Modelling livestock

Julien Arino

April 2023

Yes, why, really, must I tell you about this ?

I model the spread of infectious diseases and, less frequently, more general interactions between species (mathematical ecology)

I have even modelled how filaments grow (assemble) in cells

But "modelling livestock" ? Nope, never

So let's take a (for the most part uninformed) dive in models of livestock

Digging through the literature, there's actually quite a lot and some of it is quite fun!

This will be a completely non-exhaustive and random review of some models I have found **excluding** anything infectious disease related

Outline

Models for cattle

Models for other herds

Models for management

Models for cattle Models for individuals Models for herds

Models for other herds

Models for management

Models for cattle Models for individuals Models for herds

Models for other herds

Models for management

At the individual level

MODELLING ANIMAL SYSTEMS PAPER

Development of a dynamic mathematical model for investigating mammary gland metabolism in lactating cows

V. VOLPE^{1*}, J. P. CANT², R. C. BOSTON³, P. SUSMEL¹ and P. MOATE³[†]

 ¹ Department of Animal Science, University of Udine, 33010 Pagnacco (Ud), Italy
 ² Centre for Nutrition Modelling, Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario N1G2W1, Canada
 ³ Biostatistics Section, Department of Clinical Studies, University of Pennsylvania, Kennet Square, PA 19348, USA

(Revised MS received 16 February 2009; First published online 3 September 2009)

Abbreviation	Meaning				
Aa	Amino acids				
AaE	Essential amino acids				
AaN	Non-essential amino acids				
Ac	Acetate				
Acm	Mitochondrial acetyl-CoA				
Adp	Adenosine-diphoshate				
AP	Mammary tissue actively perfused				
Atp	Adenosine-triphosphate				
Bhb	β -hydroxybutyrate				
Cit	Citrate				
eAa	Amino acids in the arterial plasma				
eAc	Acetate in the arterial plasma				
eBhb	β -hydroxybutyrate in the arterial plasma				
eGlc	Glucose in the arterial plasma				
eFa	FAs in the arterial plasma				
Fa	FAs				
F6p	Fructose-6-phosphate				
Fbp	Fructose-1,6-biphosphate				
Glc	Glucose				
G6p	Glucose-6-phosphate				
Gcl	Glycerol				
Lac	Lactose				
Oa	Oxaloacetate				
Pga	Phospho-glyceraldehyde				
Ptm	Milk protein synthesized in the gland				
Pyr	Pyruvate				
R5p	Ribulose-5-phosphate				
Succ	Succinate				
Tca	Tricarboxylic acids				
Tgm	Triacylglycerol in milk				

Fig. 1. Reference steady state diagram. Each individual compartment is represented through a box. Symbols are described in Table 2. AP is the volume of tissue actively perfused by blood. Fluxes are mmol/h except for IAP and DAP. Numbers in the boxes indicate the initial condition size of the compartment (mmol).

Notation	Meaning	Units
cA	Intracellular concentration of A	mmol/l
ceA	Arterial concentration of A	mmol/l
°ceA	Reference arterial concentration of A	mmol/l
INSH	Insulinaemia	Units
$J_{\rm A}$	Inhibition constant for the inflow of A	mmol/l
$J_{\rm C,AB}$	Inhibition constant for transaction $A \rightarrow B$ with respect to C	mmol/l
KInA	Affinity constant for the inflow of A	mmol/l
K _{OutA}	Affinity constant for the outflow of A	mmol/l
K _{A,B}	Affinity constant for A in the transaction $A \rightarrow B$	mmol/l
K _{C,AB}	Affinity constant for transaction $A \rightarrow B$ with respect to C	mmol/l
P _{B,A}	Rate of synthesis of B in the transaction $A \rightarrow B$	mmol/h
PPS	Potential milk protein yield	mmol/h
R _{A,B}	Requirement of A in the synthesis of B	mmol/mmol
R_i	Content of <i>i</i> th AA in milk protein synthesized in the gland	mmol/mmol
RPS	Real milk protein yield	mmol/h
$U_{A,B}$	Rate of utilization of A in the transaction $A \rightarrow B$	mmol/h
$^{\circ}U_{A,B}$	Reference rate of utilization of A in the transaction $A \rightarrow B$	mmol/h
UOi	Uptake:output ratio for the <i>i</i> th AA	mmol/mmol
UW	Udder weight	kg
VcA.A	Net uptake rate of A	mmol/h
V _{A,B}	V_{max} for the transaction $A \rightarrow B$	mmol/h
VInA	$V_{\rm max}$ for the inflow of A	µmol/l
V _{OutA}	$V_{\rm max}$ for the outflow of A	µmol/l
Y _{A,B}	Rate of yield of B in the transaction $A \rightarrow B$	mmol/mmol

V _{InA} (µmol/l)	К _{InA} (тм)	К _{InB} (тм)	<i>J</i> _А (тм)	V _{outA} (µmol/l)	К _{оиt} (тм)
135.610	0.095	_	12.158	22.600	12.158
49.060	0.023	-	12.158	8.200	12.158
164.920	0.101	_	12.158	27.490	12.158
232.0	0.065	-	12.158	62.500	12.158
282·120	0.125	_	12.158	47.020	12.158
50.990	0.025	-	12.158	8.500	12.158
85.490	0.039	_	12.158	14.250	12.158
127.710	0.080	_	12.158	21.290	12.158
18.990	0.047	_	12.158	3.170	12.158
215.330	0.147	_	12.158	35.890	12.158
67.370	0.189	_	12.158	11.230	12.158
10.540	0.004	_	12.158	1.0	12.158
127.230	0.129	_	12.158	21.210	12.158
36.340	0.045	_	12.158	6.060	12.158
159.480	0.028	_	12.158	15.190	12.158
134.270	0.221	_	12.158	22.380	12.158
30.550	0.231	_	12.158	5.090	12.158
34.020	0.110	-	12.158	5.671	12.158
95.230	0.084	_	12.158	15.870	12.158
77.300	0.045	-	12.158	12.880	12.158
133.690	0.073	_	12.158	22.280	12.158
3.600	$2 \cdot 150$	-	-	0.450	0.253
1.250	0.750	_	-	0.550	0.420
$1 \cdot 100$	0.280	0.100	-	0.150	0.309
2.250	3.640	_	-	1.250	0.081
	(μmol/l) 135-610 49-060 164-920 232-0 282-120 50-990 85-490 127-710 18-990 215-330 67-370 10-540 127-230 36-340 134-270 30-550 34-020 95-230 77-300 133-690 3-600 1-250 1-100	$\begin{array}{ c c c c } (\mu m 0) \\ \hline (\mu m 0) l) (m M) \\ \hline \\ 135 \cdot 610 & 0 \cdot 095 \\ 49 \cdot 060 & 0 \cdot 053 \\ 164 \cdot 920 & 0 \cdot 101 \\ 232 \cdot 0 & 0 \cdot 065 \\ 282 \cdot 120 & 0 \cdot 125 \\ 50 \cdot 990 & 0 \cdot 025 \\ 85 \cdot 490 & 0 \cdot 039 \\ 127 \cdot 710 & 0 \cdot 080 \\ 18 \cdot 990 & 0 \cdot 047 \\ 215 \cdot 330 & 0 \cdot 147 \\ 67 \cdot 370 & 0 \cdot 189 \\ 10 \cdot 540 & 0 \cdot 047 \\ 127 \cdot 230 & 0 \cdot 129 \\ 36 \cdot 340 & 0 \cdot 0445 \\ 159 \cdot 480 & 0 \cdot 058 \\ 134 \cdot 270 & 0 \cdot 221 \\ 30 \cdot 550 & 0 \cdot 231 \\ 34 \cdot 020 & 0 \cdot 110 \\ 95 \cdot 230 & 0 \cdot 084 \\ 77 \cdot 300 & 0 \cdot 0445 \\ 133 \cdot 690 & 0 \cdot 073 \\ 3 \cdot 600 & 2 \cdot 150 \\ 1 \cdot 250 & 0 \cdot 750 \\ 1 \cdot 100 & 0 \cdot 280 \\ \hline \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Table 4. MM parameters of the equations describing uptakes of nutrients

* For Ac, Bhb, Fa and Glc parameters V_{InA} and V_{outA} are expressed in mmol/l.

† Equation (6.1), K_{InA} and K_{InB} are K_{InNefa} and K_{InTg} respectively.

 \ddagger Equation (7.1), parameters V_{InA} , K_{InA} , V_{outA} and \bar{K}_{outA} are $V_{\text{cGlc,G6p}}$, $K_{\text{cGlc,G6p}}$, $V_{\text{G6p,cGlc}}$ and $K_{\text{G6p,cGlc}}$, respectively.

APPENDIX

MATHEMATICAL STATEMENT OF THE MODEL

$$Mammary \ plasma \ flow dAP/dt = IAP - DAP$$
(1.0)

- Inputs:

$$IAP = PPS/MIN\{RPS, PPS\} INSH^{0.20} 0.350/(1+0.035/(1-AP))$$
(1.1)

- Outputs:

$$DAP = cAtp/cAdp \ 0.1522/(1 + 0.065/AP)$$
(1.2)

$$MPF = MS^{\circ} 0.9974^{(DIM - 133)} UW753AP$$
(1.3)

$AA \ compartment \ (Aa)$ $dAa/dt = v_{eAa, Aa} + P_{AaN, AaE} - U_{Aa, Deg} - U_{Aa, Mtb} - U_{Aa, Ptm}$ (2.0)

- Inputs:

$$v_{eAa,Aa} = \sum v_{eAaEi,AaEi} + \sum v_{eAaNi,AaNi}$$
(2.1)

Uptake of essential AAs

$$v_{cAaEi,AaEi} = V_{InAai}MPF(^{\circ}ceAaE_i/ceAaE_i)^{0.2}/(1 + K_{InAai}(0 RPS_i/ePS)^{\varepsilon}/ceAaE_i + (cAa/J_{Aa})^{3.5}) - V_{OutAai}MPF/(1 + K_{OutAa}/cAa)$$
(2.2)

$$oRPS_{His} = \{V_{InHis}MPF(^{\circ}ceHis/ceHis)^{0.2}/(1 + K_{InHis}/ceHis + (cAa/J_{Aa})^{3.5}) - V_{OutHis}MPF/(1 + K_{OutAa}/cAa)\}\mathbf{1}\cdot\mathbf{1}/(UO_{His}R_{His})$$
(2.3)

$$oRPS_{Met} = \{V_{InMet}MPF(^{\circ}ceMet/ceMet)^{0/2}/(1 + K_{InMet}/ceMet + (cAa/J_{Aa})^{3/5}) - V_{OutMet}MPF/(1 + K_{OutAa}/cAa)\} l \cdot 1/(UO_{Met}R_{Met})$$
(2.4)

$$oRPS_{Phe} = \{V_{InPhe}MPF(^{\circ}cePhe/cePhe)^{0.2}/(1 + K_{InPhe}/cePhe + (cAa/J_{Aa})^{3.5}) - V_{OutPhe}MPF/(1 + K_{OutAa}/cAa)\} + 1/(UO_{Phe}R_{Phe})$$
(2.5)

$$oRPS_{Leu} = \{V_{InLeu}MPF(^{\circ}ceLeu/ceLeu)^{0.2}/(1 + K_{InLeu}/ceLeu + (cAa/J_{Aa})^{3.5}) - V_{OutLeu}MPF/(1 + K_{OutAa}/cAa)\}/(UO_{Leu}R_{Leu})$$
(2.6)

$$oRPS_{AaO} = MIN\{oRPS_{His}, oRPS_{Met}, oRPS_{Phe}\}$$
(2.7)

$$ePS = PPS INSH^{0.050}$$
(2.8)

Uptake of non-essential AAs

$$v_{cAaNi, AaNi} = V_{InAai}MPF(^{\circ}ceAaN_i/ceAaN_i)^{0.2}/(1 + K_{InAai}/ceAaN_i + (cAa/J_{Aa})^{3.5}) - V_{OutAai}MPF/(1 + K_{OutAai}/cAa)$$
(2.9)

Synthesis of non-essential AAs

$$P_{\text{AaN},\text{AaE}} = U_{\text{Pyr},\text{Ser}} + U_{\text{Pyr},\text{Ala}} + P_{\text{GlAs},\text{AaE}} + P_{\text{Pro},\text{Arg}} + P_{\text{Gly},\text{Thr}}$$
(2.10)

$$U_{\text{Pyr,Ser}} = (\text{RPS } R_{\text{Ser}} - v_{\text{eSer,Ser}} + \text{RPS } R_{\text{Gly}} - v_{\text{eGly,Gly}}) * V_{\text{Pyr,Ser}} / (1 + K_{\text{Pyr,Ser}} / c_{\text{Pyr}})$$
(2.11)

$$U_{\text{Pyr,Ala}} = (\text{RPS } R_{\text{Ala}} - v_{\text{eAla,Ala}}) V_{\text{Pyr,Ala}} / (1 + K_{\text{Pyr,Ala}} / \text{ePyr})$$
(2.12)

$$P_{\text{GlAs, AaE}} = 0.019717(U_{\text{Pyr, Oa}} + U_{\text{Acm, Cit}} + U_{\text{Val, SuccTca}} + U_{\text{Ile, SuccTca}})$$
(2.13)

$$U_{\rm Val, SuccTca} = v_{\rm eVal, Val} - RPS R_{\rm Val}$$
(2.14)

$$U_{\rm Ile, \, SuccTca} = v_{\rm eIle, \, Ile} - \text{RPS } R_{\rm Ile}$$
(2.15)

$$P_{\rm Pro, Arg} = \rm RPS \ R_{\rm Pro} - v_{\rm ePro, Pro}$$
(2.16)

$$P_{\text{Gly, Thr}} = \text{RPS} \ R_{\text{Gly}} - v_{\text{eGly, Gly}} + \text{RPS} \ R_{\text{Ser}} - U_{\text{Pyr, Ser}} - v_{\text{eSer, Ser}}$$
(2.17)

- Outputs:

$$U_{\text{Aa, Deg}} = V_{\text{Aa, Deg}} / ((1 + (\text{INSH}/5)^{0.30})(1 + (K_{\text{Aa, Deg}}/\text{cAa})^{2.50}))$$
(2.18)

$$U_{\rm Aa, Mtb} = (v_{\rm eArg, Arg} - \text{RPS } R_{\rm Arg} + v_{\rm eOrn, Orn}) V_{\rm Aa, Mtb} / (1 + (K_{\rm Aa, Mtb}/c\text{Aa})^{2.50})$$
(2.19)

$$U_{\text{Aa, Ptm}} = \text{RPS} \ V_{\text{Aa, Ptm}} / (1 + K_{\text{Aa, Ptm}} / \text{cAa})$$
(2.20)

$$RPS = P_{Ptm, Aa} Y_{Atp, Ptm}$$
(2.21)

$$P_{\rm Ptm, Aa} = \rm{MIN}\{1.09v_{e\rm{His, His}}/R_{\rm{His}}; 1.09v_{e\rm{Met, Met}}/R_{\rm{Met}}; 1.09v_{e\rm{Phe, Phe}}/R_{\rm{Phe}}\}$$
(2.22)

$$Y_{\rm Atp, Ptm} = MIN\{1.000; V_{\rm Atp, Ptm}/(1 + K_{\rm Atp, Ptm}/cAtp)\}$$
(2.23)

$$Acetate \ compartment \ (Ac)$$
$$dAc/dt = v_{eAc, Ac} - U_{Ac, Acm} - U_{Ac, Tgm}$$
(3.0)

- Inputs:

$$v_{eAc, Ac} = V_{InAc} MPF / (1 + K_{InAc} / ceAc) - V_{OutAc} MPF / (1 + K_{OutAc} / cAc)$$
(3.1)

Animal Nutrition 1 (2015) 329-338

Contents lists available at ScienceDirect

Animal Nutrition

journal homepage: http://www.keaipublishing.com/en/journals/aninu/

Original research article

A mathematical model to describe the diurnal pattern of enteric methane emissions from non-lactating dairy cows post-feeding

Min Wang ^a, Rong Wang ^a, Xuezhao Sun ^b, Liang Chen ^a, Shaoxun Tang ^a, Chuangshe Zhou ^a, Xuefeng Han ^a, Jinghe Kang ^a, Zhiliang Tan ^{a, *}, Zhixiong He ^a

^b Grasslands Research Centre, AgResearch Limited, Palmerston North 4442, New Zealand

^a Key Laboratory for Agro-Ecological Processes in Subtropical Region, Hunan Research Center of Livestock & Poultry Sciences, South-Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China

2.1. The model

The parameters for the model development are summarized in Table 1. Methane is emitted during the metabolism of methanogens that use hydrogen as an energy source, and this hydrogen is produced mainly during fermentation of degradable substrate by microorganisms in the rumen (Wang et al., 2013a). Methane emission rate (dV/dt, g/h) is assumed to be proportional to methanogen mass (M_p , g), activity of methanogens and degradable substrate (S_p , g) in the rumen, and is expressed as:

$$\frac{\mathrm{d}V}{\mathrm{d}t} = \alpha \beta_M M_r S_r,\tag{1}$$

where α is a proportionality constant [/(h·g)], β_M is the activity of methanogens linking the methane production and methanogen mass (g/g).

