on linear systems You learned to manipulate linear systems using
• Gaussian elimination
• Gauss-Jordan elimination

with the aim to put the system in row echelon form (REF) or reduced row echelon
form (RREF)

Matrices and linear systems Writing

A =

a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn

 , x =

x1

x2
...
xn

 and b =

b1
b2
...
bn

where A is an m × n matrix, x and b are n (column) vectors (or n × 1 matrices),
then the linear system in the previous slide takes the form

Ax = b

Notation for vectors We usually assume vectors are column vectors and thus write,
e.g.,

x =

x1

x2
...
xn

 = (x1, x2, . . . , xn)
T

Here, T is the transpose operator (more on this soon)
Consider the system

Ax = b

If b = 0, the system is homogeneous and always has the solution x = 0 and so the
“no solution” option in Theorem A.27 goes away

A.6 Matrix arithmetic
Definition A.28 (Matrix). An m-by-n or m × n matrix is a rectangular array of
elements of R or C with m rows and n columns,

A = [aij] =

a11 · · · a1n
...

...
am1 · · · amn

A.6. MATRIX ARITHMETIC 143

We always list indices as “row,column”
We denote Mmn(F) or Fmn the set of m × n matrices with entries in F = {R,C}.

Often, we omit F in Mmn if the nature of F is not important
When m = n, we usually write Mn

Basic matrix arithmetic Let A ∈ Mmn, B ∈ Mmn be matrices (of the same size)
and c ∈ F = {R,C} be a scalar

• Scalar multiplication
cA = [caij]

• Addition
A+B = [aij + bij]

• Subtraction (addition of −B = (−1)B to A)

A−B = A+ (−1)B = [aij + (−1)bij] = [aij − bij]

• Transposition of A gives a matrix AT = Mnm with

AT = [aji], j = 1, . . . , n, i = 1, . . . ,m

Matrix multiplication The (matrix) product of A and B, AB, requires the “inner
dimensions” to match, i.e., the number of columns in A must equal the number of rows
in B

Suppose that is the case, i.e., let A ∈ Mmn, B ∈ Mnp. Then the i, j entry in
C := AB takes the form

cij =
n∑

k=1

aikbkj

Recall that the matrix product is not commutative, i.e., in general, AB ̸= BA (when
both those products are defined, i.e., when A,B ∈ Mn)

Special matrices

Definition A.29 (Zero and identity matrices). The zero matrix is the matrix 0mn

whose entries are all zero. The identity matrix is a square n × n matrix In with all
entries on the main diagonal equal to one and all off diagonal entries equal to zero

A.6.1 Symmetric matrices

Symmetric matrices occur quite frequently in this course, so let us go over some of their
properties in some detail. First, recall that a symmetric matrix is defined as follows.

Definition A.30 (Symmetric matrix). A square matrix A ∈ Mn is symmetric if
∀i, j = 1, . . . , n, aij = aji. In other words, A ∈ Mn is symmetric if A = AT .

Theorem A.31. 1. If A ∈ Mn, then A+ AT is symmetric.
2. If A ∈ Mmn, then AAT ∈ Mm and ATA ∈ Mn are symmetric.

144APPENDIX A. REVIEW/PRESENTATION OF SOME REQUIRED CONCEPTS

Proof. 1. The statement is true if A+ AT = (A+ AT)T . We have

(A+ AT)T = AT + (AT)T = AT + A = A+ AT ,

so the property is true.
2. AAT is symmetric if AAT = (AAT)T . We have

(AAT)T = (AT)TAT = AAT

and the property is true. Similarly, (ATA)T = AT (AT)T = ATA and thus both AAT

and ATA are symmetric.

Real symmetric matrices have a spectrum (set of eigenvalues) that has very specific
properties.

Theorem A.32. Let A ∈ Mn(R) be symmetric. Then all eigenvalues of A are real.

