Adding space to FMD and AI models

Julien Arino

April 2023

Why it is important to incorporate space

Metapopulation models

A few foot-and-mouth disease models

Why it is important to incorporate space General considerations about space-and-time spread Spatial aspects in animal diseases Foot-and-mouth disease Avian influenza

Metapopulation models

A few foot-and-mouth disease models

Why it is important to incorporate space General considerations about space-and-time spread Spatial aspects in animal diseases Foot-and-mouth disease Avian influenza

Metapopulation models

A few foot-and-mouth disease models

Diseases have been known to be mobile for a while

The plague of Athens of 430 BCE

It first began, it is said, in the parts of Ethiopia above Egypt, and thence descended into Egypt and Libya and into most of the [Persian] King's country. Suddenly falling upon Athens, it first attacked the population in Piraeus [..] and afterwards appeared in the upper city, when the deaths became much more frequent.

> Thucydides (c. 460 BCE - c. 395 BCE) History of the Peloponnesian War

The Black Death: a few facts

First of the middle ages plagues to hit Europe

Affected Afro-Eurasia from 1346 to 1353

Europe 1347-1351

Killed 75-200M in Eurasia & North Africa

Killed 30-60% of European population

Plague control measures

Lazzarettos of Dubrovnik 1377 (30 days)

Quarantena of Venice 1448 (40 days)

Isolation of known or suspected cases as well as persons who had been in contact with them, at first for 14 days and gradually increased to 40 days

Improvement of sanitation: development of pure water supplies, garbage and sewage disposal, food inspection

Find and kill a snake, chop it into pieces and rub the various parts over swollen buboes. (Snake, synonymous with Satan, was thought to draw the disease out of the body as evil would be drawn to evil)

Pathogen spread has evolved with mobility

Pathogens travel along trade routes

In ancient times, trade routes were relatively easy to comprehend

 With acceleration and globalization of mobility, things have changed

Fragmented jurisdictional landscapes

Political divisions (jurisdictions): nation groups (e.g., EU), nations, provinces/states, regions, counties, cities.

Travel between jurisdictions can be complicated or impossible

Data is integrated at the jurisdictional level

Policy is decided at the jurisdictional level

p. 10 - Why it is important to incorporate space

Why mobility is important in the context of health

All migrants/travellers carry with them their "health history"

- latent and/or active infections (TB, H1N1, polio)
- immunizations (schedules vary by country)
- health/nutrition practices (KJv)
- treatment methods (antivirals)

Pathogens ignore borders and politics

Countries with SARS cases (WHO/Dec 2003)

Why it is important to incorporate space General considerations about space-and-time spread Spatial aspects in animal diseases Foot-and-mouth disease Avian influenza

Metapopulation models

A few foot-and-mouth disease models

Diseases in wild animals

Spread typically follows travelling wave patterns

Next slides: cases of rabies

2000

2010

.

Diseases in livestock

Situation is more complicated

Why it is important to incorporate space General considerations about space-and-time spread Spatial aspects in animal diseases Foot-and-mouth disease Avian influenza

Metapopulation models

A few foot-and-mouth disease models

Figure 2 Geographical distribution of seven pools of foot-and mouth disease viruses. Serotype O FMDV is the most widely distributed serotype of the virus (in 6 of the 7 indicated virus pools) whereas, in contrast, SAT3 is only present in pool 6 (within southern Africa). The Asia-1, SAT1 and SAT2 serotypes also have quite limited geographical distribution. However, individual countries can have multiple serotypes in circulation at the same time and hence it is necessary to be able to determine which serotype is responsible for an outbreak if vaccination is to be used. Countries which are normally free of the disease (marked in yellow) can still suffer incursions of the virus which can have high economic costs.

Figure 3 The FAO/EuFMD/OIE Progressive Control Pathway for FMD. The status of countries on the PCP-FMD is evaluated according to defined criteria. Countries with endemic disease are in stages 0 to 3 while countries with no endemic disease within livestock are at stage 4 or above. The image was kindly supplied by EuFMD.

FIG. 4. The spread of the PanAsian strain of FMDV type O from its first appearance in India in 1990 until its appearance in the United Kingdom in 2001. Solid colors, PanAsian strain present; cross-hatched colors, type O present and PanAsian strain suspected. The data and map were compiled by Nick Knowles and can be found at www.iah.bbsrc.ac.uk/virus/picornaviridae/aphthovirus.