The substrate in the rumen was separated into two components: newly ingested and the residue, representing potential nutrient sources from the current and previous feeding, respectively. The total enteric methane produced associated with these feed fractions was a combination of that produced from use of residual (basal) substrate (V_1) and newly ingested (V_2) feed in the rumen. that changes in methane emissions are a response to substrate supply and activity of the methanogens, while methanogen mass (M_r) was assumed fixed for an individual animal on a particular ration. The rate of enteric methane emission, thus, can be expressed as follows:

$$\frac{\mathrm{d}V}{\mathrm{d}t} = \frac{\mathrm{d}V_1}{\mathrm{d}t} + \frac{\mathrm{d}V_2}{\mathrm{d}t},\tag{2}$$

$$\frac{\mathrm{d}V_1}{\mathrm{d}t} = \alpha_1 \beta_{M1} M_r S_{rr},\tag{2a}$$

$$\frac{\mathrm{d}V_2}{\mathrm{d}t} = \alpha_2 \beta_{M2} M_r S_{Ir},\tag{2b}$$

where α_1 and α_2 are proportionality constants $[/(h \cdot g)]$ for basal V_1 and feeding V_2 , respectively; β_{M1} is the activity of methanogens to generate basal V_1 ; S_{rr} is the amount of degradable substrate in the residue of rumen before feeding (g); β_{M2} is the activity of methanogens to generate feeding V_2 ; S_{Ir} is the amount of degradable substrate in the rumen from the newly ingested feed (g).

Term	Unit	Explanation
V	g	Volume of enteric methane emission
V_1	g	Volume of enteric methane emission generated by the residual substrate in the rumen
V_2	g	Volume of enteric methane emission generated by the newly ingested feed
dV/dt	g/h	Rate of enteric methane emission
dV_1/dt	g/h	Rate of enteric methane emission for basal V_1
dV_2/dt	g/h	Rate of enteric methane emission for feeding V_2
α	/(h · g)	Proportionality constant
α1	/(h · g)	Proportionality constant for basal V_1
α2	/(h · g)	Proportionality constant for feeding V ₂
β_M	_	Activity of methanogens
β_{M1}	_	Activity of methanogens to generate basal V_1
β_{M2}	_	Activity of methanogens to generate feeding V_2
Sr	g	Degradable Substrate in the rumen
Srr	g	Degradable substrate in the residue in the rumen before feeding
SIr	g	Degradable substrate in the rumen from the newly ingested feed
SI	g	Degradable substrate from newly ingested feed
S _{le}	g	Degradable substrate from newly ingested feed which outflow from rumen
M_r	g	Methanogens in the rumen
k_p	/h	Ruminal passage rates
S _T	g	Potential degradable substrate in the newly ingested feed
VF ₂	g	Final asymptotic accumulated enteric methane emissions for feeding V2
γ	g/h	Shape parameter
d	_	Shape parameter
а	g	Shape parameter

Item	Mean	Median	Minimum	Maximum	SD
BW, kg	222	215	98	420	110
DMI, kg/d	4.45	4.44	2.66	7.35	1.38
DMI _a :DMI _m ratio	0.957	0.987	0.854	1.040	0.085
Concentrate, kg/d	2.96	3.22	1.61	4.02	0.82
Rice straw, kg/d	1.48	1.26	0.83	3.39	0.703
Concentrate proportion in the diet, %	66.8	68.2	53.9	78.8	7.55
NDFI, kg/d	2.30	2.20	1.37	4.14	0.781
ADFI, kg/d	1.18	1.09	0.70	2.23	0.426
CPI, kg/d	0.553	0.571	0.319	0.827	0.159
GEI, MJ/d	72.3	72.3	43.2	119	22.3
Methane, g/d	88.3	82.2	42.6	170	38.0
Methane, % of GEI	6.59	6.44	5.11	8.04	1.00

Summary of variables for non-lactating dairy cows (n = 16).

BW = body weight; DMI = dry matter intake; $DMI_m = DMI$ for morning feeding from 0600 to 1600 h; $DMI_a = DMI$ for afternoon feeding from 1600 to 0600 h; NDFI = neutral detergent fibre intake; ADFI = acid detergent fibre intake; CPI = crude protein intake; CEI = gross energy intake; SD = standard deviation.

2.2. Animal and housing

The use of the animals and the experimental procedure were approved by the Animal Care Committee, Institute of Subtropical Agriculture. The experiment was conducted at a local farm in the Wang-Cheng County of Hunan Province, China. Sixteen nonlactating Chinese Holstein dairy cows with a wide range of BW (Table 2) were assigned to the air-flow controlled chamber for enteric methane emission measurement.

Cows were housed in a tie-stall dairy barn, and were accustomed to restricted movement. Both gaseous exchange and feed intake were individually determined when the cow was placed in the respiration chamber. Cows were allocated to the single respiration chamber for two consecutive days in a staggered manner. The data presented are averaged from the two days of chamber. The experiment lasted from early Feb. 2012 to late Apr. 2013.

2.3. Diet and feeding

The diet consisted of concentrate and roughage (rice straw). The concentrate contained maize, soybean meal, cottonseed meal and corn distiller's dried grains and maize with solubles, purchased from Agribrands Purina Feed mill Co., Ltd. The chemical composition of the concentrate was 950 g DM/kg and 155 g of CP, 415 g of neutral detergent fibre (NDF) and 157 g of acid detergent fibre (ADF) per kg of DM. The chemical composition for the rice straw was (on a DM basis) 975 g/kg DM, 63 g/kg CP, 760 g/kg NDF and 466 g/kg ADF.

The allowances of concentrate and roughage were decided by the farmer, based on experience and according to the live weight of individual cows (each around 1% of live weight). As a result, the amount of concentrate supplied was different for each animal (Table 2). The concentrate and roughage were placed in two separate feeding troughs, with the concentrate provided first. All animals had ad libitum access to water. The restricted supply of concentrate was divided into two portions for the morning and afternoon feeds (0600 and 1605 h) while the rice straw was provided in slight excess for both periods. Orts were collected twice daily before the new feed was provided. The characteristics of feed intake for all animals are shown in Table 2.

2.4. Measurement of methane emissions

One simple respiration chamber was built for the measurement of methane emissions from cows. Briefly, the chamber was made of galvanized steel plate with internal dimensions of 3 m length \times 2 m width \times 2 m height. The chamber had one front and one rear door

fitted with internal rubber seals. The cow was restrained in the chamber with access to a feed bin and a drinking water container. A fresh air inlet was located at the top left of the chamber, and air inlets were piped from an intake vent, located 15 m from the chamber. The outlet consisted of two round polyethylene pipes (outside diameter, 50 mm) fixed to the left and right insides of the chamber, and each pipe comprised of 50 intake holes equally distributed around the entire circumference of the duct. These two ducts were piped through the right side of chamber via a 50 mm outside diameter polyethylene pipe. The outlet was connected via a 50 mm air filter, to a gas flow meter, followed by the pump. Airflow (150 to 190 m^3/h) under negative pressure was controlled by the pump. The chamber was fitted with four internal ventilation fans for efficient mixing of exhaled gases and incoming air. The outlet pipe from the chamber was connected to a plastic buffer box (50 cm length \times 50 cm width \times 50 cm height) for gas sampling.

The outlet gas was sampled from the box every 15 min during 0600 to 2200 h, at 2300, 2400 h, next day 0200 and 0530 h. A 50-mL syringe was used for sampling, and then injected into a vacuum tube for methane determination by gas chromatography (Agilent 7890A, Agilent Inc., Palo Alto, CA).

The cows were placed in the chamber at 0600 h. The cows were fed after entering the chamber at 0600 h, and the chamber was opened once a day at 1605 h for 5 min to deliver diet. The first sample of outlet gas was collected after the cows had been shut in the chamber for 10 min. Three inlet gas samples were collect at 0600, 1200 and 1700 h, and their mean value used to represent the methane concentration of the inflowing air.

Fig. 1. Methane emission pattern (g/h) from sixteen non-lactating dairy cows for 24 h. Arrow was the time when the feed was provided. A and B were eight non-lactating dairy cows with body weight from 0 to 200 kg and 200 to 400 kg, respectively.

Fig. 2. Predicted versus observed rate of enteric methane emission. The observed and predicted rates of enteric methane emission are the average of 16 curves. A dotted line is unity of 1.1. Two points in the ellipse show disparity from the regression line. The data after moming and afteronon freeding were colored with black and ref respectively. A and B were the diumal pattern of rate of methane emissions and residual, respectively. C was predicted versus observed rate of enteric methane emission.

Animal Production Science, 2014, **54**, 1927–1938 http://dx.doi.org/10.1071/AN14533

Development of mathematical models to predict volume and nutrient composition of fresh manure from lactating Holstein cows

J. A. D. Ranga Niroshan Appuhamy^{A,E}, L. E. Moraes^A, C. Wagner-Riddle^B, D. P. Casper^C, J. France^D and E. Kebreab^A

^ADepartment of Animal Science, University of California, Davis, CA 95616, USA.
 ^BSchool of Environmental Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada.
 ^CDepartment of Dairy Science, South Dakota State University, Brookings, SD 57007, USA.
 ^DCentre for Nutrition Modelling, Department of Animal and Poultry Science, University of Guelph, Guelph, ON, N1G 2W1, Canada.

^ECorresponding author. Email: jaappuhamy@ucdavis.edu

Fig. 1. Schematic diagram illustrating variable and model selection schemes.

Table 5. Prediction equations (standard errors of parameters in parentheses), maximum variance inflation factor (max_VIF) and the determinant of the correlation matrix (det{R}) of the selected variables

 F_{DM} = faecal dry matter, F_C = faecal carbon, F_{NDF} = faecal neutral detergent fibre (NDF), F_{ADF} = faecal acid detergent fibre (ADF), F_N = faecal nitrogen, F_{Wacre} = faecal water, U_E = total urine, U_C = urine carbon, and U_N = urine nitrogen outputs (all in kg/day). DMI = dry matter intake (kg/day), CP, ADF, NDF and LIG = dietary crude protein, ADF, NDF and lignin content, respectively (% of DM). Milk = milk yield (kg/day), mPrt = milk protein percentage, DIM = days in milk, BW = bodyweight (kg/cow), Age = age of the cows (years)

Equation	Variables and parameter estimates \pm standard error	max_VIF	$det\{R\}$
	With DMI		
(1)	$F_{DM} = -0.576 \pm 0.222 + (0.370 \pm 0.006 \times DMI) + (-0.075 \pm 0.010 \times CP) + (0.059 \pm 0.006 \times ADF)$	1.02	0.90
(2)	$F_C = (0.169 \pm 0.003 \times DMI) + (-0.034 \pm 0.004 \times CP) + (0.027 \pm 0.003 \times ADF) + (-0.075 \pm 0.019 \times m\Pr t) + (-0.019 \times m\Pr t) $	1.04	0.87
(3)	$F_{NDF} = -0.864 \pm 0.172 + (0.217 \pm 0.004 \times DMI) + (0.035 \pm 0.003 \times NDF) + (-0.039 \pm 0.007 \times CP)$	1.01	0.86
(4)	$F_{ADF} = -1.272 \pm 0.084 + (0.125 \pm 0.003 \times DMI) + (0.061 \pm 0.003 \times ADF)$	1.00	0.99
(5)	$F_N = -0.0368 \pm 0.007 + (0.0096 \pm 0.000 \times DMI) + (0.0022 \pm 0.000 \times CP) + (0.0034 \pm 0.001 \times lignin) + (-0.000043 \pm 0.00010 \times BW)$	1.09	0.80
(6)	$F_{Water} = (1.987 \pm 0.034 \times DMI) + (0.348 \pm 0.032 \times ADF) + (-0.412 \pm 0.052 \times CP) + (-0.074 \pm 0.009 \times DM) + (-0.0057 \pm 0.0012 \times DIM)$	1.16	0.80
(7)	$U_E = -7.742 \pm 2.367 + (0.388 \pm 0.055 \times DMI) + (0.726 \pm 0.096 \times CP) + (2.066 \pm 0.421 \times mPr t)$	1.05	0.94
(8)	$U_{C} = -0.1601 \pm 0.0169 + (0.0082 \pm 0.0005 \times DMI) + (0.0107 \pm 0.0008 \times CP) + (0.00013 \pm 0.00002 \times BW)$	1.13	0.84
(9)	$\begin{split} U_N = & - 0.2837 \pm 0.0135 + (0.0068 \pm 0.0004 \times DMI) + (0.0155 \pm 0.0006 \times CP) + (0.00013 \pm 0.00001 \times DIM) \\ & + (0.000092 \pm 0.000017 \times BW) \end{split}$	1.34	0.66
	Without DMI		
(10)	$\begin{split} F_{DM} &= 0.846 \pm 0.469 + (0.098 \pm 0.004 \times Milk) + (-0.097 \pm 0.021 \times CP) + (0.080 \pm 0.012 \times ADF) \\ &+ (0.0038 \pm 0.0005 \times BW) \end{split}$	1.04	0.80
(11)	$F_C = 0.468 \pm 0.232 + (0.046 \pm 0.002 \times Milk) + (-0.047 \pm 0.010 \times CP) + (0.037 \pm 0.006 \times ADF) + (0.0016 \pm 0.0002 \times BW)$	1.04	0.80
(12)	$F_{NDF} = (0.056 \pm 0.003 \times Milk) + (-0.059 \pm 0.010 \times CP) + (0.0435 \pm 0.0042 \times NDF) + (0.0023 \pm 0.0003 \times BW)$	1.00	0.77
(13)	$F_{ADF} = -0.973 \pm 0.152 + (0.0325 \pm 0.0016 \times Milk) + (0.0675 \pm 0.0043 \times ADF) + (0.0014 \pm 0.0002 \times BW)$	1.00	0.98
(14)	$F_N = (0.00245 \pm 0.00011 \times Milk) + (0.00643 \pm 0.00082 \times LIG) + (0.000094 \pm 0.00009 \times BW)$	1.00	0.99
(15)	$ \begin{aligned} F_{Water} &= (0.559 \pm 0.025 \times Milk) + (0.521 \pm 0.060 \times ADF) + (0.569 \pm 0.100 \times CP) + (0.024 \pm 0.003 \times BW) \\ &+ (-0.033 \pm 0.012 \times Age) \end{aligned} $	1.17	0.66
(16)	$U_E = -0.644 \pm 0.226 + (0.778 \pm 0.099 \times CP) + (1.520 \pm 0.426 \times mPr t)$	1.00	0.99
(17)	$U_{C} = -0.1167 \pm 0.0201 + (0.0013 \pm 0.0002 \times Milk) + (0.0106 \pm 0.0009 \times CP) + (0.00024 \pm 0.00002 \times BW)$	1.03	0.87
(18)	$U_N = -0.2578 \pm 0.0183 + (0.0152 \pm 0.0007 \times CP) + (0.0132 \pm 0.0031 \times mPr t) + (0.00021 \pm 0.00002 \times BW)$	1.01	0.98