Proof. Let A ∈ Mn(R) be symmetric and assume (λ,v) is an eigenpair of A, i.e,
Av = λv and v ̸= 0. Taking the complex conjugate, Av = λv. Recall that z ∈ C is
such that z = z̄ ⇐⇒ z ∈ R. So, since A ∈ Mn(R), A = A (consider the matrix entry
by entry). Therefore,

Av̄ = Av̄ = Av = λv = λv̄,

i.e., if (λ,v) is an eigenpair, then (λ̄, v̄) is also an eigenpair.
Still assuming that A ∈ Mn(R) is symmetric and (λ,v) is an eigenpair of A, using

what we just proved (that (λ̄, v̄) also eigenpair), take transposes:

Av̄ = λ̄v̄ ⇐⇒ (Av̄)T = (λ̄v̄)T

⇐⇒ v̄TAT = λ̄v̄T

⇐⇒ v̄TA = λ̄v̄T .

Let us now compute λ(v̄ • v). We have

λ(v̄ • v) = λv̄Tv = v̄T (λv)

= v̄T (Av) = (v̄TA)v

= (λ̄v̄T)v = λ̄(v̄ • v) ⇐⇒ (λ− λ̄)(v̄ • v) = 0.

We have shown
(λ− λ̄)(v̄ • v) = 0.

Let

v =

a1 + ib1
...

an + ibn

 .

A.6. MATRIX ARITHMETIC 145

Then

v̄ =

a1 − ib1
...

an − ibn

 .

So
v̄ • v = (a21 + b21) + · · ·+ (a2n + b2n).

But v, as an eigenvector, is ̸= 0, so v̄ • v ̸= 0 and finally,

(λ− λ̄)(v̄ • v) = 0 ⇐⇒ λ− λ̄ = 0 ⇐⇒ λ = λ̄ ⇐⇒ λ ∈ R.

The result is proved.

By Theorem A.31, any matrix A ∈ Mmn gives rise to a symmetric matrix when
it is multiplied to its transpose. A symmetric matrix generated this way enjoys even
“better” spectrum properties.

Theorem A.33. Let A ∈ Mmn(R). Then the eigenvalues of ATA (and AAT) are real
and nonnegative.

Proof. Let A ∈ Mmn(R). By Theorem A.31, ATA is symmetric. It is also real, as the
product of two real matrices. As a consequence, from Theorem A.32, ATA has real
eigenvalues.

Let then (λ,v) be an eigenpair of ATA, with v chosen so that ∥v∥ = 1. Norms are
functions V → R+ (see Section A.3.3), so ∥Av∥ and ∥Av∥2 are ≥ 0 and thus

0 ≤ ∥Av∥2 = (Av) • (Av) = (Av)T (Av)

= vTATAv = vT (ATAv) = vT (λv)

= λ(vTv) = λ(v • v) = λ∥v∥2

= λ,

proving the result.

A.6.2 Determinants

Definition A.34 (Determinant). Let A ∈ Mn with n ≥ 2. The determinant of A is
the scalar

det(A) = |A| =
n∑

j=1

aijCij

where Cij = (−1)i+j det(Aij) is the (i, j)-cofactor of A and Aij is the submatrix of A
from which the ith row and jth column have been removed

146APPENDIX A. REVIEW/PRESENTATION OF SOME REQUIRED CONCEPTS

This is a cofactor expansion along the ith row
This is a recursive formula: it gives result in terms of n Mn−1 matrices, to which it

must in turn be applied, all the way down to

det

(
a11 a12
a21 a22

)
= a11a22 − a12a21

Two special matrices and their determinants

Definition A.35. A ∈ Mn is upper triangular if aij = 0 when i > j, lower trian-
gular if aij = 0 when j > i, triangular if it is either upper or lower triangular and
diagonal if it is both upper and lower triangular

When A diagonal, we often write A = diag (a11, a22, . . . , ann)

Theorem A.36. Let A ∈ Mn be triangular or diagonal. Then

det(A) =
n∏

i=1

aii = a11a22 · · · ann

Inversion/Singularity

Definition A.37 (Matrix inverse). A ∈ Mn is invertible (or nonsingular) if ∃A−1 ∈
Mn s.t.

