
Environmentally Transmitted Pathogens
Models

Julien Arino

January 2023

Fitting
General principles
A simple example – The logistic function
The issue of parameter identifiability

Fitting
General principles
A simple example – The logistic function
The issue of parameter identifiability

Fitting a model to parameters

Very simplified version of what is done in practice
There are way more elaborate methods. See, e.g.,

▶ Roda. Bayesian inference for dynamical systems

▶ Portet. A primer on model selection using the Akaike Information Criterion

p. 1 – Fitting

https://doi.org/10.1016/j.idm.2019.12.007
https://doi.org/10.1016/j.idm.2019.12.010

Parameter fitting problem

Assume given data points (ti , yi), i = 1, . . . ,N, with yi ∈ Rn and ti ∈ I ⊂ R, where I
is some interval of time

Assume model parameters are in a set P

Solution to the ODE is x(t, p) for t ∈ I and a given p ∈ P (we emphasise the
dependent of the solution on the chosen point in parameter space)

Parameter fitting problem

Find p ∈ P such that the solution x(t, p) “most closely matches” the data points

p. 2 – Fitting

Could also be another type of system (discrete-time, continuous-time Markov chain –
in which case we would likely use mean solution over a number of realisations, etc.),
but in any event, a time series somewhat comparable with the data

p. 3 – Fitting

Mathematical formulation

We want to minimise the error function

E (p) =
N∑
i=1

∥h(x(ti))− yi∥ (1)

▶ h : Rn → Rn is an observation function, which selects the relevant part of the
solution to match to the data

▶ The norm is usually the Euclidean norm, but could be different depending on the
problem at hand

▶ Given a parametre p in an (admissible part) of parameter space, compute the
solution to the ODE, then deduce E (p)

▶ Use a minimisation algorithm to find a minimum of E (p) while varying p

p. 4 – Fitting

What are yi and h(x(ti)) here?

Infectious disease data is ofen in terms of incidence (number of new cases per unit
time) rather than prevalence (number of cases currently present in the population)

In, say, an SIR model with mass action incidence, incidence is βSI , so, using the
Euclidean norm

E (p) =
N∑
i=1

(βS(ti)I (ti)− yi)
2 (2)

where S(ti) and I (ti) are the values of the numerical solution to the ODE at the times
ti in the data

p. 5 – Fitting

Fitting
General principles
A simple example – The logistic function
The issue of parameter identifiability

To illustrate the method, let us use a simple case and fit the logistic equation
N ′ = rN(1− N/K) to some population data

We use El Salvador, whose population seems to be experiencing growth slowdown. We
get population data from the World Bank

We seek values of r and K that minimise E (p) given by (1) with norm the Euclidean
norm

p. 6 – Fitting

The right hand side

This one is quite simple, of course. . .

RHS_logistic <- function(t, x, p) {

with(as.list(c(x,p)), {

dN <- r*N*(1-N/K)

return(list(dN))

})

}

p. 7 – Fitting

Getting the population data

library(wbstats)

get_pop_data <- function(CTRY) {

pop = wb_data("SP.POP.TOTL", country = CTRY,

mrv = 100, return_wide = FALSE)

pop = pop[,c("date", "value")]

pop = pop[order(pop$date),]
pop$date = as.numeric(pop$date)
pop$value = as.numeric(pop$value)
return(pop)

}

which we call later using

pop = get_pop_data("El␣Salvador")

Note that if you do not set return wide=TRUE, the column with the return value is
named like the indicator (SP.POP.TOTL here), otherwise it is value

p. 8 – Fitting

The error function

This is the function that does most of the work

▶ Takes as input the parameters that vary and any other required parameters
▶ Computes the solution of the ODE

▶ Capitalise on the fact that ode returns the solution at times that you can specify!
▶ If your data is at times, say, t = 1, 2, 5, 10, then you can pass times=c(1,2,5,10)

and get the solution at these times, making the next step easy

▶ Compute the error

Actually, this does not do most of the work but this is definitely where you need to do
most of the work

p. 9 – Fitting

error_fit <- function(p_vary,

params,

data,

method = "rk4") {

Anything that changes during optimisation is set here

params$r = as.numeric(p_vary["r"])

params$K = as.numeric(p_vary["K"])

Set the initial condition

N0 = data$value[1]
IC = c(N = N0)

Compute the solution

sol = ode(y = IC, times = data$date, func = RHS_logistic,

parms = params, method = method)

p. 10 – Fitting

One little trick

If a parameter value or a solution is “not acceptable”, one easy way to deal with this is
to return an error value of Inf (i.e., ∞) and immediately exit the error function

if (sol[dim(sol)[1],"time"] < data$date[length(data$date)]) {

return(Inf)

}

would be triggered if, for instance, the numerical integration finished early (because
solutions explode, e.g.)