Table 1. Summary statistics for the data (n = 1106)

 $F_{straw} F_{case} F_{cas} F_{cas} F_{case} F_{case}$ $F_{case} F_{case} = heral water, dy matter (DM, terror, nitrogen, neutral detergent fiber$ (MDF), acid detergent fiber (ADF), how for the strain of the stra

Variable	Mean	s.d.	CV%	Minimum	Maximum
	Indeper	ident or predicto	r variables		
Diet composition					
DM (% of diet)	68.0	20.0	29	30.2	93.8
CP (% of DM)	16.1	2.40	15	10.3	21.9
NDF (% of DM)	33.8	7.13	21	16.1	57.2
ADF (% of DM)	19.6	4.30	22	8.97	31.4
Lignin (% of DM)	4.33	1.48	34	1.26	8.44
Ether extract (% of DM)	2.56	0.75	29	0.52	4.95
Ash (% of DM)	6.31	1.11	18	3.54	9.99
Intake (kg/day)					
DM	15.6	4.08	26	6.40	28.7
N	0.41	0.13	32	0.14	0.93
NDF	5.31	1.81	34	1.15	12.0
ADF	3.08	1.06	35	0.70	6.82
Lignin	0.69	0.31	45	0.12	1.84
Production and other characteris	tics				
Milk yield (kg/day)	21.6	9.80	45	1.04	49.1
Milk fat (%)	3.50	0.76	22	1.30	7.60
Milk protein (%)	3.27	0.41	13	2.30	5.75
Age (years)	5.77	2.33	40	2.00	15.4
Bodyweight (kg/cow)	603	78.3	13	351	854
Days in milk	175	90.0	51	0.00	488
		Response varial			
Faecal excretions (Fx, kg/day) a	nd faecal C conten	t (C _C , kg/kg of I	DM)		
F _{Water}	25.0	9.80	39	4.03	59.8
F_{DM}	5.20	1.77	34	1.18	10.7
F_C	2.40	0.80	33	0.54	4.76
F_N	0.13	0.04	31	0.05	0.25
F_{NDF}	3.06	1.04	34	0.54	7.21
F_{ADF}	1.91	0.65	34	0.34	4.24
F_{HC}	1.17	0.49	42	0.10	3.22
F_{CL}	1.16	0.42	36	0.21	2.76
C_C	0.46	0.02	04	0.38	0.52
Urinary excretions (Ux, kg/day)					
U_E	16.6	6.60	40	4.38	34.9
U_C	0.22	0.07	32	0.07	0.43
U_N	0.16	0.08	48	0.03	0.40
Total output (T_x , kg/day), C : N					
T_E	46.7	14.0	30	16.9	98.5
T_C	2.59	0.80	31	0.68	5.09
T_N	0.29	0.10	34	0.09	0.66
$R_{C:N}$	9.50	2.69	28	4.24	19.6
C_{DM}	0.11	0.02	17	0.05	0.19

Models for cattle Models for individuals Models for herds

Models for other herds

Models for management

At the herd level

Physica D 240 (2011) 1497-1509

A mathematical model for the dynamics and synchronization of cows

Jie Sun^{a,1}, Erik M. Bollt^a, Mason A. Porter^{b,c,*}, Marian S. Dawkins^d

^a Department of Mathematics, Clarkson University, Potsdam, NY 13699-5815, USA

b Mathematical Institute, University of Oxford, Oxford OX1 3LB, UK

^c CABDyN Complexity Centre, University of Oxford, Oxford OX1 1HP, UK

d Department of Zoology, University of Oxford, OX1 3PS, UK

We model the biological status of a single cow by

$$w = (x, y; \theta) \in [0, 1] \times [0, 1] \times \Theta.$$
(1)

The real variables x and y represent, respectively, the extent of desire to eat and lie down of the cow, and

$$\theta \in \Theta = \{\mathcal{E}, \mathcal{R}, \mathcal{S}\}$$
(2)

is a discrete variable that represents the state of the cow (see the equations below for descriptions of the states). Throughout this paper, we will refer to θ as a symbolic variable or a state variable. One can think of the symbolic variable θ as describing a switch that triggers different time-evolution rules for the other two variables x and y.

We model the dynamics of a single cow in different states using

(\$) Eating state:
$$\begin{cases} \dot{x} = -\alpha_2 x, \\ \dot{y} = \beta_1 y. \end{cases}$$
 (3)

$$(\mathcal{R}) \text{ Resting state:} \begin{cases} \dot{x} = \alpha_1 x, \\ \dot{y} = -\beta_2 y. \end{cases}$$
(4)

(\$) Standing state:
$$\begin{cases} \dot{x} = \alpha_1 x, \\ \dot{y} = \beta_1 y, \end{cases}$$
 (5)

where the calligraphic letters inside parentheses indicate the corresponding values of θ . For biological reasons, the parameters α_1 , α_2 , β_1 , and β_2 must all be positive real numbers. They can be interpreted as follows:

- $\begin{cases} \alpha_1 : \text{rate of increase of hunger,} \\ \alpha_2 : \text{decay rate of hunger,} \\ \beta_1 : \text{rate of increase of desire to lie down,} \\ \beta_2 : \text{decay rate of desire to lie down.} \end{cases}$

2.2. Switching conditions

The dynamics within each state does not fully specify the equations governing a single cow. To close the bovine equations, we also need switching conditions that determine how the state variable θ changes. We illustrate these switching conditions in Fig. 1 and describe them in terms of equations as follows:

$$\theta \to \begin{cases} \mathcal{E} & \text{if } \theta \in \{\mathcal{R}, \, \$\} \text{ and } x = 1, \\ \mathcal{R} & \text{if } \theta \in \{\mathcal{E}, \, \$\} \text{ and } x < 1, y = 1, \\ \mathfrak{s} & \text{if } \theta \in \{\mathcal{E}, \, \mathcal{R}\} \text{ and } x < 1, y = \delta \text{ (or } x = \delta, y < 1). \end{cases}$$
(6)

Fig. 1. (Color online) Switching conditions for the single-cow model. In the left panel, we project the set $[\delta, 1] \times [\delta, 1] \times \Theta$ onto \mathbb{R}^2 , where edges of the square correspond to the borders at which switching occurs. In the right panel, we show the detailed switching situations; an arrow from one edge to another indicates the change of θ at that edge from one state to the other. (The arrows with solid curves are the ones that leave state \mathcal{R} , those with dashed curves are the ones that leave state \mathcal{S} , and those with dotted curves are the ones that leave state \mathcal{S} .)
4.1. The coupling scheme

There are numerous possible ways to model the coupling between cows. We have chosen one based on the hypothesis that a cow feels hungrier when it notices other cows eating and feels a greater desire to lie down when it notices other cows lying down. (We briefly discuss other possibilities in Section 5.) This provides a coupling that does not have a spatial component, in contrast to the agent-based approach of Ref. [30]. We therefore assume implicitly that space is unlimited, so we are considering cows to be in a field rather than in a pen. We suppose that the herd consists of *n* cows and use *i* to represent the *i*th cow in the herd. This yields herd equations given by

$$\begin{cases} \dot{x}_{i} = \left[\alpha^{(i)}(\theta_{i}) + \frac{\sigma_{x}}{k_{i}} \sum_{j=1}^{n} a_{ij} \chi_{\delta}(\theta_{j}) \right] x_{i}, \\ \dot{y}_{i} = \left[\beta^{(i)}(\theta_{i}) + \frac{\sigma_{y}}{k_{i}} \sum_{j=1}^{n} a_{ij} \chi_{\mathcal{R}}(\theta_{j}) \right] y_{i}, \end{cases}$$
(26)

with the switching condition given by Eq. (6) for each individual cow. The summation terms in both equations give the coupling terms of this system. The matrix $A = [a_{ij}]_{n \times n}$ is a time-dependent adjacency matrix that represents the network of cows. Its components are given by

$$a_{ij}(t) = \begin{cases} 1 & \text{if the ith cow perceives the} \\ jth cow at time t, \\ 0 & \text{if the ith cow does not perceive the} \\ jth cow at time t. \end{cases}$$
 (27)

Additionally, $k_i = \sum_{j=1}^n A_{ij}$ is the degree of node *i* (i.e., the number of cows to which it is connected), and the coupling strengths σ_x and σ_y are non-negative (and usually positive) real numbers. This is designed to emphasize that animal interaction strengths consider proximity to neighboring animals.

Fig. 8. (Color online) Example network architectures for coupled cows: (left) circular lattice with 10 nodes and (right) star graph with 10 nodes. (The spherical cow image was created for this paper by Yulian Ng and is used with her permission.)

Fig. 9. (Color online) Typical state transitions for coupled cows in (left) a circular lattice and (right) a star graph with fixed coupling strengths $\sigma_x = \sigma_y = 0.05$. We plot (artificial) straight lines to help visualize transitions between states (which are represented by open circles, with different colors representing different cows). The horizontal axis is time. Some of the curves overlap (so that fewer than 10 colors are visible) due to the partial synchrony between individual cows.

Ecological Modelling 119 (1999) 231-238

Model for the spatial pattern formed by a small herd in grazing cattle

Masae Shiyomi a.*, Mikinori Tsuiki b

^a Faculty of Science, Ibaraki University, Bunkyo 2-1-1, Mito 310-8512, Japan ^b Faculty of Agriculture, Iwate University, Ueda 3-18-8, Morioka 020-0066, Japan

Accepted 25 February 1999

increase. In other words, the area reaches an equilibrium, and attraction activities (desire to be in a group) and repulsion activities (maintenance of individual space) operating among individuals are well-balanced in the herd although the area they occupy is elastic within fences. Because the area they occupy indicates the strength of unity or closeness among individuals in the herd, the analvsis of the area should provide basic information for managing a cattle herd in paddocks. In the present study, only the distance between the farleft and far-right individuals in a small herd grazed in an experimental strip-wise pasture was observed instead of the area the cattle herd occupied. This distance is referred to as 'troop length' thereafter.

Suppose that there is a straight line with length of θ , and *n* individuals are located independently and randomly at points whose distances from the origin are x_1, x_2, \ldots, x_n according to the following rectangular distribution:

$$f(x) dx = dx/\theta$$
 for $0 \le x \le \theta$

f(x) dx = 0 elsewhere.

2.1. Probability density function of the troop length in the case of random patterns

We assume that the *n* independent individuals are located randomly on the line segment with a length of θ , and let *y* be the 'troop length'. The probability density function for the troop length was derived using a sampling theory of order statistics (e.g. Wilks, 1962), in the following form:

$$f(y) dy = n(n-1)y^{n-2}(\theta - y)/\theta^n dy \text{ for } 0 \le x \le \theta$$

$$f(y) dy = 0 \text{ elsewhere.}$$
(2)

The expected distance, μ , and the variance, σ^2 , for *y* are expressed by the following equations, respectively: $\mu = (n-1)\theta/(n+1)$ and $\sigma^2 = 2(n-1)\theta^2/\{(n+2)(n+1)^2\}.$

2.2. Deterministic model describing the changes in troop length

We express the troop length at time t by y, and assume that y changes during an infinitesimal period of time, dt, according to the following relationship (Fig. 1):

Fig. 1. Deterministic model representing the relationship between the troop length, y, and the change in an infinitesimal time period, dy/dt.

$$dy/dt = -a(y-K), \ a \ge 0, \ K \ge 0,$$
 (3)

where *a* indicates the 'convergence rate' of troop length to the 'equilibrium' troop length *K*. Eq. (3) indicates that: (1) troop length, *y*, decreases during the following *dt* if y > K (attraction); (2) *y* increases during the following *dt* if y < K (repulsion); and (3) *y* does not change during the following *dt* if y = K (equilibrium). Eq. (3) implies that the changes in the troop length with time occur solely based on attraction and repulsion operating among individuals within the herd. When we assume that the troop length at time t_0 is y_0 , the following solution is obtained from Eq. (3):

$$y = K - (K - y_0) e^{-at}.$$
 (4)

For $t \to \infty$, the troop length, y, in Eq. (4) approaches K in monotone. It is empirically evident that this deterministic model does not fit to the actual behavior of a cattle herd because it is unlikely that the troop length of cattle converges to a constant, K, with time, without fluctuations. Actual troop length may fluctuate around K as the example shown below (Fig. 3). A stochastic model modifying Eq. (3) to describe the actual fluctuations is proposed in the following sections.

2.3. Stochastic model describing changes in troop length

We assume that dy/dt follows: (1) the attractive and repulsive activities operating between individuals; and (2) a random movement or involuntary activity referred to as white noise in physics, ε , in the changes of the troop length at time t. Then, we have

$$dy/dt = -a(y-K) + \varepsilon.$$
(5)

Let us assume that the probability that the troop length, y, occurs between Y and $Y + \Delta Y$ at t, where ΔY denotes an infinitesimal length, is expressed by g(y, t) dy:

$$Prob\{Y \le y(t) \le Y + \Delta Y\} = g(y, t) dy,$$

where g denotes a probability density function of y at t.

Then, by applying the Kolmogorov diffusion equation (e.g. Bharucha-Reid, 1960) to Eq. (5), we obtain the following equation:

$$\frac{\partial g(y,t)}{\partial t} = \frac{-\partial}{\partial y} [-a(y-K)g(y,t)] + \frac{1}{2} \frac{\partial^2}{\partial y^2} [\sigma^2 g(y,t)], \qquad (6)$$

where σ^2 denotes a constant relating to the intensity of the involuntary activity.

