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Flow diagram (demography not shown)
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The discrete-time tetanus model (notation mine)

∆Sb = bT (1a)

∆S = b(1− λb)(T − R) + νR + νbIb + νI + πIbSγbIb + πISγI (1b)

− (λ+ d − δT )S

∆Lb = λbb(T − R)− (εb + d − δT )Lb (1c)

∆L = λS − (ε+ d − δT )L (1d)

∆Ib = εbLb − (γb + d − δT )I (1e)

∆I = εL− (γ + d − δT )I (1f)

∆R = πIbRγbIb + πIRγI − (ν + d − δT )R (1g)

∆Rb = bR − (νb + d − δT )Rb (1h)

∆D = πIbDγbIb + πIDγI (1i)

where

T = S + Lb + L+ Ib + I + R + Rb and δT =
∆D

T
(1j)
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Parameter assumptions – Tetanus

▶ Incubation period – Mean duration 6 days for newborn and 8 days for general
population ⇒ daily rate of exit εb = 0.1667 and ε = 0.125

▶ Period of sickness – Mean duration 3 days for newborn and 14 days for general
population ⇒ daily rate of exit γb = 0.3333 per sick newborn and γ = 0.0714 for
sick general in general population

▶ Mortality from tetanus – Untreated tetanus cases, fatality rate 90% for
newborn Sb and 40% for general population. Treated: 80% for newborn and 30%
general population

▶ Immunity – Tetanus cases do not lead to immunity to reinfection. But as a
general rule, recovered people are vaccinated. Convalescents and general
population effectively immunised by complete course of vaccination go to R for
average 10 years, daily rate of exit is ν = 0.000274 per person.

▶ Immunity of newborns – Newborn to women vaccinated during pregnancy are
temporarily protected by maternal antibodies and pass through Rb for a mean
duration of 6 months. Daily rate of exit νb = 0.005479 per immunised newborn
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Deciding on infection outcome – π

Parameters π are proportion of individuals who follow a certain route post-infection

▶ πIb• proportion of infected newborn who
▶ πIbS recover without immunity
▶ πIbR recover with immunity
▶ πIbD die (0.9)

πIbS + πIbR + πIbD = 1

▶ πI• proportion of infected who
▶ πIS recover without immunity
▶ πIR recover with immunity
▶ πID die (0.4)

πIS + πIR + πID = 1
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Parameter assumptions – Demography

Live birth rate 35 per 1,000 population and annual crude death rate 15 per 1,000
population (annual rate of growth 2%) ⇒ daily birth and death rates b = 0.00009889
and d = 0.0000411 per person, respectively
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Parameter assumptions – Force of infection

No H2H transmission ⇒ incidence proportional to number of susceptible individuals
and force of infection, which quantifies combined effect of all variables involved in
infection process:

▶ degree of soil contamination with Clostridium tetani

▶ climate

▶ frequency of lesions

▶ proportion of rural population

▶ socioeconomic conditions

▶ level of medical care for the wounded and during deliveries
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Force of infection acting on newborn (λb) and susceptible population (λ) fixed at 3
different levels adequate for reproducing the following stable annual incidence rates of
tetanus cases in the community

▶ For newborn, 200 cases, 400 cases and 600 cases per 100,000 newborn

▶ For general population (without newborn), 9, 18 and 27 cases
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A crash course on discrete-time systems

We have seen systems of ordinary differential equations (ODE) of the form

d

dt
x(t) = f (x(t))

often written omitting dependence on t, i.e.,

x ′ = f (x) (2)

where x ∈ Rn and f : Rn → Rn. The system is considered together with an initial
condition x(t0) = x0 ∈ Rn.

The independent variable t ∈ R
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A discrete-time system takes the form

x(t +∆t) = f (x(t)) (3)

where x(t) ∈ Rn and f : Rn → Rn

In a discrete-time system, t is discrete and can be assumed to be in Z or N (in practice,
before “recasting”, it is in Q), we often write x(t + 1) = f (x(t)), assuming ∆t = 1..