AA−1 = A−1A = I

A−1 is the inverse of A. If A−1 does not exist, A is singular

Theorem A.38. Let A ∈ Mn, x,b ∈ Fn. Then
• A invertible ⇐⇒ det(A) ̸= 0
• If A invertible, A−1 is unique
• If A invertible, then Ax = b has the unique solution x = A−1b

Revisiting matrix arithmetic With addition, subtraction, scalar multiplication, mul-
tiplication, transposition and inversion, you can perform arithmetic on matrices essen-
tially as on scalar, if you bear in mind a few rules

• The sizes have to be compatible
• The order is important since matrix multiplication is not commutative
• Transposition and inversion change the order of products:

(AB)T = BTAT and (AB)−1 = B−1A−1

A.7. DIAGONALISATION 147

A.7 Diagonalisation

A.7.1 Eigenvalues / Eigenvectors / Eigenpairs

Definition A.39. Let A ∈ Mn. A vector x ∈ Fn such that x ̸= 0 is an eigenvector
of A if ∃λ ∈ F called an eigenvalue, s.t.

Ax = λx

A couple (λ,x) with x ̸= 0 s.t. Ax = λx is an eigenpair

If (λ,x) eigenpair, then for c ̸= 0, (λ, cx) also eigenpair since A(cx) = cAx = cλx
and dividing both sides by c..

Definition A.40 (Similarity). A,B ∈ Mn are similar (A ∼ B) if ∃P ∈ Mn invertible
s.t.

P−1AP = B

Theorem A.41 (∼ is an equivalence relation). A,B,C ∈ Mn, then
• A ∼ A (∼ reflexive)
• A ∼ B =⇒ B ∼ A (∼ symmetric)
• A ∼ B and B ∼ C =⇒ A ∼ C (∼ transitive)

Theorem A.42. A,B ∈ Mn with A ∼ B. Then
• det A = det B
• A invertible ⇐⇒ B invertible
• A and B have the same eigenvalues

A.7.2 Diagonalisation

Definition A.43 (Diagonalisability). A ∈ Mn is diagonalisable if ∃D ∈ Mn diago-
nal s.t. A ∼ D

In other words, A ∈ Mn is diagonalisable if there exists a diagonal matrix D ∈ Mn

and a nonsingular matrix P ∈ Mn s.t. P−1AP = D
Could of course write PAP−1 = D since P invertible, but P−1AP makes more sense

for computations

Theorem A.44. A ∈ Mn diagonalisable ⇐⇒ A has n linearly independent eigenvec-
tors

Corollary A.45 (Sufficient condition for diagonalisability). A ∈ Mn has all its eigen-
values distinct =⇒ A diagonalisable

For P−1AP = D: in P , put the linearly independent eigenvectors as columns and
in D, the corresponding eigenvalues

148APPENDIX A. REVIEW/PRESENTATION OF SOME REQUIRED CONCEPTS

A.8 Linear independence/Bases/Dimension
Linear combination and span
Definition A.46 (Linear combination). Let V be a vector space. A linear combina-
tion of a set {v1, . . . ,vk} of vectors in V is a vector

c1v1 + · · ·+ ckvk

where c1, . . . , ck ∈ F
Definition A.47 (Span). The set of all linear combinations of a set of vectors v1, . . . ,vk

is the span of {v1, . . . ,vk},
span (v1, . . . ,vk) = {c1v1 + · · ·+ ckvk : c1, . . . , ck ∈ F}

Finite/infinite-dimensional vector spaces
Theorem A.48. The span of a set of vectors in V is the smallest subspace of V
containing all the vectors in the set
Definition A.49 (Set of vectors spanning a space). If span (v1, . . . ,vk) = V , we say
v1, . . . ,vk spans V

Definition A.50 (Dimension of a vector space). A vector space V is finite-dimensional
if some set of vectors in it spans V . A vector space V is infinite-dimensional if it is
not finite-dimensional
Definition A.51 (Linear independence/Linear dependence). A set {v1, . . . ,vk} of vec-
tors in a vector space V is linearly independent if

(c1v1 + · · ·+ ckvk = 0) ⇔ (c1 = · · · = ck = 0) ,

where c1, . . . , ck ∈ F. A set of vectors is linearly dependent if it is not linearly
independent.

If linearly dependent, assume w.l.o.g. that c1 ̸= 0, then

v1 = −c2
c1
v2 − · · · − ck

c1
vk

i.e., v1 is a linear combination of the other vectors in the set.
Theorem A.52. Let V be a finite-dimensional vector space. Then the cardinal (num-
ber of elements) of every linearly independent set of vectors is less than or equal to the
number of elements in every spanning set of vectors.