In a pasture in which a given cattle herd is grazed for a long period of time, the interrelationships between the herd members and the troop length of the herd are likely to be stable. We do not need to solve Eq. (6) directly, because of this stability, and we obtain a probability density function of y, only by putting $\partial g(y, t)/\partial t = 0$. Then, we have:

$$a(y - K)g(y) + \frac{1}{2}\frac{d}{dy}[\sigma^2 g(y)] = 0,$$
(7)

where g(y) is independent of t.

From Eq. (7), we obtain the probability density function, g(y), for troop length, y, as follows:

$$g(y) = \exp\left[-\frac{a}{\sigma^2}(y-K)^2\right]/R,$$

where

$$R = \int_0^\theta \exp\left[-\frac{a}{\sigma^2}(y-k)^2\right] \mathrm{d} y, \ a \ge 0, \ 0 \le K \le \theta$$
(8)

Fig. 2. Examples for various values of three parameters in Eq. (8) ($\theta = 100$). (A) K = 30, a = 1.0, $\sigma^2 = 250$; (B) K = 70, a = 1.0, $\sigma^2 = 250$; (C) K = 30, a = 1.5, $\sigma^2 = 250$; and (D) K = 30, a = 1.0, $\sigma^2 = 500$.

3.1. Materials and methods

A pasture 88 m \times 6 m in size was designed, to observe easily the cattle activities and to facilitate theoretical considerations under the experimental conditions, at the National Grassland Research Institute at Nishinasuno, Tochigi, Japan. The main plant species in the pasture were orchard grass, tall fescue and white clover. A grazing experiment was carried out using six Holstein heifers aged 1-2 years with a body weight ranging from 200 to 300 kg in 1979. The width of the pasture, 6 m, was sufficient for three or more cows to walk side by side. The positions of each of the six cows were visually observed and recorded every 20 min. The observation was started at 07:30 h on 5 June, and continued for \approx 3 days except during the night when the positions could not be observed visually.

Fig. 3. Relationships, obtained in a field experiment, between the troop length at time t and change during successive 20 min intervals. Symbols \bullet , \times and \bigcirc denote the resting, feeding and moving states, respectively.

Fig. 4. Probability density functions, obtained for the experimental data, for the resting, feeding and moving states (Eq. (8)) and for the hypothetical random spatial pattern (Eq. 2). The parameter values used in the calculations are listed in Table 1.

Published 1989

Measurements of the Plant-Animal Interface in Grazing Research¹

S. W. Coleman

USDA-ARS Forage and Livestock Research Laboratory El Reno, Oklahoma

T. D. A. Forbes

Texas A&M University Uvalde, Texas

J. W. Stuth

Texas A&M University College Station, Texas

The hierarchical context of the plant-animal interface.

Fig. 4-2. The hierarchical context of diet selection as it descends from the landscape to the individual plant.

Ecological Modelling 270 (2013) 11-29

A model of diurnal grazing patterns and herbage intake of a dairy cow, MINDY: Model description

Pablo Gregorini^{a,*}, Pierre C. Beukes^a, Alvaro J. Romera^a, Gil Levy^a, Mark D. Hanigan^b

^a DairyNZ, Ltd., Private Bag 3221, Hamilton, New Zealand

^b Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA

Fig. 1. Schematic representation of MINDY: a mechanistic and dynamic model to simulate diurnal patterns of herbage intake and grazing behavior of a grazing dairy cow. White boxes with solid lines represent true pools (hard components) of the model, white dashed with dashed lines represent soft components of the model, solid arrows represent modifiers. Grey boxes (functional components) and arrows represent the motivational system of feeding behavior adapted from Jensen and Toates (1993), Hughes and Duncan (1988) and Smith (1996).

Fig. 2. A simplified schematic representation of Baldwin (1995). Adapted from Hanigan et al. (2008). Boxes with dashes lines represent conceptual compartments as defined in the model; boxes with solid lines represent pools; solid arrows represent modifiers; and the circles associated with dashed arrows indicate the direction of the modifies. FA, faty acids, VFA, volatile faty acids.

Fig. 3. a) A schematic representation of the bite features and grazing strata during grazing; b) a schematic representation of the harvesting step length calculus. (Adapted from Galli et al. (1999) and Baumont et al. (2004)).

Model variables definitions and units.

Symbol	Definition	Value/Unit
ACHT	Actual chewing time	Days
Actuali8	Actual herbase intake rate of the grazing stratum i	kg/min
AHM	Available herbage mass modulator	Unitless
AHor	Anabolic hormone	Unitless
Am	Ruminal ammonia concentration	mmol/L
AmCor	Ruminal ammonia correction factor	Unitless
BA,	Bite area of the grazing stratum i	m ²
BCS	Body condition score	Points
BCSTorget	Body condition score target	Points
BDi	Bite depth of the grazing stratum i	m
BMi	Bite mass of the grazing stratum i	kg
BR	Bite rata	Bites/day
Chewingfactor	Motivation to chew	Unitless
CowHeight	Animals height to the shoulder	m
CRi	Consumption rate area of grazing stratum i	m ² /day
CurrentStratum	Upper stratum from the pair strata currently being grazed	
CurrentStratum_1	Lower stratum from the pair strata currently being grazed	
C _{VER}	Ruminal concentration of volatile fatty acids Dental arcade	mmol/L
Dailydistancewalked DaylenethP1	Daily distance walked Daylength excluding twilight hours for lactation module	m
Daylight	Value representing light intensity	Unitless
Dayagna DayTwlength	Length of the day including twilight hours	Days
DayTwiength DayTwiengthP2	Daylength including twilight hours	Days
DayrwengmP2	Defoliation depth	Proportion
DWH	Distance walked while harvesting	m
elMI	Distance waiked while harvesting Shane factor	m Unitless
ETH	Extended tiller height of the grazing stratum i	m
ETH	Initial extended tiller height	m
ETHIm	Physical barrier under what cows are not allowed to or are not capable to graze	m
Faljazoest	Adjustment factor to the herbage chemical composition	Unitless
EdBat	Herbage intake rate	kg/day
FSR	Number of feeding stations per unit of time	FS/day
GA _{CarrentStratum}	Area harvested at the upper grazing stratum from the pair of grazing strata being grazed at the time	m ²
GA _{CarrentStratum} - 1	Area harvested at the lower grazing stratum from the pair of grazing strata being grazed at the time	cm ²
GA	Rates of changes in GSA ₁ due to herbage consumption in grazing stratum i	m ² /day
GiHor	Motivation to graze	Unitless
GrazingSw	Switch to turn on and off grazing	Unitless
HDMI	Daily herbage dry matter intake	kg/dav
HGR	Herbage growth rate	m/day
Hi	Median point height of each grazing stratum i	m
High ChewingMot	Constant	1, unitless, 31
HM	Herbage mass	kg/m ²
HMsatalaval	Sum of the herbage mass remaining in each grazing stratum	kg
HManaral	Unavailable herbage mass	kg
HSL	Length of a step while harvesting	m
iHM _{total}	Pre-grazing herbage mass	kg
iHMmsakrat	Pre-grazing available herbage mass	kg
IHor	Hunger hormone	Unitless
IHorCor	Scalar	1.0, unitless
IHorDeg	Intake hormone degradation	Unitless
IHorRange	Constant, Range of IHor	0.02, unitless
IHorSyn iIHor	Intake hormone synthesis Initial IHor	Unitless 1.0. unitless
k _{atter}	Scalar Scalar	1.0, unitless 0.75, unitless
k _{An}	Scalar	Unitless
k Chevefactor	Scalar Function adjusting for adiposity and genetic potential	Unitless
k _{SERst} kHor	runction adjusting for adiposity and genetic potential	6.037, unitless
kintor k _{Marcab}	Scalar (it scales FdRat with genetic potential)	0.1, unitless
KMawCelb kursp	Rate of particle breakdown while ruminating	Unitless
k _{sthef}	Scalar to correct PIR $(i - 1)$ /PIR (i) to achieve a proper curve shape	Unitless
k _{RunDM}	Scalar	9.5, unitless
k _{BUR}	Scalar	0.11, unitless
LagDMI	Intake lag function	Unitless
LateFeeding	Adjusting variable to reduce MinIHor	Days
IM	Linear masses of lamina	kg/m
LMI,	Linear mass index of each grazing stratum i	Unitless
LowChewingMot	Constant	0.15, unitless
LP	Large particle size pool in the rumen	kg
MamCellPart	Number of milk secretor cells in the udder	Unitless
MBD.	Mean bulk density of the grazing stratum i	kg/m ³
MBD		
	Mean bulk density of the sward	kg/m ³
MeanLM	Mean bulk density of the sward Mean linear mass of the tiller	kg/m ³ kg/m

Table A.1 (Continued)