Together with an initial condition x(t0) = x0 ∈ Rn, this constitutes a sequence that
describes the evolution of the state x
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Similarities/differences

x ′ = f (x), x(t0) = x0, x ∈ Rn x(t +∆t) = f (x(t)), x(t0) = x0, x ∈ Rn

Equilibria (EP) x⋆ s.t. f (x⋆) = 0Rn Fixed points (FP) x⋆ s.t. f (x⋆) = x⋆

LAS EP ⇔ s(Df (x⋆)) < 0 LAS FP ⇔ ρ(Df (x⋆)) < 1

Notation – if A ∈ Mn is a matrix, Sp(A) = {λ ∈ C : Av = λv, v ̸= 0} is its
spectrum, i.e., the set of all its eigenvalues and

▶ s(A) = max{Re (λ), λ ∈ Sp(A)} is its spectral abscissa

▶ ρ(A) = max{|λ|, λ ∈ Sp(A)} is its spectral radius
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Simulating the system

The R package we use for ODE (deSolve) can also do discrete-time systems, with very
little adaptation..

The function call is then of the form

sol <- ode(func = tetanus_Cvjetanovic, y = IC, times = 0:30,

parms = params, method = "iteration")

From the help for ode
Method “iteration” is special in that here the function func should return the
new value of the state variables rather than the rate of change
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The right hand side

tetanus_Cvjetanovic = function(t, y, params) {

with(as.list(c(y, params)), {

T = S+L_b+L+I_b+I+R+R_b

dD = pi_IbD*gamma_b*I_b+pi_ID*gamma*I

delta_T = dD/T

dS_b = b*T

dS = b*(1-lambda_b)*(T-R)+nu*R+nu_b*I+pi_IbS*gamma_b*I_b +

pi_IS*gamma*I-(lambda+d-delta_T)*S

dL_b = lambda_b*b*(T-R)-(epsilon_b+d-delta_T)*L_b

dL = lambda*S-(epsilon+d-delta_T)*L

dI_b = epsilon_b*L_b-(gamma_b+d-delta_T)*I

dI = epsilon*L-(gamma+d-delta_T)*I

dR = pi_IbR*gamma_b*I_b+pi_IR*gamma*I-(nu+d-delta_T)*R

dR_b = b*R-(nu_b+d-delta_T)*R_b

list(c(S_b+dS_b,S+dS,L_b+dL_b,L+dL,I_b+dI_b,I+dI,R+dR,R_b+dR_b,D+dD))

})

}

p. 13 – Some considerations about numerics



Set parameters

params = list()

params$epsilon_b = 0.1667

params$epsilon = 0.125

params$gamma_b = 1/3

params$gamma = 0.0714

params$nu = 0.000274

params$nu_b = 0.005479

params$b = 0.00009889

params$d = 0.0000411

params$pi_IbS = 0.05

params$pi_IS = 0.3

params$pi_IbR = 0.05

params$pi_IR = 0.3

params$pi_IbD = 0.9

params$pi_ID = 0.4

params$lambda_b = 0.1

params$lambda = 0.1
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A last few things then run

IC = c(S_b = 0,

S = 100000,

L_b = 0,

L = 0,

I_b = 0,

I = 0,

R = 0,

R_b = 0,

D = 0)

tspan = 0:30

sol <- ode(func = tetanus_Cvjetanovic, y = IC, times = tspan,

parms = params, method = "iteration")
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A few remarks about this model

To set λb and λ, we need to explore numerically model response

Discrete-time models can be analysed in pretty much the same way as continuous time
ones, but this one will be hard: there is no DFFP!