Source: WRL at IAH, Pirbright, UK

Descriptive epidemiology of the 2001 foot-and-mouth disease epidemic in Great Britain: the first five months

J. C. GIBBENS, C. E. SHARPE, J. W. WILESMITH, L. M. MANSLEY, E. MICHALOPOULOU, J. B. M. RYAN, M. HUDSON

In February 2001, foot-and-mouth disease (FMD) was confirmed in Great Britain. A major epidemic developed, which peaked around 50 cases a day in late March, declining to under 10 a day by May. By mid-July, 1849 cases had been detected. The main control measures employed were livestock movement restrictions and the rapid slaughter of infected and exposed livestok. The first detected case was in south-east England; infection was traced to a farm in north-east England to which all other cases were linked. The epidemic was large as a result of a combination of events, including a delay in the diagnosis of the index case, the movement of infected sheep to market before FMD was first diagnosed, and the time of year. Virus was introduced at a time when there were many sheep movements around the country and weather conditions supported survival of the virus. The consequence was multiple, effectively primary, introductions of FMD virus into major sheep-keeping areas. Subsequent local spread from these sheep populations and livestock dealers who were active during the key period. Most affected farms kept both sheep and cattle. At the time of withing the epidemic was still ongoing; however, this paper provides a basis for scientific discussion of the first five months.

Veterinary Record (2001) 149, 729-743

J. C. Gibbens, BvetMed, Msc, MSc, MRCVS, J. W. Wilesmith, BVSc, MRCVS, HonMEPHM, State Veterinary Service, DEFRA, 1A Page Street, London SW1P 4PQ C. E. Sharpe, BvetMed, MSc, MRCVS, State

FIG 5: Epidemic curve to show number of foot-and-mouth disease infected premises with early disease each day, categorised to differentiate those within 3 km of an earlier case (local cases). (n=1847, Infected Premises with missing data excluded)

IG 9: Cumulative incidence of foot-and-mouth disease (FMD) in Great Britain, February to to July 15, 2001

FIG 3: Movement of foot-and-mouth disease infected animals before February 23, 2001, and location of implicated markets, abattoirs and dealers (subject to information available on August 30, 2001)

2001 FMD epidemic in the UK

- Early February Disease likely to have entered the UK
- 19th February Foot-and-mouth disease first suspected
- 20th February Foot-and-mouth disease confirmed
- 23rd February Culling initiated of Infected Premises (IP) and Dangerous Contacts (DC). Movement restrictions are brought into force
- 15th March Sheep, goats and pigs within 3km of an IP in Lockerbie, Carlisle and Solway are targeted for culling
- 23rd March Contiguous Premises (CPs) are included in the cull
- 26th March Epidemic reaches its maximum with 54 cases in one day
- 27th March 3km cull begins in the Penrith valley, Cumbria
- 29th March 24/48 hour policy begins, in which IPs are slaughtered within 24 hours, and DCs and CPs are culled within 48 hours
- 14th April 3km cull in Cumbria reaches its height
- 26th April Sheep, pigs and especially cattle from farms with high biosecurity may be exempt from culls
- 10th May First case reported in the Settle area
- 20th June First day with no reported cases
- p. 32 Why it is important to incorporate space

Why it is important to incorporate space General considerations about space-and-time spread Spatial aspects in animal diseases Foot-and-mouth disease Avian influenza

Metapopulation models

A few foot-and-mouth disease models

Avian Influenza global concern because it involves multiple bird species, both wild and livestock

The thing with wild birds is that they fly... :)

Table 1 Mayor events in the history of avian influenza

Year	Event	Reference		
1878	First description of highly pathogenic avian influenza (HPAI)	[1]		
	or fowl plague			
1880	Differentiation of HPAI from fowl cholera	[2]		
1901	Identification of HPAI as a virus	[3]		
1901-1930s	Major outbreaks of HPAI throughout the world	[6,7,10]		
1918	Major human pandemic	[72]		
1931	First influenza virus isolated (swine)			
1941	Recognition of hemagglutination by influenza viruses	[16]		
1942	HPAI and Newcastle disease virus shown to agglutinate red blood	[17]		
	cells and to be different serologically			
1955	HPAI virus shown to be a type A influenza virus	[4]		
1959	Isolation of a HPAI virus serologically different from the classical	[25]		
	fowl plague virus in hemagglutination inhibition test			
1970s	Intensive surveillance of influenza viruses in wild birds and recognition	[30–34,37]		
	that wild birds harbor all identified subtypes of influenza viruses			
1971	Classification of influenza viruses based on antigenic properties of	[39]		
	the NP (type) and HA and NA (subtype) proteins and the species of origin			
1977-1981	Recognition that the presence of multiple basic amino acids in the	[74,75]		
	HA cleavage site correlates with tissue spread and virulence of AI strains			
1978	Recognition that the 1957 (H2N2) and 1968 (H3N2) pandemic	[76]		
	influenza viruses aroused by reassortment with AI viruses			
1980	Classification of influenza viruses based on antigenic properties of	[39]		
	the NP (type) and HA and NA (subtype) proteins regardless of			
	the species of origin			
1981	First International Symposium on Avian Influenza	[5]		
1981	The name highly pathogenic avian influenza is proposed to	[5]		
	substitute fowl plague			
1999-2001	H9N2 virus transmission to humans	[64-67]		
1997-present	HPAI H5N1 transmission to humans	This issue		
2000s	H9N2 becomes endemic in Asia	[63]		
2003-present	HPAI H5N1 spreads through Asia, Europe and Africa and	This issue		
	becomes endemic in Asia			