minimunGSAArea threshold at which hrazing strating has '0' preferencem²MinLPRummMinimum LP size required to initiate a ruination boutkgMSHMomentary speed of harvestingm/dNightMedIlIterLength of the last meal of the day0.1. unitlessNightMedIlIterInterval of the last meal of the day and the next meal during the night0.044, unitlessNightMedIlIterNumber of sward canopy accessible grazing strataUnitlessNutrient_adjustmentAdjustment factor to the herbage nutrientsUnitlessNutrient_adjustmentPotential intake rate in the lower stratum from the pair strata currently being grazedkg/dayPRCorrent_sumamPotential intake rate in the lower stratum from the pair strata currently being grazedkg/dayPRCorrent_sumamPotential intake rate in the lower stratum from the pair strata currently being grazedUnitlessPREFuncerConstant to affect the intercept of the curve of partial preference for current currently being grazedUnitlesspSTIMomentary average proportion of time searchingDaysDaysPRRestResting (idling) timemaysSogSDIDistance walked while searchingm²/dMaySSRSearching step point for starting a grazing boutUnitlessSearching steps/daySTISarching step point for starting a grazing boutUnitlessSaraf/dSSRSearching step point for ending a mealDaysSaraf/dSTISearching step point for starting a grazing boutUnitlessSTISear	Symbol	Definition	Value/Unit
MSHMomentary speed of harvestingm/dNight/MealInterLength of the last meal of the day0.1, unitlessNight/MealIntreInterval of the last meal of the day and the next meal during the night0.44, unitlessNight/MealIntreInterval of the last meal of the day and the next meal during the night0.44, unitlessNight/MealIntreNumber of sward canopy accessible grazing strataUnitlessNitrient_adjuamentAdjustment factor to the herbage nutrientsDaysPCHTPotential intake rate in the upper stratum from the pair strata currently being grazedkg/dayPRR_current stratumPotential intake rate in the lower stratum from the pair strata currently being grazedkg/dayPRR_current stratumn+1Potential herbage dry matter intake rate of the grazing stratum ikg/dayPREFCurrentsstratum+1Potential intake rate in the upper stratum from the pair strata currently being grazedUnitlessPREFCurrentsstratum+1Potential herbage dry matter intake rate of the grazing stratum ikg/dayPREFCurrentsstratum+1Potential intake rate in the upper stratum from the pair strata currently being grazedUnitlessPREFCurrentsstratum+1Potential intake rate of the curve of partial preference for current currently being grazedUnitlessPREFCurrentsstratum+1Momentary average proportion of time searchingDaysRestResting (idling) timeRation timeDaysStop IntareNumination timematter intakeNaSGRSward growth ratematter intakeNaSSRSearching step poi	minimunGSA	Area threshold at which hrazing strating has '0' preference	m ²
Night MealTimeLength of the last meal of the day0.1, unitlessNight MealTimeInterval of the last meal of the day and the next meal during the night0.044, unitlessNight MealTimeNumber of sward canopy accessible grazing strataUnitlessNutrent digitamentAdjustment factor to the herbage nutrientsUnitlessPCHTPotential chewing timeDaysPRocurrent stratumPotential intake rate in the lower stratum from the pair strata currently being grazedkg/dayPRocurrent stratumPotential intake rate in the lower stratum from the pair strata currently being grazedUnitlessPRCETINETPotential intake rate in the curve of partial preference for currently being grazedUnitlessPSTIMomentary average proportion of time searchingUnitlessPTPrehension timeDaysRestResting (idling) timemaysRumntRuminal dry matter loadkg/daySOLDistance walked while searchingmaysSSRSavad growth ratema²/dSSRSearching sepe od while searching a grazing boutUnitlessSTISavad growth ratesearching seps/daySSRSearching sep point for starting a grazing boutUnitlessSSRSearching sep point for starting a grazing boutUnitlessSTISearching sep point for starting a grazing boutUnitlessSTISearching sep point for starting a grazing boutUnitlessSSRSearching sep point for starting a grazing boutUnitlessTTime of dayD	MinLPRumntn	Minimum LP size required to initiate a ruination bout	kg
IndervalInterval of the last meal of the day and the next meal during the night0.044, unitlessNstrataNumber of sward canopy accessible grazing strataUnitlessNutrient digiumentAdjustment factor to the herbage nutrientsDaysPKC.Potential intake rate in the upper stratum from the pair strata currently being grazedkg/dayPRcurrent stratum+1Potential intake rate in the upper stratum from the pair strata currently being grazedkg/dayPREFCurrent stratum+1Potential intake rate in the lower stratum from the pair strata currently being grazedUnitlessPREFCurrent stratum+1Potential intake rate of the curve of partial preference for current urrently being grazedUnitlessPREFCurrent stratumPartial preference for the upper strata currently being grazedUnitlessPSTIMomentary average proportion of time searchingDaysRestResting (iding) timeDaysRumDMRuminal dry matter loadkg/DMRumDMRumination timeDaysSDIDistance walked while searchingm²/dSSRSearching step ateSearching step ateSSPedSMomentary average propint for starting a grazing boutUnitlessSTIConstant, trigger point for ending a mealUnitlessSTISearching step point for ending a grazing boutUnitlessSTISearching step point for ending a grazing boutUnitlessSTISearching step point for ending a grazing boutUnitlessSTISearching step point for ending a grazing boutUnitless <tr<< td=""><td>MSH</td><td>Momentary speed of harvesting</td><td>m/d</td></tr<<>	MSH	Momentary speed of harvesting	m/d
NerrateNumber of sward canopy accessible grazing strataNutrient adjusmentAdjustment factor to the herbage nutrientsUnitlessNutrient adjusmentPotential intake rate in the upper stratum from the pair strata currently being grazedkg/dayPRCurrent straumPotential intake rate in the lower stratum from the pair strata currently being grazedkg/dayPRCurrent straum-1Potential intake rate in the lower stratum from the pair strata currently being grazedkg/dayPRCurrent straum-1Potential intake rate in the upper stratum in the pair strata currently being grazedunitlessPREFunctConstant to affect the intercept of the curve of partial preference for current currently being grazedUnitlessPSTMomentary average proportion of time searchingDaysDaysPrPrehension timeDaysDaysRestResting (idling) timeRuminal dry matter loadkg DMRumntnRumination timeDaysDaysSOLDistance walked while searchingm²/dSSpeedSMomentary average speed while searchingm²/dSSRSearching step rateSearching step side of the searching a grazing boutUnitlessSTISearching step point for starting a grazing boutUnitlessSTISearching step point for ending a mealDaysSTISearching step point for ending a mealDaysSTISearching step point for starting a grazing boutUnitlessSTISearching step point for ending a mealDaysTTime of fdayDays	NightMealInter	Length of the last meal of the day	0.1, unitless
Nutrient adjustmentUnitiessPCHTPotential chewing timeDaysPRCurrent stratumPotential chewing timeDaysPRCurrent stratumPotential intake rate in the upper stratum from the pair strata currently being grazedkg/dayPRCurrent stratumPotential intake rate in the upper stratum from the pair strata currently being grazedkg/dayPRRPotential herbage dry matter intake rate of the grazing stratum ikg/dayPREFPotential herbage dry matter intake rate of the grazing stratum ikg/dayPREFConstant to affect the intercept of the curve of partial preference for currently being grazedUnitlesspSTIMomentary average proportion of time searchingDaysPREFPrehension timeDaysRestResting (iding) timekg DMRumntnRuminiant dry matter loadkg DMSDIDistance walked while searchingm² / dSSRSagrowth ratem² / dSSRSagrowth ratem² / dSSRSearching step rateSearching step statum i for starting a grazing boutUnitlessSTIOnstant, trigger point for starting a grazing boutUnitlessSSRSearching step rateDaysStopHorConstant, trigger point for starting a grazing boutUnitlessTTime of daym²TATime an afferedm²TATime are offeredm²TATime of dayDaysTATime are offeredm²TATime are offeredMays <td>NightMealTime</td> <td>Interval of the last meal of the day and the next meal during the night</td> <td>0.044, unitless</td>	NightMealTime	Interval of the last meal of the day and the next meal during the night	0.044, unitless
PCHTPotential chewing timeDaysPRCHTPotential intake rate in the upper stratum from the pair strata currently being grazedkg/dayPRCurrent stratumPotential intake rate in the lower stratum from the pair strata currently being grazedkg/dayPRCurrent stratumPotential intake rate in the lower stratum from the pair strata currently being grazedkg/dayPRCurrent stratum=1Potential intake rate in the lower stratum in the pair strata currently being grazedUnitlessPREFCurrentStratumPartial preference for the upper stratum in strata currently being grazedUnitlessPREFCurrentStratumConstant to affect the intercept of the curve of partial preference for current currently being grazedUnitlesspSTIMomentary average proportion of time searchingDaysDaysRestResting (idling) timeBaysDaysRumDMRuminal dry matter loadMaysDaysSDIDistance walked while searchingmSGRSearching step card while searchingm²/dSSPeedSMomentary average speed while searching a grazing boutUnitlessSTISearching step point for starting a grazing boutUnitlessTTimeer of dayDaysTATotal area offeredm²The informationm²This informationm²StopHorConstant, trigger point for ending a mealUnitlessTTimeer of daym²TATotal area offeredm²ThisTimeer obite at the grazing stratum iDays	Nstrata	Number of sward canopy accessible grazing strata	
PCHTPotential chewing timeDaysPRcurrent stratumPotential intake rate in the upper stratum from the pair strata currently being grazedkg/dayPRcurrent stratumentPotential intake rate in the lower stratum from the pair strata currently being grazedkg/dayPRcurrent stratumentPotential intake rate in the lower stratum from the pair strata currently being grazedkg/dayPRCurrent stratumentPotential herbage dry matter intake rate of the grazing stratum ikg/dayPREFCurrentStratumPartial preference for the upper stratum from the pair strata currently being grazedUnitlessPSTIConstant to affect the intercept of the curve of partial preference for current currently being grazedUnitlesspSTIMomentary average proportion of time searchingDaysRestResting (idling) timeDaysRumDMRumination timeDaysSDIDistance walked while searchingmSGRSward growth ratem²/dSSPedSMomentary average speed while searchingSaarching steps/daySTIConstant, trigger point for starting a grazing boutUnitlessSTISearching step rateDaysStartHortConstant, trigger point for ending a mealDaysTTime of daym²TATotal area offeredm²ThereTime of bit at the grazing stratum im²Vmites/ymMaximum velocity of <i>Hor</i> synthesisUnitlessXuHorSalarLineutilessTTime pote bit at the grazing stratum iLineutiless <td>Nutrientadjustment</td> <td>Adjustment factor to the herbage nutrients</td> <td>Unitless</td>	Nutrientadjustment	Adjustment factor to the herbage nutrients	Unitless
PRCurrent struttmentPotential intake rate in the lower strattum from the pair strata currently being grazedkg/dayPRRPotential herbage dry matter intake rate of the grazing stratum ibeing grazedkg/dayPREFCurrentStruttmPartial preference for the upper stratum from the pair strata currently being grazedUnitlessPREFCurrentStruttmConstant to affect the intercept of the curve of partial preference for current currently being grazedUnitlessPSTIMomentary average proportion of time searchingDaysDaysRestResting (idling) timeDaysRuminal dry matter loadKg DMRumDMRuminal dry matter loadDaysDaysSDIDistance walked while searchingmMaySCRSward growth ratem²/dMaySSRSearching step point for starting a grazing boutUnitlessUnitlessSTIConstant, trigger point for ending a mealUnitlessDaysStartHorConstant, trigger point for ending a mealUnitlessDaysStartHorTime of daym²DaysTATotal area offeredm²MaysThe fired average point and up strating is grazing stratum iUnitlessDaysXufforSaarching strating is grazing stratum iDaysDaysStartHorConstant, trigger point for ending a mealUnitlessDaysTATotal area offeredm²DaysTATotal area offeredm²DaysVmites/ymMaximum velocity of <i>Hor</i> synthesisUnitless<	PCHT	Potential chewing time	Days
IPIR, PREFCurrentStrutumPotential herbage dry matter intake rate of the grazing strutum ikg/dayPREFCurrentStrutumPartial preference for the upper strutum from the pair strata currently being grazedUnitlessPREFInterConstant to affect the intercept of the curve of partial preference for current currently being grazedUnitlesspSTIMomentary average proportion of time searchingDaysPrefension timeDaysRestResting (idling) timeBaysRumDMRuminal dry marter loadDaysSDIDistance walked while searchingmSGRSward growth ratemSSpeedSMomentary average speed while searching a grazing boutunitlessSSRSearching step point for starting a grazing boutUnitlessSTISearching step point for ending a mealDaysStorIHorConstant, trigger point for ending a mealDaysSTISearching step point for ending a mealDaysTATotal area offeredm²TRi,Time pre bite at the grazing strutum iMaximum velocity of IHor synthesisVintuessymMaximum velocity of IHor synthesisLon unitlessXahronScalar1.0, unitless	PIR _{Current stratum}	Potential intake rate in the upper stratum from the pair strata currently being grazed	kg/day
IPIR, PREFCurrentStrutumPotential herbage dry matter intake rate of the grazing strutum ikg/dayPREFCurrentStrutumPartial preference for the upper strutum from the pair strata currently being grazedUnitlessPREFInterConstant to affect the intercept of the curve of partial preference for current currently being grazedUnitlesspSTIMomentary average proportion of time searchingDaysPrefension timeDaysRestResting (idling) timeBaysRumDMRuminal dry marter loadDaysSDIDistance walked while searchingmSGRSward growth ratemSSpeedSMomentary average speed while searching a grazing boutunitlessSSRSearching step point for starting a grazing boutUnitlessSTISearching step point for ending a mealDaysStorIHorConstant, trigger point for ending a mealDaysSTISearching step point for ending a mealDaysTATotal area offeredm²TRi,Time pre bite at the grazing strutum iMaximum velocity of IHor synthesisVintuessymMaximum velocity of IHor synthesisLon unitlessXahronScalar1.0, unitless	PIR _{current stratum+1}	Potential intake rate in the lower stratum from the pair strata currently being grazed	kg/day
PREFmin Constant to affect the intercept of the curve of partial preference for current currently being grazed Unitless pSTI Momentary average proportion of time searching Unitless pT Prehension time Days Rest Resting (idling) time Days RumDM Ruminiation time Days Rumntm Ruminiation time Days SDI Distance walked while searching m SGR Sward growth rate m²/d SM Linear masses of sheath kg/m SSR Searching step rate Searching steps/day STI Searching step rate Days StorJHor Constant, trigger point for ending a meal Unitless T Time of day Days Days TA Total area offered m² Days TBri Time polit at the grazing stratum i Mays Mays Vinuessym Maximum velocity of <i>Hor</i> synthesis Unitless Mays	PIRi	Potential herbage dry matter intake rate of the grazing stratum <i>i</i>	kg/day
pSTMomentary average proportion of time searchingUnitlessPTPrehension timeDaysRestResting (idling) timeDaysRumDMRuminal dry matter loadkg DMRumntmRuminiton timeDaysSDIDistance walked while searchingmSCRSward growth ratem² /dSMLinear masses of sheathkg/mSSRSearching step rateSearching steps/daySTIConstant, trigger point for starting a grazing boutUnitlessSTISearching step rot for starting a grazing boutUnitlessStopIl/HorConstant, trigger point for ending a mealUnitlessTTime of dayDaysTATotal area offeredm²TB ₁ Time per bit at the grazing stratum iDaysXufforScalarLinitlessXufforScalarLinitlessXufforScalarLinitless	PREF _{CurrentStratum}	Partial preference for the upper stratum from the pair strata currently being grazed	Unitless
PTPrehension timeDaysRestResting (idling) timeDaysRumDMRuminal dry matter loadkg DMRumntmRumination timeDaysSDIDistance walked while searchingmSCRSward growth ratem?ddSSPeedSMomentary average speed while searchingm/daySSRSearching step rateSearching steps/dayStartHorConstant, trigger point for ending a grazing boutUnitlessTTime of dayDaysTATotal area offeredm²TheTime of bit at the grazing stratum iMaximum velocity of <i>Hor</i> synthesisVmiteorymMaximum velocity of <i>Hor</i> synthesisUnitlessxdHorSclaar1.2, unitless	PREFinter	Constant to affect the intercept of the curve of partial preference for current currently being grazed	Unitless
Rest Resting (idling) time Days RumDM Ruminal dry matter load kg DM Rumnt Rumination time Days SDI Distance walked while searching m SGR Sward growth rate m²/d SM Linear masses of sheath kg/m SSpeedS Momentary average speed while searching a grazing bout m/day SSR Searching step rate Searching steps/day STI Constant, trigger point for starting a grazing bout Unitless STI Searching step rote for starting a grazing bout Unitless STI Searching step rote for day Days T Time of day Days TRi Time per bit at the grazing stratum i m² TBi Time per bit at the grazing stratum i Days Xuffor Scalar Li, unitless	pSTI	Momentary average proportion of time searching	Unitless
RumDM Ruminal dry matter load kg DM Rumntn Rumination time Days SDI Distance walked while searching m SCR Sward growth rate m² /d SM Linear masses of sheath kg/m SSR Searching step rate searching steps/day StartHor Constant, trigger point for starting a grazing bout Unitless STI Searching time Days StorHlor Constant, trigger point for ending a meal Unitless T Time of day Days Days TA Total area offered Days Days TB _i Time potiet at the grazing stratum i Days Days Vm _{Bibofym} Maximum velocity of <i>Hor</i> synthesis Unitless Xathor Xathor Scalar 1.0, unitless Scalar Scalar	PT	Prehension time	Days
Rumination time Days SDI Distance walked while searching m SGR Sward growth rate m²/d SM Linear masses of sheath kg/m SSpeedS Momentary average speed while searching m/day SSR Searching step rate Searching steps/day STI Constant, trigger point for starting a grazing bout Unitless STI Searching step ratifor ending a meal Days StopHor Constant, trigger point for ending a meal Unitless T Time of fay Days TA Total area offered m² TBr, Time polit at the grazing stratum i Days Vmathersym Maximum velocity of <i>Hor</i> synthesis Unitless xathor Scalar 1.0, unitless	Rest	Resting (idling) time	Days
SDI Distance walked while searching m² SGR Sward growth rate m²/d SM Linear masses of sheath kg/m SSpeedS Momentary average speed while searching m/day SR Searching step rate Searching step/day StartiHor Constant, trigger point for starting a grazing bout Unitless STI Searching time Days StopHor Constant, trigger point for ending a meal Days T Time of day Days TA Total area offered m² TBi Time per bite at the grazing stratum i Days Vmu _{bloSyn} Maximum velocity of <i>Hor</i> synthesis Unitless xdHor Scalar 1.0, unitless	RumDM	Ruminal dry matter load	kg DM
SCR Sward growth rate m² /d SM Linear masses of sheath kg/m SSpeedS Momentary average speed while searching m/day SSR Searching step rate Searching step spid SM Constant, trigger point for starting a grazing bout Unitless STI Searching grep point for ending a meal Days T Time of day Days TA Total area offered m² TRi, Time polit e at the grazing stratum i Days Vm _{Bebrilym} Maximum velocity of <i>IHor</i> synthesis Unitless xdHor Scalar 1.0, unitless	Rumntn	Rumination time	Days
SM Linear masses of sheath kg/m SSpeedS Momentary average speed while searching m/day SSR Searching step rate Searching steps/day StartHibr Constant, trigger point for starting a grazing bout Unitless STI Searching step rote Days StopHor Constant, trigger point for ending a meal Unitless T Time of day Days TA Total area offered m² TB _R Time per bit at the grazing stratum i Days Vintuersym Maximum velocity of <i>Hor</i> synthesis Unitless xArlor Scalar 1.0, unitless	SDI	Distance walked while searching	
SpeedS Momentary average speed while searching m/day SSR Searching step rate Searching step/day SSR Constant, trigger point for starting a grazing bout Unitless STI Searching time Days StopHlor Constant, trigger point for ending a meal Unitless T Time of day Days TA Total area offered m ² TB _i Time polite at the grazing stratum i Days Vm _{BloGym} Maximum velocity of <i>Hor</i> synthesis Unitless xdHor Scalar 1.0, unitless	SGR		m ² /d
SR Searching step rate Searching step step StartIHor Constant, trigger point for starting a grazing bout Unitless STI Searching time Days StopIHor Constant, trigger point for ending a meal Unitless T Time of day Days TA Total area offered m ² TBr, Time point for synthesis Unitless Vmuteorsyn Maximum velocity of <i>Hor</i> synthesis Unitless xArbor Scalar 1.2, unitless	SM	Linear masses of sheath	kg/m
StartIHor Constant, trigger point for starting a grazing bout Unitless STI Searching time Days StopIHor Constant, trigger point for ending a meal Unitless T Time of day Days TA Total area offered Days TB _i Time pot lite at the grazing stratum i Days Vm _{lub/Sym} Maximum velocity of <i>IHor</i> synthesis Unitless xaHor Scalar 1.12, unitless	SSpeedS	Momentary average speed while searching	m/day
STI Searching time Days StopIHor Constant, trigger point for ending a meal Unitless T Time of day Days TA Total area offered m ² TB _i Time of bit at the grazing stratum i Days Vm _{libbrSyn} Maximum velocity of <i>IHor</i> synthesis Unitless xdHor Scalar 1.2, unitless	SSR	Searching step rate	Searching steps/day
Stop/Hor Constant, trigger point for ending a meal Unitess T Time of day Days TA Total area offered m ² TB _i Time per bite at the grazing stratum i Days Vmu _{binSym} Maximum velocity of <i>Hor</i> synthesis Unitless xaHor Scalar 1.0, unitless	StartIHor	Constant, trigger point for starting a grazing bout	Unitless
T Time of day Days TA Total area offered m ² TB _i Time por bite at the grazing stratum i Days VPm _{bioSym} Maximum velocity of <i>IHor</i> synthesis Unitless xaHor Scalar 1.0, unitless	STI	Searching time	Days
TA Total area offered m ² TBr Time per bite at the grazing stratum i Days Virlybersyn Maximum velocity of <i>IHor</i> synthesis Unitless xaHor Scalar 1.0, unitless xAm Scalar 1.12, unitless	StopIHor	Constant, trigger point for ending a meal	Unitless
TB _i Time per bite at the grazing stratum i Days Vm _{likeSym} Maximum velocity of <i>lHor</i> synthesis Unitless xaHor Scalar 1.0, unitless xAm Scalar 1.12, unitless			
Vm _{BboSyn} Maximum velocity of <i>IHor</i> synthesis Unitless xaHor Scalar 1.0, unitless xAm Scalar 1.12, unitless	TA	Total area offered	m ²
xaHorScalar1.0, unitlessxAmScalar1.12, unitless	TB_i	Time per bite at the grazing stratum <i>i</i>	Days
xAm Scalar 1.12, unitless	Vm _{IHorSyn}	Maximum velocity of IHor synthesis	Unitless
	xaHor	Scalar	1.0, unitless
	xAm		
	xFdRatLag	Scalar (it rescales Roseler et al. (1997) lag function)	0.25, unitless
xRumDM Scalar 1.0, unitless			
xVFA Scalar 10.0, unitless	xVFA	Scalar	10.0, unitless