This means the usual methods for computing R0 will not work, as there is no DFFP to
perturb away from...
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Recall the base model of Capasso

E ′ = cHH − dEE (4a)

H ′ = g(E )− γHH (4b)

H E

cHH

g(E )

γHH

dEE

Human population Environment

1/γH mean infectious period, 1/dE mean lifetime of the agent in the environment, cH
growth rate of the agent due to the human population, g(E ) incidence of the agent on
human population
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Incidence function

g(E ) = h(E )Nβp (5)

where

▶ h(E ) probability for an exposed susceptible to get the infection

▶ N total human population

▶ β fraction of susceptible individuals in N

▶ p fraction exposed to contaminated environment per unit time (“probability per
unit time to have a “snack” of contaminated food”)

Typically, we would assume p and β independent of E and H and h to be saturating.
We take a Holling type II functional response

h(E ) = hmax
E

hhalf + E
(6)
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Simulating (in R) – Incidence function

h = function(E, params) {

# Use Michaelis Menten (Holling type II) growth

OUT = params$g_max * E / (params$g_half+E)

return(OUT)

}

g = function(E, params) {

OUT = params$N * params$beta * params$p * h(E,params)

return(OUT)

}
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The right hand side

rhs_Capasso_ODE = function(t, x, params) {

with(as.list(c(x, params)), {

dE = c_H*H-d_E*E

dH = g(E, params)-gamma_H*H

list(c(dE, dH))

})

}
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Setting parameters

# Put parameters in a list

params = list()

params$N = 1000 # Total population

params$gamma_H = 1/10 # Infectious period

params$d_E = 1/5 # Lifetime agent

params$c_H = 0.1 # Flow from humans

# Human characteristics and behaviour

params$beta = 0.2 # Fraction susceptible

params$p = 0.1 # Probability of having "snack"

# Growth function

params$g_max = 10

params$g_half = 100

# Final time

params$t_f = 150
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Running and plotting (base)

IC <- c(E = 10, H = 0)

tspan = seq(from = 0, to = params$t_f, by = 0.1)

sol_ODE = ode(y = IC,

func = rhs_Capasso_ODE,

times = tspan,

parms = params)

plot(sol_ODE[,"time"], sol_ODE[,"H"],

type = "l", lwd = 2,

xlab = "Time␣(days)", ylab = "Value")

lines(sol_ODE[,"time"], sol_ODE[,"E"],

lwd = 2, lty = 3)

legend("bottomright", legend = c("H(t)", "E(t)"),

lwd = c(2,2), lty = c(1,3), inset = 0.01)
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Let

R0 =
g ′
+(0)cH
dEγH

(7)

Theorem 1

▶ If 0 < R0 < 1, then (4) admits only the trivial equilibrium in the positive orthant,
which is GAS

▶ If R0 > 1, then two EP exist: (0, 0), which is unstable, and z⋆ = (E ⋆,H⋆) with
E ⋆,H⋆ > 0, GAS in R2

+ \ {0, 0}
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Computing R0

With the chosen g , we have

g ′(E ) =
Nβpghalf gmax

(ghalf + E )2

whence

g ′
+(0) =

Nβpgmax

ghalf

and thus

R0 =
Nβpgmax

ghalf

cH
dEγH

(8)

R0 = function(params) {

with(as.list(params), {

R0 = N*beta*p*g_max*c_H / (g_half*d_E*gamma_H)

return(R0)

})

}
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Showing things dynamically using Shiny

Shiny is an R library (made by RStudio) to easily make interactive displays

See some documentation here

Some examples here and here

Create a subdirectory with the name of your app and a file called app.R in there
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Structure of a Shiny app

Need to use library shiny

Define two elements

▶ ui, which sets up the user interface

▶ server, which handles the computations, generation of figures, etc.

I explain different elements as we progress. See the code in the CODE folder and
Capasso simpleETP shiny subdirectory
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The ui part

Here, we use fluidPage to create the UI. There are other functions: fillPage,
fixedPage, flowLayout, navbarPage, sidebarLayout, splitLayout and
verticalLayout

# Define UI

ui <- fluidPage(

)

We now fill this function
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A title and some sliders

# Application title

titlePanel("Simple␣ETP␣model␣of␣Capasso"),

# Sidebar with slider inputs for some parameters

sidebarLayout(

sidebarPanel(

sliderInput("inv_gamma_H",

"Average␣infectious␣period␣(days):",

min = 0,

max = 30,

value = 10),

sliderInput("c_H",

"Flow␣from␣humans:",

min = 0,

max = 2,

value = 0.1),

Plus other sliders for all other parameters
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Note the little trick...