E.g., in R3, a set with 4 or more vectors is automatically linearly dependent.
Definition A.53 (Basis). Let V be a vector space. A basis of V is a set of vectors in
V that is both linearly independent and spanning.
Theorem A.54 (Criterion for a basis). A set {v1, . . . ,vk} of vectors in a vector space
V is a basis of V ⇐⇒ ∀v ∈ V , v can be written uniquely in the form

v = c1v1 + · · ·+ ckvk,

where c1, . . . , ck ∈ F.

A.9. LINEAR ALGEBRA IN A NUTSHELL 149

Plus/Minus Theorem
Theorem A.55 (Plus/Minus Theorem). S a nonempty set of vectors in vector space
V

• If S is linearly independent and V ∋ v ̸∈ span (S), then S ∪ {v} is linearly
independent

• If v ∈ S is linear combination of other vectors in S, then span (S) = span (S −
{v})

More on bases
Theorem A.56 (Basis of finite-dimensional vector space). Every finite-dimensional
vector space has a basis
Theorem A.57. Any two bases of a finite-dimensional vector space have the same
number of vectors
Definition A.58 (Dimension). The dimension dimV of a finite-dimensional vector
space V is the number of vectors in any basis of the vector space
Theorem A.59 (Dimension of a subspace). Let V be a finite-dimensional vector space
and U ⊂ V be a subspace of V . Then dimU ≤ dimV

Constructing bases
Theorem A.60. Let V be a finite-dimensional vector space. Then every linearly inde-
pendent set of vectors in V with dimV elements is a basis of V
Theorem A.61. Let V be a finite-dimensional vector space. Then every spanning set
of vectors in V with dimV elements is a basis of V

A.9 Linear algebra in a nutshell
To finish, here is the “expanding result” that you kept adding to in your first Linear
Algebra course. Of course, it can still be expanded... As a “TFAE statement”, either
all statements in the list are true simultaneously, or (exclusively) they are all false.
Theorem A.62. Let A ∈ Mn. The following statements are equivalent (TFAE):

1. The matrix A is invertible (or nonsingular).
2. ∀b ∈ Fn, Ax = b has a unique solution (x = A−1b).
3. The only solution to Ax = 0 is the trivial solution x = 0.
4. RREF (A) = In.
5. The matrix A is equal to a product of elementary matrices.
6. ∀b ∈ Fn, Ax = b has a solution.
7. There is a matrix B ∈ Mn such that AB = In.
8. There is an invertible matrix B ∈ Mn such that AB = In.
9. det(A) ̸= 0.

10. 0 is not an eigenvalue of A.

Index

n-clique, 71

adjacent vertices, 68
antipodal vertices, 112
arcs, 88
articulation point, 80
articulation set, 94

basis, 148
best approximation, 30
binary relation, 65
bipartite graph, 71
boundary of a region in a plane graph, 82
branches, 94
bridge, 80

cardinal, 148
chromatic number, 83
circuit, 75
closed walk, 75
complete bipartite graph, 71
complex conjugate, 139
component, 38
connected components, 79
connected graph, 78
connected vertices, 78
cut vertex, 80
cycle, 75

data wrangling, 11
degree matrix, 103
degree, digraph, 90
diagonalisable, 147
digraph, 88
directed cycle, 91
directed path, 91
directed trail, 91

directed walk, 91
disconnected digraph, 93
disconnected graph, 78
dot product, 137

edges, 66
elements, 133
equivalence classes, 65
error vector, 26
even vertex, 69

finite graph, 68
forest, 94

genetic algorithm, 27
geodesic distance, 108

Hamiltonian cycle, 78
Hamiltonian graph, 78
Hamiltonian path, 77

indegree, 90
initial endpoint, 89
intersection, 134
irreducible matrix, 104

Laplacian matrix, 103
least squares solution, 29
length of a cycle, 75
linear combination, 148
linearly dependent, 148
linearly independent, 148