Available online at www.sciencedirect.com

Bioresource Technology 87 (2003) 113-124

Mathematical modeling of non-ideal mixing continuous flow reactors for anaerobic digestion of cattle manure

A. Keshtkar ^{a,b}, B. Meyssami ^{b,*}, G. Abolhamd ^b, H. Ghaforian ^a, M. Khalagi Asadi ^a

^a Center of Renewable Energies for Research and Application, Atomic Energy Organization of Iran, Tehran, Iran
 ^b Faculty of Engineering, Department of Chemical Engineering, Tehran University, P.O. Box 11365-4563, Tehran, Iran
 Received 6 August 2001; received in revised form 14 January 2002; accepted 23 April 2002

Fig. 1. Two-region mixing model.

 $(C_6H_{10}O_5 \cdot nNH_3)_{is} \rightarrow \gamma_e(C_6H_{10}O_5)_e$ $+ (1 - v_e)(C_6H_{10}O_5 \cdot mNH_3)_{ie}$ $+(n-(1-v_{c})m)NH_{3}$ (1) $(C_6H_{10}O_5)_s + 0.1115NH_3 \rightarrow 0.1115C_5H_7NO_2$ +0.744 CH₃COOH +0.5CH₃CH₂COOH $+ 0.4409 \, CH_3 (CH_2)_2 COOH$ $+\,0.6909\,CO_2+0.0254\,H_2O$ (2) $CH_{3}CH_{2}COOH + 0.06198 NH_{3} + 0.314 H_{2}O$ $\rightarrow 0.06198 C_5 H_7 NO_2 + 0.9345 CH_3 COOH$ $+ 0.6604 \,\mathrm{CH}_4 + 0.1607 \,\mathrm{CO}_2$ (3) $CH_3(CH_2)_2COOH + 0.0653 NH_3 + 0.5543 CO_2$ $+0.5543 H_2O \rightarrow 0.0653 C_5H_7NO_2$ $+ 1.8909 \,CH_{3}COOH + 0.4452 \,CH_{4}$ (4) $CH_3COOH + 0.022 NH_3 \rightarrow 0.022 C_5 H_7 NO_2$ $+0.945 \, CH_4$ $+0.945 \, \text{CO}_2$ $+ 0.066 H_2O$ (5)

Nomenclature

a	mixing parameter
b	mixing parameter
С	liquid concentration, g/l
$[CO_2]$	free CO ₂ in liquid concentration, mol/l
f	individual bacterial fraction in initial total
	biomass
$f_{\rm pr}$	mass conversion factor of propionate to ac-
	etate = 0.8108
$f_{\rm but}$	mass conversion factor of butyrate to acetate $= 0.6818$
$F_{\rm t}$	biogas transfer rate, mol/d
F(pH)	pH function
H	Henry's constant, atml/mol
HRT	hydraulic retention time
SRT	sludge retention time
k	hydrolysis rate constant, d ⁻¹
K_0	non-inhibited hydrolysis rate constant, d ⁻¹
$K_{\rm a}$	dissociation constant
$k_{\rm d}$	bacterial decay rate constant, d ⁻¹
$K_{\rm i}$	inhibition constant, g/l
$K_{\rm s}$	Monod saturation constant, g/l
т	feed constant used in Eq. (1)
п	feed constant used in Eq. (1)
N	gas transfer rate, g/d
$[NH_3]$	free NH ₃ in liquid concentration, mol/l
P	pressure, atm
pK_h	constant used in Eq. (16)
pK_1	constant used in Eq. (16)
Q	volumetric flow rate, d ⁻¹
r _d	bacterial decay rate, g/ld
$r_{\rm h}$	hydrolysis reaction rate, g/ld
rs	substrate consumption rate, g/ld
r _x	bacterial growth rate, g/ld

D	1/ 177		
R	gas constant, atm l/mol K		
t T	time, d		
T	temperature, K		
$V_{\rm g}$	gas volume of reactor, l		
V_1	liquid volume of reactor, l		
VFA			
X	microorganisms concentration, g/l		
Уe	yield factor used in Eq. (10)		
α	flow-through region		
β	retention region		
θ	HRT, d		
μ	specific growth rate, d ⁻¹		
$\mu_{\rm max}$	maximum specific growth rate, d ⁻¹		
Subscripts			
ac	acetate		
am	ammonia		
Α	acidogenic bacteria		
AB	butyric degrading acetogenic bacteria		
AP	propionate degrading acetogenic bacteria		
but	butyrate		
с	carbon dioxide		
e	exchange between zones		
f	feed		
i	component i		
is	insoluble substrate		
m	methane		
М	methanogenic bacteria		
pr	propionate		
s	soluble substrate		
ť	total		
w	water		
	mater		

A.4. Liquid phase equilibrium chemistry

Ionic dissociation equations

$$\operatorname{CO}_2 + \operatorname{H}_2\operatorname{O} \leftrightarrow \operatorname{HCO}_3^- + \operatorname{H}^+ \quad k_{a1} = \frac{[\operatorname{HCO}_3^-][\operatorname{H}^+]}{[\operatorname{CO}_2]}$$

(A.25)

$$HCO_3^- \leftrightarrow CO_3^{2-} + H^+ \quad k_{a2} = \frac{[CO_3^{2-}][H^+]}{[HCO_3^-]}$$
 (A.26)

$$HAc \leftrightarrow Ac^{-} + H^{+} \quad k_{a3} = \frac{[AC^{-}][H^{+}]}{[HAc]}$$
 (A.27)

$$HPr \leftrightarrow Pr^- + H^+ \quad k_{a4} = \frac{[Pr^-][H^+]}{[HPr]}$$
 (A.28)

$$\mathbf{HBut} \leftrightarrow \mathbf{But}^- + \mathbf{H}^+ \quad k_{a5} = \frac{[\mathbf{But}^-][\mathbf{H}^+]}{[\mathbf{HBut}]} \tag{A.29}$$

$$\mathrm{NH}_4^+ \leftrightarrow \mathrm{NH}_3 + \mathrm{H}^+ \quad k_{\mathrm{a6}} = \frac{[\mathrm{NH}_3][\mathrm{H}^+]}{[\mathrm{NH}_4^+]}$$
 (A.30)

 $\mathbf{H}_{2}\mathbf{O}\leftrightarrow\mathbf{O}\mathbf{H}^{-}+\mathbf{H}^{+}\quad k_{\mathbf{w}}=[\mathbf{O}\mathbf{H}^{-}][\mathbf{H}^{+}] \tag{A.31}$

Ionic balance equations for both α and β liquid phases

where

$$[\mathbf{NH}_{4}^{+}] = \frac{C_{am}/17}{1 + k_{a6}/[\mathbf{H}^{+}]}$$
(A.33)

$$[OH^{-}] = k_w/[H^{+}]$$
 (A.34)

$$[HCO_{3}^{-}] = \frac{C_{c}/44}{1 + [H^{+}]/k_{a1} + k_{a2}/[H^{+}]}$$
(A.35)

$$[CO_2^{2-}] = \frac{C_c/44}{1 + [H^+]/k_{a2} + [H^+]^2/k_{a1}k_{a2}}$$
(A.36)

$$[Ac^{-}] = \frac{C_{ac}/60}{1 + [H^{+}]/k_{a3}}$$
(A.37)

$$[\mathbf{Pr}^{-}] = \frac{C_{pr}/74}{1 + [\mathbf{H}^{+}]/k_{a4}}$$
(A.38)

$$[But^{-}] = \frac{C_{but}/88}{1 + [H^{+}]/k_{a5}} \qquad (A.39)$$

Appendix A. Material balances

A.1. Liquid phase

Microbial biomass, Xi, i = A, AP, AB, M

$$\frac{dX_{i}^{\pi}}{dt} = \frac{X_{i,f} - X_{i}^{\pi}}{a\theta} + \frac{X_{i}^{p} - X_{i}^{\pi}}{a\theta/b} + (\mu_{i}^{\pi} - b_{i})X_{i}^{\pi} \quad (A.1)$$

$$\frac{dX_{i}^{\beta}}{dt} = \frac{X_{i}^{\alpha} - X_{i}^{\beta}}{(1 - a)\theta/b} + (\mu_{i}^{\beta} - b_{i})X_{i}^{\beta} \qquad (A.2)$$

Insoluble substrate, Cis

$$\frac{dC_{is}^{\alpha}}{dt} = \frac{C_{isf} - C_{is}^{\alpha}}{a\theta} + \frac{C_{is}^{\beta} - C_{is}^{\alpha}}{a\theta/b} - k^{\alpha}C_{is}^{\alpha} \qquad (A.3)$$

$$\frac{dC_{is}^{\beta}}{dt} = \frac{C_{is}^{\alpha} - C_{is}^{\beta\alpha}}{(1-a)\theta/b} - k^{\beta}C_{is}^{\beta} \qquad (A.4)$$

Soluble substrate, Cs

$$\frac{dC_{i}^{x}}{dt} = \frac{C_{i,t} - C_{i}^{x}}{a\theta} + \frac{C_{i}^{\beta} - C_{i}^{x}}{a\theta/b} + \frac{162y_{\varepsilon}}{162 + 17n}k^{3}C_{is}^{\alpha}$$

$$- 12.858\mu_{A}^{x}X_{A}^{x} \qquad (A.5)$$

$$\frac{dC_s^{\beta}}{dt} = \frac{C_s^{\gamma} - C_s^{\beta}}{(1 - a)\theta/b} + \frac{162\gamma_c}{162 + 17n}k^{\beta}C_{is}^{\beta} - 12.858\mu_h^{\beta}X_h^{\beta}$$
(A.6)

Total acetate, C_{ac}

$$\begin{split} \frac{dC_{sc}^{*}}{dt} &= \frac{C_{scf} - C_{sc}^{*}}{a\theta} + \frac{C_{sc}^{*} - C_{sc}^{*}}{a\theta/b} + 3.54 \mu_{A}^{*} X_{A}^{*} \\ &+ 8.006 \mu_{AB}^{*} X_{AP}^{*} + 15.366 \mu_{AB}^{*} X_{AB}^{*} \\ &- 24.135 \mu_{AA}^{*} X_{A}^{*} \end{split} \tag{A.7}$$

$$\frac{dC_{ac}^{0}}{dt} = \frac{C_{ac}^{a} - C_{ac}^{\beta}}{(1-a)\theta/b} + 3.54\mu_{A}^{\beta}X_{A}^{\beta} + 8.006\mu_{AP}^{\beta}X_{AP}^{\beta} \\ + 15.366\mu_{AB}^{\beta}X_{AB}^{\beta} - 24.135\mu_{M}^{\beta}X_{M}^{\beta} \qquad (A.8)$$

Total propionate, Cpr

$$\begin{split} \frac{\mathrm{d}C_{\mathrm{pr}}^{*}}{\mathrm{d}t} &= \frac{C_{\mathrm{prf}} - C_{\mathrm{pr}}^{*}}{a\theta} + \frac{C_{\mathrm{pr}}^{\beta} - C_{\mathrm{pr}}^{*}}{a\theta/b} + 2.937\mu_{\mathrm{A}}^{*}X_{\mathrm{A}}^{*} \\ &\quad -10.566\mu_{\mathrm{AP}}^{*}X_{\mathrm{AP}}^{A} \end{split} \tag{A.9}$$

$$\frac{dC_{pr}^{\beta}}{dt} = \frac{C_{pr}^{*} - C_{pr}^{\beta}}{(1 - a)\theta/b} + 2.937 \mu_{A}^{\beta} X_{A}^{\beta} - 10.566 \mu_{Ap}^{\beta} X_{A}^{\beta}$$
(A.10)

Total butyrate, Cbut

$$\frac{\mathrm{d}C_{but}^{\mathrm{s}}}{\mathrm{d}t} = \frac{C_{but} - C_{but}^{\mathrm{s}} - C_{but}^{\mathrm{s}} - C_{but}^{\mathrm{s}}}{a\theta} + 3.079 \mu_{\mathrm{A}}^{\mathrm{s}} X_{\mathrm{A}}^{\mathrm{s}}$$

$$- 11.919 \mu_{\mathrm{BP}}^{\mathrm{s}} X_{\mathrm{A}}^{\mathrm{s}}$$

$$(A.11)$$

$$\frac{\mathrm{d}C_{\mathrm{but}}^{\beta}}{\mathrm{d}t} = \frac{C_{\mathrm{but}}^{\alpha} - C_{\mathrm{but}}^{\beta}}{(1-a)\theta/b} + 3.079\mu_{\mathrm{A}}^{\beta}X_{\mathrm{A}}^{\beta} - 11.919\mu_{\mathrm{BP}}^{\beta}X_{\mathrm{AB}}^{\beta}$$

$$\begin{array}{l} \text{Total ammonium, } C_{\text{m}} \\ \frac{dC_{\text{m}}^{\prime}}{dt} = \frac{C_{\text{inf}} - C_{\text{m}}^{\prime}}{C_{\text{m}}^{\prime}} + \frac{C_{\text{m}}^{\prime} - C_{\text{m}}^{\prime}}{a\beta} \frac{17(n - m(1 - y_{\text{i}}))}{162 + 17n} k^{s}C_{\text{n}}^{\prime} \\ - 0.15(\mu_{\lambda}^{\prime}\chi_{\lambda}^{\ast} + \mu_{\lambda}^{\ast}y\chi_{\lambda}^{\ast} + \mu_{\lambda}^{\ast}y\chi_{\lambda}^{\ast} + \mu_{\lambda}^{\ast}y\chi_{\lambda}^{\ast} + \mu_{\lambda}^{\ast}y\chi_{\lambda}^{\ast} + \mu_{\lambda}^{\ast}y\chi_{\lambda}^{\ast} \\ \text{(A.13)} \\ \frac{dC_{\text{m}}^{\prime}}{dt} = \frac{C_{\text{m}}^{\prime} - C_{\text{m}}^{\prime}}{(1 - a)\theta/\hbar} + \frac{17(n - m(1 - y_{\text{i}}))}{162 + 17n} k^{\beta}C_{\text{n}}^{\prime} \\ - 0.15(\mu_{\lambda}^{\prime}\chi_{\lambda}^{\prime} + \mu_{\lambda}^{\ast}p\chi_{\lambda}^{\prime} + \mu_{\lambda}^{\ast}p\chi_{\lambda}^{\prime} + \mu_{\lambda}^{\ast}p\chi_{\lambda}^{\prime} + \mu_{\lambda}^{\ast}p\chi_{\lambda}^{\prime} \\ \text{(A.14)} \end{array}$$