sliderInput("inv_gamma_H",

"Average␣infectious␣period␣(days):",

min = 0,

max = 30,

value = 10),

I want to give a user friendly version of the parameter value, using the number of days
rather than the inverse, whereas the model uses the latter. So I prefix the variable
name by inv and then process as follows in the server part

params <- list()

for (param_name in names(input)) {

if (grepl("inv_", param_name)) {

new_param_name = gsubs("inv_", "", param_name)

params[[new_param_name]] = 1/input[[param_name]]

} else {

params[[param_name]] = input[[param_name]]

}

}
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The simulation functions can be outside of ui or server, this makes the code neater

These functions are the same as before (right hand side, g, h, R0), so they are not
shown here
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The server part

# Define server logic required to draw the result

server <- function(input, output) {

##

## Expression that generates the plot

##

output$a_odePlot <- renderPlot({

params <- list()

params$N = 1000 # We could let this vary, we don’t here..

for (param_name in names(input)) {

if (grepl("inv_", param_name)) {

new_param_name = gsub("inv_", "", param_name)

params[[new_param_name]] = 1/input[[param_name]]

} else {

params[[param_name]] = input[[param_name]]

}

}

# Initial conditions and time span

IC <- c(E = 10, H = 0)

tspan <- seq(from = 0, to = params$tf, by = 0.1)
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The server part (continued)

# Compute solution

sol_ODE = ode(y = IC,

func = rhs_Capasso_ODE,

times = tspan,

parms = params)

# Make the plot

y_max = max(max(sol_ODE[,"H"]),sol_ODE[,"E"])

plot(sol_ODE[,"time"], sol_ODE[,"H"],

type = "l", lwd = 2,

xlab = "Time␣(days)", ylab = "Value",

ylim = c(0, y_max),

main = sprintf("R_0=%1.2f", round(R0(params),2)))

lines(sol_ODE[,"time"], sol_ODE[,"E"],

lwd = 2, lty = 3)

legend("topleft", legend = c("H(t)", "E(t)"),

lwd = c(2,2), lty = c(1,3), inset = 0.01)

})

}
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Finally, run the code

# Run the application

shinyApp(ui = ui, server = server)
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Adding a periodic component

Assume p in (5) takes the form

p(t) = p(t + ω) > 0, t ∈ R (9)

i.e., p has period ω. So we now consider the incidence

g(t,E ) = p(t)h(E ) (10)

with h having the properties prescribed earlier. Letting

pmin := min
0≤t≤ω

p(t), pmax := max
0≤t≤ω

p(t) (11)

then we require that

lim
z→∞

g(z)

z
<

dEγH
cHpmax

(12)
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Let

Rmin
0 =

cHpminh
′
+(0)

dEγH
, Rmax

0 =
cHpmaxh

′
+(0)

dEγH
(13)

Theorem 2

▶ If 0 < Rmax
0 < 1, then (4) with incidence (10) always goes to extinction

▶ If Rmin
0 > 1, then a unique nontrivial periodic endemic state exists for (4) with

incidence (10)

p. 36 – Some considerations about numerics



How to add periodicity in numerics?

p_t = function(t, params) {

angle = 2*pi/params$p_period

OUT = cos(angle*t) # Make the base cos wave

OUT = OUT/2*(params$p_max-params$p_min) # Scale

OUT = OUT-min(OUT)+params$p_min # Shift up

return(OUT)

}

g = function(E, params, t) {

OUT = params$N * params$beta * p_t(t, params) * h(E,params)

return(OUT)

}

R0 = function(params) {

with(as.list(params), {

R0 = list()

R0$min = N*beta*p_min*g_max*c_H / (g_half*d_E*gamma_H)

R0$max = N*beta*p_max*g_max*c_H / (g_half*d_E*gamma_H)

return(R0)

})

}
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The model

Population of H individuals using a body of water containing N snails

IH mean number of schistosomes per person and iS the proportion of patent infections
in snails (prevalence)