Predicting the global spread of H5N1 avian influenza

A. Marm Kilpatrick*⁺, Aleksei A. Chmura*, David W. Gibbons[‡], Robert C. Fleischer[§], Peter P. Marra[¶], and Peter Daszak*

*Consortium for Conservation Medicine, New York, NY 10001; 'Royal Society for the Protection of Birds, Sandy, Bedfordshire SG19 2DL, United Kingdom; and ¹National Museum of Natural History, and ¹Smithsonian Migratory Bird Center, National Zoological Park, Smithsonian Institution, Washington, DC 20008

Communicated by Hans R. Herren, Millennium Institute, Arlington, VA, October 19, 2006 (received for review April 26, 2006)

The spread of highly pathogenic H5N1 avian influenza into Asia, Europe, and Africa has resulted in enormous impacts on the poultry industry and presents an important threat to human health. The pathways by which the virus has and will spread between councommercial trade in wild birds (4), making this another potentially important pathway unless all imported birds are quarantined, tested for avian influenza, and culled where necessary.

We determined the most likely pathways for the introduction

Fig. 2. Predicted risk of H5N1 avian influenza introduction from countries that have had H5N1 outbreaks (in blue). (a-c) Risk was estimated as the number of infectious bird days (number of infected birds × days shedding virus) caused by trade (presented as yearly total/12 months) in: live poultry with no trade restrictions (a), live poultry with no exports from countries reporting H5N1 in poultry (France, Denmark, Sweden, and Germany are considered H5N1-free) (b), and captive wild birds with no exports from countries reporting H5N1 in poultry (c) as in b. (d) Estimated number of ducks, geese, and swans migrating between mainland continents, number of infectious bird days, and number of species (in parentheses). Numbers given between Asia and North America include only those that breed on mainland Asia and winter in North America south of Alaska; an addition, ~20,000 gees migrate between lead and Aorth America.

WILEY Transboundary and Emerging Diseases

Emergence and spread of highly pathogenic avian influenza A(H5N8) in Europe in 2016-2017

S. Napp¹ | N. Majó² | R. Sánchez-Gónzalez¹ | J. Vergara-Alert¹

¹Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Bellaterra, Barcelona, Spain
²Universitat Autônoma de Barcelona, Bellaterra, Barcelona, Spain

Correspondence

S. Napp, IRTA, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain. Email: sebastian.napp@irta.es

Summary

Circulation of highly pathogenic avian influenza (HPAI) viruses poses a continuous threat to animal and public health. After the 2005–2006 H5N1 and the 2014–2015 H5N8 epidemics, another H5N8 is currently affecting Europe. Up to August 2017, 1,112 outbreaks in domestic and 955 in wild birds in 30 European countries have been reported, the largest epidemic by a HPAI virus in the continent. Here, the main epidemiological findings are described. While some similarities with previous HPAI virus epidemics were observed, for example in the pattern of emergence, significant differences were also patent, in particular the size and extent of the epidemic. Even though no human infections have been reported to date, the fact that A/H5N8 has affected so far 1,112 domestic holdings, increases the risk of exposure of humans and therefore represents a concern. Understanding the epidemiology of HPAI viruses is essential for the planning future surveillance and control activities.