Total carbon dioxide in the liquid phase, Cc

$$\frac{dC_{\kappa}^{z}}{dt} = \frac{C_{cI} - C_{\kappa}^{z}}{a\theta} - \frac{C_{e}^{b} - C_{\kappa}^{z}}{a\theta/b} + 2.413\mu_{A}^{z}X_{A}^{x} \\ + 1.01\mu_{AB}^{x}Y_{AB}^{x} - 3.303\mu_{AB}^{x}X_{AB}^{x} \\ + 16.726\mu_{A}^{z}Y_{A}^{x} - \frac{A_{e}^{z}}{aV_{i}}$$
(A.15)

$$\frac{dC_{\ell}^{a}}{dr} = + \frac{C_{\ell}^{a} - C_{\ell}^{a}}{(1 - a)\theta/b} + 2.413\mu_{A}^{\beta}X_{A}^{\beta}$$

$$+ 1.01\mu_{AB}^{\beta}X_{AB}^{\beta} - 3.303\mu_{AB}^{\beta}X_{AB}^{\beta}$$

$$+ 16.72gM_{K}^{\alpha}X_{B}^{\beta} \qquad (A.16)$$

Methane in the liquid phase, Cm

$$\begin{split} & \frac{C_{m}^{g}}{a\theta/b} + 1.509 \mu_{AB}^{z} X_{AB}^{z} + 0.956 \mu_{AB}^{z} X_{AB}^{z} \\ & + 6.082 \mu_{M}^{z} X_{M}^{z} - \frac{N_{m}^{z}}{aY_{i}} = 0 \end{split} \tag{A.17}$$

$$\frac{dC_m^{\beta}}{dt} = \frac{C_m^{\beta}}{(1-a)\theta/b} + 1.509\mu_{AB}^{\beta}X_{AP}^{\beta} \\ + 0.956\mu_{AB}^{\beta}X_{AB}^{\beta} + 6.082\mu_{M}^{\beta}X_{M}^{\beta} \qquad (A.18)$$

where

$$\theta = \frac{V_1}{Q_1}$$
(A.19)

$$b = \frac{Q_e}{Q_f}$$
(A.20)

A.2. Gas phase

Carbon dioxide in the gas phase, Pc

$$\frac{dP_c}{dt} = \frac{RT}{V_g} \left(\frac{N_c^{\alpha}}{44} - \frac{P_c}{P} F_t \right)$$
(A.21)

Methane in the gas phase, $P_{\rm m}$

$$\frac{dP_m}{dt} = \frac{RT}{V_g} \left(\frac{N_m^a}{16} - \frac{P_m}{P} F_t \right)$$
(A.22)

Total material balance in the gas phase, F_t

$$F_{t} = \frac{P}{P - P_{w}} \left(\frac{N_{m}^{a}}{16} + \frac{N_{c}^{a}}{44} \right) \qquad (A.23)$$

Fig. 2. Dynamic simulation of anaerobic digestion of cattle manure in a continuous flow reactor under HRT = 15 days and different degrees of mixing for prediction of the insoluble substrate concentration in flow-through and retention regions.

Models for cattle

Models for other herds

Models for management

Conclusion

Available online at www.sciencedirect.com

Livestock Science 106 (2007) 107-119

www.elsevier.com/locate/livsci

Review article

Review of mathematical models for sow herd management

L.M. Plà*

R+D Centre, UdL-IRTA, Area of Animal Production, Rovira Roure, 198 E-25196 LLeida, Spain University of Lleida, Department of Mathematics Jaume II, 73 E-25001 LLeida, Spain

Received 31 December 2005; received in revised form 26 August 2006; accepted 5 September 2006

Fig. 1. Principal events and cyclic pattern in sow reproduction.
Want characteristics of sow here models reviewed					
Authors	Year	Aspects	Model	Title	
Allen and Stewart	1983	R	S	A simulation model for a swine breeding unit producing feeder pigs	
Tess et al.	1983	R, F, E	S	Simulation of genetic changes in life cycle efficiency of pork production I. A bioeconomic model	
Dijkhuizen et al.	1986	RP, E	OP	Economic optimisation of culling strategies in swine breeding herds, using the "PORKCHOP computer program"	
Marsh	1986	R, E	S	Economic decision making on health and management in livestock herds: examining complex problems through computer simulation	
Pettigrew et al.	1986	R, E	S	Integration of factors affecting sow efficiency: a modelling approach	
Signh	1986	R, E	S	Simulation of swine herd population dynamics	
de Roo	1987	R, G, F	S	A stochastic model to study breeding schemes in a small pig population	
Pomar et al.	1991	R, F	S	Computer simulation model of swine production systems: III. A dynamic herd simulation model including reproduction	
Jalving et al.	1992	R, RP, E	S	Dynamic probabilistic modelling of reproduction and replacement management in sow herds. General aspects and model description	
Huirne et al.	1993	R, RP, E	OP	An application of stochastic dynamic programming to support sow replacement decisions	
Plà et al.	1998	R, RP, E	OP-S	A sow model for decision aid at farm level	
Plà et al.	2003	R, E	S	A Markov decision sow model representing the productive lifespan of herd sows	
Kristensen and Søllestad	2004a	R, RP, E	OP	A sow replacement model using Bayesian updating in a three-level hierarchic Markov process I. Biological model	
	2004b			A sow replacement model using Bayesian updating in a three-level hierarchic Markov process II. Optimisation model	

Main characteristics of sow herd models reviewed

R: reproduction, RP: replacement, E: economics, F: feeding, G: genetics, S: simulation, O: optimisation.

Acta Scientiarum

http://www.uem.br/acta ISSN printed: 1806-2636 ISSN on-line: 1807-8672 Doi: 10.4025/actascianimsci.v39i1.31366

Comparing non-linear mathematical models to describe growth of different animals

Jhony Tiago Teleken^{1*}, Alessandro Cazonatto Galvão² and Weber da Silva Robazza²

¹Departamento de Engenharia Química e de Alimentos, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, Santa Catarina, Brazil. ²Departamento de Engenharia de Alimentos e Engenharia Química, Universidade do Estado de Santa Catarina, Pinhalzinho, Santa Catarina, Brazil. "Author for correspondence. E-mail: Jihony tRi@yahoo.com.br

Figure 1. The influence of the parameter *m* on the inflection point of each growth curve: Brody (m = -1), von Bertalanffy (m = -1/3), Gompertz (m = 0), and Logistic (m = 1). The dots indicate the inflection points obtained for each growth model.

Data set Source Calo, Mcdowell, Vanvleck, and Miller, 1973 Holstein-Friesian bull* Table 1. Means and standard deviations for body weight, growth rates and degree of maturity of Holstein-Friesian bulls from 6 months to 8 years of age. Silva, Alencar, Freitas, Packer, and Mourão, 2011 Nelore cow^b Figure 1. A) Estimation of weights based on age of Nelore females, observed and estimated by the models of Brody and von Bertalanffy. Beltrán, Butts, Olson, and Koger, 1992 Figure 1. Growth curves of Lines A and K estimated with Brody model. Line least squares means for weight at fixed ages are Angus cow^b used as reference for goodness of fit. Franco et al., 2011 Celta pig^b (male and female) Figure 2. Growth curve for males and females of the variety Barcina slaughtered at 14 months. Goliomytis, Orfanos, Panopoulou, and Rogdakis, 2006 Figure 1. Growth curve and absolute growth rate for body weight of the Karagouniko male sheep: estimate growth curve; Karagouniko sheep^b observed mean: estimated absolute growth rate. (male and female) Figure 2. Growth curve and absolute growth rate for body weight of the Karagouniko female sheep: estimate growth curve; observed mean; estimated absolute growth rate. Waheed, Khan, Ali, and Sarwar, 2011 Beetal goata (male and female) Table 1. Means (kg) and standard deviations (SD) of growth traits of Beetal goats. Curi, Nunes, and Curi, 1985 New Zealand rabbit^a Table 2. Body weight of Norkfolk rabbit. Californian rabbit^a Table 3. Body weight of Californian rabbit. Norfolk rabbit^a Table 4. Body weight of New Zealand rabbit, Athens-Canadian chicken^a Aggrey, 2002 (male and female) Table 1. Means and standard deviations for body weight at different ages in Athens-Canadian random-bred chickens. Guinea fowl^a Nahashon, Aggrey, Adefope, Amenyenu, and Wright, 2006 (male and female) Table 2. Means and standard for body weight at different ages in a random-bred pearl guinea fowl population. Japanese quail - white line^a (male and female) Japanese quail - brown line* Sezer and Tarhan, 2005 Table 1. The results of statistical analyses for body weight of Japanese quail lines at different age (means ± standard errors). (male and female) Japanese quail - wild line* (male and female)

Table 1. Data sets used in this study to evaluate five different growth models.

*Experimental data reported in the literature; *Experimental data taken from published figures by means of GetData Graph Digitizer 2.24.

Figure 2. Birds growth kinetics fitted to the Richards' model.

Animals		Gr	owth model	ls	
miniais	Eq.(1)	Eq.(2)	Eq.(3)	Eq.(4)	Eq.(5)
		Norfolk r	abbit		
R^2	0.9925	0.9991	0.9950	0.9990	0.9992
RMSE	106.8	37.30	87.57	39.84	36.83
BIC	75.373	58.922	72.266	59.953	59.444
AICc	79.322	62.870	76.214	63.901	65.500
		Californian	ı rabbit		
R^2	0.9882	0.9972	0.9943	0.9976	0.9976
RMSE	110.6	53.98	77.26	49.91	51.45
BIC	75.917	64.701	70.307	63.477	64.667
AICc	79.866	68.650	74.255	67.425	70.723
		New Zeland	d rabbit		
$\overline{R^2}$	0.9909	0.9985	0.9942	0.9984	0.9986
RMSE	103.3	42.07	82.27	43.15	41.88
BIC	74.851	60.803	71.289	61.201	61.450
AIC_c	78.799	64.752	75.238	65.150	67.506
	H	lolstein-Frie	sian Bull		
R^2	0.9958	0.9988	0.9953	0.9986	0.9988
RMSE	17.54	9.57	18.61	10.02	9.60
BIC	67.549	53.886	68.892	54.910	54.872
AIC_{c}	70.395	55.641	71.738	57.756	59.117
		Nelore (cow		
R^2	0.9912	0.9832	0.9641	0.9781	0.9922
RMSE	14.84	20.55	30.01	23.41	14.81
BIC	29.856	33.243	37.193	34.603	30.294
AIC_{c}	35.6187	39.006	42.955	40.365	39.691
		Angus c	ow		
R^2	0.9981	0.9921	0.9766	0.9878	0.9982
RMSE	8.992	18.26	31.47	22.68	9.955
BIC	14.188	18.497	21.804	19.813	14.778
AIC_{c}	25.653	29.961	33.268	31.277	39.397

Table 6. Goodness of fit statistics obtained from the growth models applied to the experimental data set of mammals. Equations with the best goodness of fit are represented in bold.

Figure 3. Mammals growth kinetics fitted to the Richards' model.

JOURNAL OF APPLIED ANIMAL RESEARCH 2021, VOL. 49, NO. 1, 158–166 https://doi.org/10.1080/09712119.2021.1915792

OPEN ACCESS

Comparison of five mathematical models that describe growth in tropically adapted dual-purpose breeds of chicken

Oludayo Michael Akinsola [©]^a, Emmanuel Babafunso Sonaiya ^{© b}, Oladeji Bamidele ^{© b}, Waheed Akinola Hassan ^{© c}, Abdulmojeed Yakubu ^{© d}, Folasade Olubukola Ajayi ^{© e}, Uduak Ogundu ^{© f}, Olayinka Olubunmi Alabi ^{© g} and Oluwafunmilayo Ayoka Adebambo ^{© h}

^aDepartment of Theriogenology and Production, University of Jos, Jos, Nigeria; ^bAfrican Chicken Genetic Gains Project National Secretariat, Department of Animal Science, Obafemi Awolowo University, Ile-Ife, Nigeria; ^cDepartment of Animal Science, Usmanu Danfodiyo University, Sokoto, Nigeria; ^dDepartment of Animal Science, Faculty of Agriculture, Nasarawa State University, Shabu-Lafia Campus Lafia, Keffi, Nigeria; ^cDepartment of Animal Science, University of Port-Harcourt, Port-Harcourt, Nigeria; ^fDepartment of Animal Science, Federal University of Technology, Owerri, Nigeria; ^gDepartment of Animal Science, Landmark University, Omu-Aran, Nigeria; ^hDepartment of Animal Breeding and Genetics, Federal University of Agriculture, Abeokuta, Nigeria

Model	Equations	Age at inflection point	Weight at inflection point
Gompertz 3P	$Y = a. \exp\left(-\exp\left(-b.(age - c)\right)\right)$	$\ln \frac{b}{a}$	C e
Logistic 3P	$Y = \frac{c}{(1 + \exp(-a \cdot (age - b)))}$	$-\ln\left(\frac{1}{b}\right)^{-a}$	<u>c</u> 2
Gompertz 4P	$Y = a + (b - a) \cdot \exp(-\exp(-c \cdot (age - d)))$	$\ln\left(\frac{d}{a}\right)$	$\frac{a}{e}.c$
Logistic 4P	$Y = c + \frac{d - c}{(1 + \exp(-a \cdot (age - b)))}$	$\frac{c+d}{2}$	$\frac{d}{2}$

Table 1. Equations of the non-linear regression growth curve models.

Notes: Y is the estimated weight at age x; a is the maturity index; b is the scale parameter; c is the asymptotic weight; d is the upper asymptote; Gompertz 3P was referenced from Gompertz (1832); Logistic 3P from Darmani et al. (2010); Logistic 4P from Ratwosky and Reddy (1986); Gompertz 4P from Tjørve and Tjørve (2017).

Materials and methods

Experimental site

The on-station test was conducted at Fol-Hope Farms, Ibadan, Oyo State and the Federal University of Agriculture, Abeekuta (FUNAAB), located within the Southern Guinea Savanna, and Dry Lowland Rainforest agro-ecological zones, respectively. The testing of the birds commenced in May 2016. The onfarm test was carried out in five agro-ecological zones as follows: Kebbi State (Sudan and Northern Guinea Savanna), Kwara State (Southern Guinea Savanna), Nasarawa State (Southern Guinea Savanna), Imo State (Wet Lowland Rain Forest and Fresh Water Swamp) and Rivers State (Mangrove Swamp and Fresh Water Swamp).