I ′H = αNiS − γIH (14a)

i ′S = βHIH(1− iS)− µ2iS (14b)

▶ α number of schistosomes produced per person per infected snail per unit time

▶ 1/γ average life expectancy of a schistosome

▶ 1/µ2 average life expectancy of an infected snail

▶ β transmission parameter
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Simulating – The ODE

# Right hand side of the ODE

rhs_Woolhouse1_ODE = function(t, x, params) {

with(as.list(c(x, params)), {

dI_H = alpha*N*i_S-gamma*I_H

di_S = beta*H*I_H*(1-i_S)-mu_2*i_S

list(c(dI_H, di_S))

})

}
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Let the basic reproductive rate for schistosomes be

R0 =
αNβH

γµ2
(15)

(14) has two EP

▶ (I ⋆H , i
⋆
S) = (0, 0), LAS when R0 < 1 and unstable when R0 > 1

▶ (I ⋆H , i
⋆
S) =

(
αN

γ
− µ2

βH
, 1− 1

R0

)
, which only “exists” when R0 > 1 (and is LAS

then)
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Using R0 to set β

# Put parameters in a list

params = list()

params$H = 100 # Total human population

params$N = 1000 # Total population snails

params$alpha = 20 # Nb schistosomes/infected H/unit time

params$gamma = 1/1000 # Life expectancy schistosome

params$mu_2 = 1/70 # Life expectancy infected snail

# Set beta through R_0:

# R_0= alpha*N*beta*H/(gamma*mu_2),

# so, given R_0,

# beta = R_0*gamma*mu_2/(alpha*N*H)

params$R_0 = 2.5 # Desired value of R_0

params$beta = params$R_0*params$gamma*params$mu_2 /

(params$alpha*params$N*params$H)
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Helping these computations

R0_Woolhouse_ODE = function(params) {

with(as.list(params), {

R0 = alpha*N*beta*H/(gamma*mu_2)

return(R0)

})

}

EEP_Woolhouse_ODE = function(params) {

with(as.list(params), {

OUT = list()

OUT$I_H = alpha*N/gamma-mu_2/(beta*H)

OUT$i_S = 1-1/R0_Woolhouse_ODE(params)

return(OUT)

})

}

p. 42 – Some considerations about numerics



Some considerations about numerics
The tetanus model of Cvjetanović
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Heterogeneities in contact rates

Ii the number of schistosomes in person i = 1, . . . ,H and iSj the proportion of patent
infected snails in site j = 1, . . . , L (L sites each supporting N snails)

iS1 iS2

I1 I2 I3Individuals

Sites
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Ii the number of schistosomes in person i = 1, . . . ,H and iSj the proportion of patent
infected snails in site j = 1, . . . , L (L sites each supporting N snails)

I ′i = α

∑
j

ηijNiSj

− γIi (16a)

i ′Sj = β

(∑
i

ηij Ii

)
(1− iSj)− µ2iSj (16b)

ηij rate of water contact by individual i at site j

p. 44 – Some considerations about numerics



How to deal with large systems

A system like (16) is a large system of ODE, as there are H + L differential equations,
with that number potentially large

Large systems of this type (very few different types of equations) are quite simple
numerically but require some organisation. . .

Rather than name the state variables, it is better to use the vector x with indices for
the different types of variables
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Indexing positions

params = list()

params$H = 100 # Total human population

params$L = 5 # Number of sites

Then if we define

params$idx_I_H = 1:params$H

params$idx_i_S = (params$H+1):(params$H+params$L)

in the ODE, we will be able to use something like

I_H = x[params$idx_I_H]

i_S = x[params$idx_i_S]
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Computing the incidence

Here again, easy to do (and computationally efficacious) provided you are careful

K = [ηij ] is an H × L matrix. Denote IH = (I1, . . . , IH)
T and iS = (iS1, . . . , iSL)

T

Then ∑
j

ηijNiSj = N
∑
j

ηij iSj = KiS

and ∑
i

ηij Ii = ITH K
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