minimisation problem, 27
modulus, 139
multidigraph, 88
Multiple arcs, 88

150

INDEX 151

neighbours, 89
nonplanar graph, 82
norm, 136
normal equations, 30

odd vertex, 69
order of a graph, 67
orientable graph, 94
orienting the graph, 94
orthogonal basis, 36
orthogonal matrix, 37
orthogonal projection, 38, 138
orthogonal set, 35
orthonormal basis, 36
orthonormal set, 36
outdegree, 90

path, 75
pendant vertex, 96
planar graph, 82
predecessor, 89

quantifiers, 134

reducible matrix, 104
reflexive relation, 65
region in a plane graph, 82
right singular vectors, 40

scalar projection, 138
set, 133
singular value decomposition, 40
singular values, 39
sink, 89
size of a graph, 68
source, 89
span, 148
spectrum of a graph, 103
strong orientation, 94
strongly connected, 93
strongly connected components, 93
subset, 133
successor, 89
symmetric matrix, 143

terminal endpoint, 89
traceable graph, 78
trail, 75
traversable graph, 76
tree, 94

underlying graph, 92
undirected graph, 66
union, 134

vertices, 66

walk, graph, 75
weakly connected, 92

	Data Science and Mathematics?
	What is Data Science?
	The data deluge

	Why bother about mathematics?
	Where to go for more information
	Remark about this document

	R and data
	Introduction to R and jupyter notebook
	Grabing the Canadian census data and putting it into shape

	Least squares problems
	From interpolation to fitting
	Least squares problems
	Solving by brute force using a genetic algorithm
	How about a little finesse?
	Fitting something more complicated
	Fitting the quadratic
	Fitting the exponential

	Matrix factorisations
	Orthogonal matrices
	The Gram-Schmidt orthonormalisation procedure
	Projections onto subspaces
	The Gram-Schmidt process

	The QR factorisation
	Back to least squares

	The singular values decomposition (SVD)
	Computing the SVD (case of = eigenvalues)
	Computing the SVD (case of = eigenvalues)
	Computing the SVD (case where some eigenvalues are =)

	Compressing images
	Doing things ``by hand''
	Doing things using proper functions

	Principal component analysis (PCA)
	Brief ``review'' of some probability concepts
	Hockey players (eh!)

	Graph theory ... theory
	Introduction and preliminaries
	Graphs versus networks
	Graphs vs digraphs vs multigraphs vs multidigraphs vs ...
	The bridges of Königsberg
	Finding a cycle with all vertices
	How far is it to drive through n cities?

	Binary relations
	Undirected graphs
	Undirected graph
	Order and size of graph
	Relationships between vertices and edges, nature of the edges
	Degree of a vertex
	Regular, complete, bipartite and other notable graphs
	Isomorphic graphs
	Subgraphs, unions of graphs
	Walks, trails, paths
	Eulerian graphs
	Hamiltonian graphs
	Connectedness
	Planar graphs

	Directed graphs
	Directed graph
	Degrees in digraphs
	Walks, paths, etc.
	Connectivity in digraphs
	Orientable graphs

	Trees
	Matrices associated to a graph/digraph
	Adjacency matrices
	Other matrices associated to a graph/digraph
	Linking graphs and linear algebra

	Quantifying graphs
	Measures specific to vertices
	Centre of a graph
	Centrality – Betweenness and closeness
	Periphery of a graph
	Degree distribution

	Measures at the graph level
	Circumference & Girth
	Graph density
	Graph connectivity
	Cliques
	k-cores

	The PageRank algorithm
	Markov chains
	Running example – Mendelian inheritance
	Repetition of the process
	Regular Markov chains
	Back to the genetics example
	Changing the setting of the genetic experiment
	Absorbing Markov chains

	Review/presentation of some required concepts
	Sets
	Sets and elements
	Quantifiers
	Intersection and union of sets

	Just enough logic to get by
	Vectors and vector spaces
	Vectors
	Vector space
	Norms
	Standard basis vectors
	Dot product
	Some results stemming from the dot product
	Scalar and vector projections

	Complex numbers
	Solving quadratic equations
	Why this matters

	Linear systems and matrices
	Linear systems

	Matrix arithmetic
	Symmetric matrices
	Determinants

	Diagonalisation
	Eigenvalues / Eigenvectors / Eigenpairs
	Diagonalisation

	Linear independence/Bases/Dimension
	Linear algebra in a nutshell