Management systems

A total of 1939 d-old chicks of both locally sourced breeds (Fulani, FUNAAB Alpha, Noiler and Shika-Brown) and imported breeds (Kuroiler and Saso) were brooded to 42 days (Table 2). The birds were sexed at 42 days, and males and females were grown separately until 140 days under station (intensive production system) conditions. The stocking density was 10 chicks/m², seven birds/m², and five birds/m² during 0-42d, 43–91d and 92–140d, respectively. Commercial feed (Chick mash at 0-42d: 2,993 kcal ME/kg, 22.3% CP and Grower mash at 43–140d: 3013 kcal ME/kg, 17% CP) and water were available *ad libitum*. Birds in both stations were fed the same proprietary feed. Standard biosecurity measures and vaccination schedules were observed at the test centres. Body weight was measured every two weeks. For the on-farm test, a total of 58,639 sixweeks-old pre-vaccinated chickens were distributed to 2100 households across five states representing different agro-ecologies (Table 3). Standard backyard scavenging management practices were followed by the farmers with the addition of overnight housing, feed supplementation and vaccination programmes. Body weight was taken every four weeks.

All applicable veterinary permits were obtained for the importation and use of the imported breeds for research purposes (Bamidele et al. 2019). Both the on-station and on-farm studies were approved by the International Livestock Research Institute (ILRI) Institutional Research Ethics Committee (IREC) with reference no.: ILRI-IREC2015-08/1, and ILRI Institutional Animal Care and Use Committee (IACUC) with reference number: ILRI-IACUC-RC2016.2. Each farmer gave written informed consent to participate in the study.

Table 5. Estimated	d growth c	urve parame	eters of female b	irds raised on-	station from 0 to 20 weeks.				
Breed/model	а	b	с	d	Age and weight at inflection point	AIC	BIC	RMSE	AdjR ²
Fulani									
Logistic 4P	0.26	11.35	-38.10	1429.00	10; 452.42	90.350	80.340	6.779	0.995
Logistic 3P	0.28	11.38		1109.22	10; 446.99	95.497	90.422	11.183	0.992
Gompertz 3P	0.14	10.46		1347.86	10; 463.54	99.351	94.276	13.324	0.989
Gompertz 4P	0.16	10.41	24.80	1292.41	10; 461.67	102.561	92.550	11.809	0.988
Neural network					10; 469.75			5.933	0.992
FUNAAB Alpha									
Logistic 3P	0.40	10.41		2780.35	10;1030.22	121.831	116.756	37.019	0.994
Gompertz 3P	0.20	9.07		2735.53	10;1070.99	125.555	120.480	43.846	0.990
Logistic 4P	0.30	10.32	-49.12	2247.55	10;1037.22	126.763	116.753	35.482	0.990
Gompertz 4P	0.22	9.21	59.16	2392.08	10;1067.04	128.188	118.177	37.856	0.989
Neural network					10;1084.91			38.829	0.990
Sasso									
Gompertz 3P	0.14	10.89		3856.63	10;1240.85	127.704	122.629	48.346	0.997
Gompertz 4P	0.14	10.88	7.06	3838.13	10;1240.36	135.016	125.006	51.633	0.992
Logistic 3P	0.28	11.76		3155.02	10;1192.88	138.815	133.740	80.110	0.988
Logistic 4P	0.23	11.82	-232.47	3412.27	10;1221.52	139.646	129.635	63.726	0.987
Neural network					10;1261.09			38.913	0.997
Kuroiler									
Gompertz 3P	0.14	10.40		3725.38	10;1292.28	119.769	114.694	33.706	0.995
Gompertz 4P	0.14	10.43	-23.13	3777.74	10;1293.34	126.740	116.729	35.444	0.991
Logistic 4P	0.21	11.38	-300.25	3385.91	10;1276.43	132.982	122.972	47.074	0.990
Logistic 3P	0.28	11.41		3090.09	10;1246.74	137.304	132.228	74.792	0.985
Neural network					10;1290.89			17.773	0.996
Shika-Brown									
Gompertz 3P	0.17	10.09		2088.27	10; 756.01	115.702	110.627	28.016	0.998
Logistic 3P	0.32	11.27		1803.37	10; 722.05	116.621	111.546	29.213	0.998
Logistic 4P	0.29	11.19	-58.62	1847.41	10; 732.26	118.844	108.833	24.756	0.998
Gompertz 4P	0.18	10.13	32.93	2034.90	10; 752.68	120.354	110.343	26.514	0.995
Neural network					10; 712.52			7.287	0.998
Noiler									
Gompertz 3P	0.18	7.97		2917.67	13;1955.35	105.461	92.445	58.794	0.992
Logistic 3P	0.27	9.66	30.33	2742.17	13;1959.03	108.221	95.206	69.867	0.990
Logistic 4P	0.13	0.44	-5131.7	3139.89	13;1947.59	122.384	92.781	58.948	0.989
Gompertz 4P	0.12	0.22	-3231.4	3204.77	13;1946.85	122.442	92.839	59.162	0.989
Neural network					13;1916.49			49.327	0.990

Table 5. Estimated growth curve parameters of female birds raised on-station from 0 to 20 weeks.

Notes: AIC: akaike information criterion; BIC: Bayesian information criterion; RMSE: root mean square error; AdjR²: adjusted coefficient of determination; ais the maturity index; bis the scale parameter; cis the asymptotic weight; d is the upper asymptote. Non-linear model adapted from JMP 13.2 statistical software.

Heterogeneous herds

Livestock Science 157 (2013) 280-288

A mathematical model of the dynamics of Mongolian livestock populations

Duncan Shabb^a, Nakul Chitnis^a, Zolzaya Baljinnyam^{a,b}, Sansar Saagii^c, Jakob Zinsstag^{a,*}

^a Swiss Tropical and Public Health Institute/University of Basel, Socinstr. 57, P.O. Box 4002 Basel, Switzerland

^b Institute of Veterinary Medicine, Mongolian State University of Agriculture, Ulaanbaatar, Mongolia

^c Amin Nutag Orgil NGO, Ulaanbaatar, Mongolia

The state variables for total population at time t of goats sheep, cattle and horses are denoted G, S, C, and H respectively

$$G(t) = \sum_{i=1}^{3} X_{ig}(t) + Y_{ig}(t),$$

$$S(t) = \sum_{i=1}^{3} X_{is}(t) + Y_{is}(t),$$

$$C(t) = \sum_{i=1}^{3} X_{ic}(t) + Y_{ic}(t),$$

$$H(t) = \sum_{i=1}^{3} X_{ih}(t) + Y_{ih}(t),$$

(1)

with the juvenile population of cattle given by

$$X_{2c} = \sum_{\xi \in \{a,b\}} X_{2c\xi},$$
$$Y_{2c} = \sum_{\xi \in \{a,b\}} Y_{2c\xi},$$

Fig. 1. Goat model dynamics. Arrows represent flows of animals into or out of the population. Boxes represent state variables. The figure is meant to be a simple conceptualization of the model dynamics. Sheep are modeled with an equivalent schematic but cattle and horses have additional juvenile stages.

The model equations for goats are given by

$$X_{1g}(t+1) = b_g X_{3g}(t) + \frac{m_g X_{1g}(t)}{G(t)},$$
(3a)

$$X_{2g}(t+1) = \frac{X_{1g}(t)}{(1 + \alpha_g d_{X_{1g}} A(t))k_{X_{1g}}} + \frac{m_g X_{2g}(t)}{G(t)},$$
(3b)

$$X_{3g}(t+1) = \frac{X_{2g}(t)}{(1+\alpha_g d_{X_{2g}} A(t))k_{X_{2g}}} + \frac{X_{3g}(t)}{(1+\alpha_g d_{X_{3g}} A(t))k_{X_{3g}}} + \frac{m_g X_{3g}(t)}{G(t)},$$
(3c)

$$Y_{1g}(t+1) = b_g X_{3g}(t) + \frac{m_g Y_{1g}(t)}{G(t)},$$
(3d)

$$Y_{2g}(t+1) = \frac{Y_{1g}(t)}{(1 + \alpha_g d_{Y_{1g}} A(t))k_{Y_{1g}}} + \frac{m_g Y_{2g}(t)}{G(t)},$$
(3e)

$$Y_{3g}(t+1) = \frac{Y_{2g}(t)}{(1 + \alpha_g d_{Y_{2g}} A(t))k_{Y_{2g}}} + \frac{Y_{3g}(t)}{(1 + \alpha_g d_{Y_{3g}} A(t))k_{Y_{3g}}} + \frac{m_g Y_{3g}(t)}{G(t)}.$$
(3f)

Table 1

Description of types parameters of the model for livestock population dynamics. The model consists of five basic parameters that are further subdivided by species out of which some are further subdivided by age and sex.

Parameter	Description	Level
b	Expected number of female offspring per one adult female over one year. Dimensionless	Species
m	Number of new animals entering the area in one year. Dimension: Animals	Species
α	Species-dependent resource availability. Dimension: 1/Animals	Species
d	Modulation of resource availability by age and sex of animal. Dimensionless	Species, sex, age
k	Reciprocal of per capita survival excluding the effects of density-dependent mortality. Dimensionless	Species, sex, age
c	Weighting of food consumption by animals. Dimensionless	Species, age

Fig. 2. All species population dynamics of observed and simulated data for periods (E)–(H).

Fig. 3. All species population dynamics of observed and simulated data of periods (A)-(D).

Models for cattle

Models for other herds

Models for management

Conclusion

REVIEW ARTICLE

Systems approaches to beef cattle production systems using modeling and simulation

Hiroyuki HIROOKA

Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto, Japan

ABSTRACT

Systems approach techniques have been applied to modeling production systems for beef cattle from the relatively micro-level of tissues and organs to the macro-level of farms and geographical regions. This paper reviews the various types of beef cattle production models already in operation in order to analyze beef cattle production systems and their components. It may be theoretically possible to construct system models which describe such complex production systems and can be generally used in various genetic, nutritional, management and economic situations as well as in training, extension and educational programs. Moreover, the systems approach can assist in the organization of information and identification of knowledge gaps and thereby open an avenue to multi-disciplinary research projects.

Key words: beef cattle, model, simulation, systems approach.

Ann. Anim. Sci., Vol. 10, No. 4 (2010) 333-348

APPLICATION OF MATHEMATICAL MODELLING IN BEEF HERD MANAGEMENT – A REVIEW*

Anna Stygar, Joanna Makulska

Department of Cattle Breeding, University of Agriculture in Kraków, Al. Mickiewicza 24/28, 30-059 Kraków, Poland Corresponding author: rzmakuls@cyf-kr.edu.pl

Figure 1. Methodological classification of livestock models

Journal of Animal Science, 2022, **100**, 1–19 https://doi.org/10.1093/jas/skac160 Advance access publication 3 May 2022

ASAS–NANP Symposium: Mathematical Modeling in Animal Nutrition: Opportunities and challenges of confined and extensive precision livestock production

Hector M. Menendez III,^{†,1}[®] Jameson R. Brennan,[†] Charlotte Gaillard,^{†,®} Krista Ehlert,[†] Jaelyn Quintana,[†] Suresh Neethirajan,[§] Aline Remus,¹[®] Marc Jacobs,^{**} Izabelle A. M. A. Teixeira,^{††} Benjamin L. Turner,^{‡†} and Luis O. Tedeschi¹[®]

¹Department of Animal Science, South Dakota State University, Rapid City, SD 57702, USA ¹Institut Agro, PEGASE, INRAE, 35590 Saint Gilles, France ¹Department of Natural Resource Management, South Dakota State University, Rapid City, SD, 57702, USA ^sFarmworx, Adaptation Physiology, Animal Sciences Group, Wageningen University, 6700 AH, The Netherlands ^sTsherbrooke Research and Development Centre, Sherbrooke, DC J1M 1Z3, Canada ^{s++}R Analytics B.V., 7642 AP Wierden, The Netherlands ¹¹Department of Animal, Veterinary, and Food Sciences, University of Idaho, Twin Falls, ID 83301, USA ¹¹Department of Agriculture, Agribusiness, and Environmental Science, King Ranch[®] Institute for Ranch Management, Texas A&M University-Kingsville, Kingsville, TX 78363, USA ¹¹Department of Animal Science, Texas A&M University, College Station, TX 77843-2471, USA

¹Corresponding author: hector.menendez@sdstate.edu

Figure 1. Diagram of the conventional producer decision process, including mental models (producer experience) and the role of modeling in relation to real-time data integration.

Figure 2. Conceptual diagram of five principles for sustainable precision livestock implementation using precision measurement and management tools integrated with mathematical models.

Figure 3. Continuous vs. rotational grazing as each relates to decision flow, information feedback, and management decisions, labor, and data.

Figure 5. Causal loop diagram of precision livestock integration through precision system models, seducation workforce development, and producer and industry synergies. A positive (+) relationship between variables indicates that as the value of the arrowhead moves in the same direction (increases) or decreases) as the variable at the tail (e.g., as Precision Technology Use increases, the Maintenance of Technology Unfastructure also increases). A negative (-) relationship between variables indicates that the variable at the arrowhead moves in the opposite direction of the variable at the tail (e.g., as Learning and Training Requirements increases), the number of Precision Specialist and Service Providers decreases). The double perpendicular lines on arrows represent time delays between variable responses. The R and B labels identify reinforcing (positive feedback) or balancing (negative feedback)

Author	Aim	Target	Туре	Response
Hauschild et al. (2012, 2020); Remus et al. (2020c)	Provide daily tailored diets to individuals	Growing pigs	Gray box (empirical [data-driven] and mechanistic)	Diet composition to sustain observed growth
Peña Fernández et al. (2019)	Predict in real-time the indoor particle sizes concentration	Poultry	Data-based mechanistic	Predicted indoor particle sizes concen- tration
Parsons et al. (2007)	Integrated control of pig growth and pollutant emissions	Growing pigs	Data-based mechanistic	Predicted growth response based on diet intake
Stacey et al. (2004)	Control of broiler growth and nutrition	Broiler	Semi-mechanistic	Predicted growth response based on diet intake and control nutrient intake
Fu et al. (2020)	Predict diet energy digestion	Dairy cows	Kernel extreme learning machine	Predicted digestible energy and energy digestibility
Kashiha et al. (2013)	Report malfunctioning in a broiler house to the farmer in real time	Broiler	Empirical (data-driven)	Prediction of the distribution index of broilers
Gauthier et al. (2019); Gail- lard et al. (2020b)	Provide daily tailored diets to individuals	Sows	Gray box (empirical [data-driven] and mechanistic)	Diet composition to sustain fetus devel- opment and milk production

Table 1. Real-time models found in the literature using the search keywords: real-time, animal science, nutrition, and modeling

Models for cattle

Models for other herds

Models for management

Conclusion

Conclusion

Many interesting models

(Many models have never been "properly" studied mathematically and are "waiting" for an analysis)

 ${\sf I}$ showed only one statistical model, but the majority of published work used to be statistical

Contrary to other fields: easy to generate data of good quality

I voluntarily excluded disease-related works.. but they are easy to find!