Useful also, e.g., if you want to exclude regions in parameter space. Say you want to
find parameters s.t. R0 ≤ 10, then you could return an Inf error whenever parameters
are s.t. R0 > 10

p. 11 – Fitting

Computing the actual error

1 diff_values = data$value - sol[,"N"]

2 diff_values_squared = diff_values^2

3 error = sum(diff_values_squared)

4 return(error)

5 } # END error_incidence

Line 1: here, h(x) = x , we can simply use N(t) as the observed variable. So we
compute the yi − N(ti), since we have set times=data$date and thus have matching
time points

Line 2: square the values (recall that by default, R does Hadamard-type operations, so
here, squares each entry in the vector), giving a vector with entries (yi − N(ti))

2

Line 3: sum the elements of the vector, i.e., obtain
∑

i (yi − N(ti))
2

p. 12 – Fitting

Set up a last few things

Back in the main code, set values for the parameters, although they will be changed by
the optimiser

params = list()

params$r = 1

params$K = max(pop$value)

p. 13 – Fitting

Now let an optimiser do the actual work

Here, let us use a genetic algorithm

library(GA)

GA = ga(

type = "real-valued",

fitness = function(x)

-error_fit(p_vary = c(r = x[1], K = x[2]),

params = params,

data = pop,

method = "rk4"),

parallel = TRUE,

lower = c(0.1, 1000000),

upper = c(10, 10000000),

optim = TRUE,

optimArgs = list(method = "CG"),

suggestions = c(1, params$K),
popSize = 500,

maxiter = 200

)

p. 14 – Fitting

Explaining the algorithm and the call to GA

A genetic algorithm (GA) mimics evolution selecting for increased fitness.

▶ A gene is a point p⋆ ∈ P in parameter space, so, here, a given value (r⋆,K ⋆) of
(r ,K)

▶ The fitness of the gene is the value of the function to optimise when evaluated at
p⋆, i.e., here, E (p⋆) (i.e., error fit)

▶ A GA “wants to” maximise fitness, so we actually use −E (p)

p. 15 – Fitting

Setting up the gene pool

▶ Start with a randomly selected population of popSize genes (500 here)

▶ Within these popSize genes, one (could be more) is a suggestion. Here, I have
taken r=1 and K=params$K=max(pop$value)

▶ Genes other than the suggested ones are selected at random (potentially following
some distribution, but by default and here, uniformly) between lower and upper

▶ (The order of elements of the gene is important in some places, including
suggestions, upper and lower)

p. 16 – Fitting

At each iteration, up to a maximum maxiter (200 here)

▶ Compute the fitness of all popSize genes

▶ Retain the genes with highest fitness

▶ Throw in new genes, some at random like before but others using “constrained
randomness”, i.e., using analogues of genetic operations such as mutations,
crossovers, etc.

▶ Once the next generation is ready, i.e., there are popSize genes, restart

It is possible to specify how much of the existing gene pool to keep, etc.

p. 17 – Fitting

Two interesting options

1. parallel=TRUE (needs libraries parallel and doParallel) parallelises the
code. Each function (fitness) evaluation is completely independent from others, so
this algorithm parallelises very nicely, leading to potentially consequential speedups

2. optim=TRUE interrupts the GA execution (including parallel component if used) to
perform a step of deterministic gradient descent search close to the best value
found so far, in case there is no change in best value for a few generation. This
allows to potentially fine tune a stochastically found optimum

Note – If you want to limit the number of threads used (to avoid completely bogging
down your computer), you can specify a number of threads to use, instead, e.g.,
parallel=10. Currently, you also must specify parallel=124 if you have a CPU
with more than 124 threads

p. 18 – Fitting

Varying also N0

Previous graph fits precisely the first data point. We can want to also fit N0

In the function error incidence, add

params$N0 = as.numeric(p_vary["N0"])

then in the call to error incidence in ga,

fitness = function(x)

-error_incidence(p_vary = c(r = x[1], K = x[2], N0 = x[3]),

params = params,

data = pop,

method = "rk4"),

We get a smaller error and something like on the next page

p. 20 – Fitting

Fitting
General principles
A simple example – The logistic function
The issue of parameter identifiability

We seek to minimise the (error) function

E (p) =
N∑
i=1

∥h(x(ti))− yi∥ (1)

▶ It is possible (extremely likely with complex models) that several values of p
minimise E (p)

▶ It is also possible that the value(s) found for p are only local minima

▶ These problems are linked to the so-called identifiability problem

p. 22 – Fitting

An example of Bellman and Åström (MBS 1970)

A system is analysed by injecting a tracer in compartment C1 and taking samples from
same compartment

C1 C2

k2C1

k3C2

u

k1C1 k4C2

p. 23 – Fitting

C1 C2

k2C1

k3C2

u

k1C1 k4C2

C ′
1 = −(k1 + k2)C1 + k3C2 + u (3a)

C ′
2 = k2C1 − (k3 + k4)C2 (3b)

y = C1 (3c)

Take Laplace transform (could also take matrix exponential), giving transfer function

G (s) =
s + k3 + k4

s2 + (k1 + k2 + k3 + k4)s + (k1 + k2)(k3 + k4)− k2k3

p. 24 – Fitting

	Fitting
	General principles
	A simple example – The logistic function
	The issue of parameter identifiability