KEYWORDS

domestic birds, epidemiology, H5N8, highly pathogenic avian influenza virus, wild birds

FIGURE 1 Spatial distribution of outbreaks of H5N8 HPAI in domestic (red dots) and wild (blue dots) birds in Europe. Box in the upper left corner represents the density of domestic ducks (birds per km²) in Europe (from Robinson et al., 2014). Red squares mark the areas of high density of ducks in France and Hungary, where clustering of H5N8 outbreaks in poultry occurred [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 1 Outbreaks of H5N8 detected in both domestic and wild birds in Europe between June, 2016 and August 2017, as well as the month and year of onset of outbreaks in domestic and wild, and whether this first onset occurred in domestic or wild birds (the term same is used when domestic and wild outbreaks occurred within the same week)

Country	Domestic birds	Wild birds	Total	Onset domestic	Onset wild	First onset
Austria		24	26	November 2016	November 2016	Same
Belgium				June 2017	February 2017	Wild
Bosnia				February 2017	February 2017	Domestic
Bulgaria			80	December 2016	December 2016	Domestic
Croatia			18	December 2016	October 2016	Wild
Czech Republic		40	83	January 2017	January 2017	Same
Denmark			53	November 2016	November 2016	Wild
Finland					November 2016	Wild
France	420	55	475	December 2016	November 2016	Wild
Germany	94	194	288	November 2016	November 2016	Same
Greece				January 2017	December 2016	Wild
Hungary	239	54	293	November 2016	October 2016	Wild
Ireland		10	10		December 2016	Wild
Italy	20		28	January 2017	December 2016	Wild
Lithuania					February 2017	Wild
Luxembourg				June 2017		Domestic
Netherlands		56	65	November 2016	November 2016	Wild
Macedonia				January 2017		Domestic
Poland	65	69	134	December 2016	October 2016	Wild
Portugal					January 2017	Wild
Romania	44	90	134	December 2016	November 2016	Wild
Russia			28	November 2016	June, 2016	Wild
Serbia		13		January 2017	December 2016	Wild
Slovakia				December 2016	January 2017	Domestic
Slovenia		20	20		January 2017	Wild
Spain	10			February 2017	January 2017	Wild
Sweden		37	43	November 2016	November 2016	Same
Switzerland					November 2016	Wild
UK	13	19	32	December 2016	December 2016	Same
Ukraine				December 2016	January 2017	Domestic
Total	1,112	955	2,067			

TABLE 2 Number and percentage of domestic outbreaks affected by the H5N8 according to the size of the holding for different European countries

	Size of domestic holdings affected according to the number of birds							
	<100	100– 500	500- 1,000	1,000– 10,000	>10,000			
Czech Republic	30 (70%)	6 (14%)	2 (5%)	2 (5%)	3 (7%)			
France	183 (46%)	8 (2%)	27 (7%)	140 (35%)	40 (10%)			
Germany	20 (22%)	8 (9%)	0 (0%)	23 (25%)	41 (45%)			
Hungary	15 (7%)	24 (10%)	10 (4%)	100 (44%)	80 (35%)			
Poland	21 (33%)	5 (8%)	2 (3%)	8 (13%)	28 (44%)			
Romania	38 (86%)	6 (14%)	0 (0%)	0 (0%)	0 (0%)			
Total Europe	375 (37%)	82 (8%)	43 (4%)	283 (28%)	229 (23%)			

Role for migratory wild birds in the global spread of avian influenza H5N8

The Global Consortium for H5N8 and Related Influenza Viruses*-

Avian influenza viruses affect both poultry production and public health. A subtype HSN8 (clade 2.3.4.4) virus, following an outbreak in poultry in South Korea in January 2014, rapidly spread worldwide in 2014–2015. Our analysis of HSN8 viral sequences, epidemiological investigations, waterfowl migration, and poultry trade showed that long-distance migratory birds can play a major role in the global spread of avian influenza viruses. Further, we found that the hemagglutinin of clade 2.3.4.4 virus was remarkably promiscuous, creating reassortants with multiple neuraminidase subtypes. Improving our understanding of the circumpolar circulation of avian influenza viruses in migratory waterfowl will help to provide early warning of threats from avian influenza voltry, and potentially human, health.

n 2014, highly pathogenic avian influenza (HPAI) virus of the subtype H5N8 caused disease outbreaks in poultry in Asia, Europe, and North America (1-3). Avian influenza viruses are a threat both to global poultry production and to public health; they have the potential to cause severe disease in people and to adapt to transmit efficiently in human populations (4). This was the first time since 2005 that a single subtype of HPAI virus had spread over such a large geographical area and the first time that a Eurasian HPAI virus had spread to North America. The rapid global spread of HPAI H5N8 virus outbreaks raised the question of the routes by which the virus had been transmitted.

The segment encoding for the hemagglutinin (HA) surface protein of the HPAI H5N8 viruses is a descendant of the HPAI H5N1 virus (A/Goose/ Guangdong/1/1996), first detected in China in 1996 (5). Since then, HPAI H5N1 viruses have become endemic in poultry populations in several countries. The H5 viruses have developed new characteristics by mutation and by reassortment with other avian influenza (AI) viruses, both in poultry and in wild birds. In 2005–2006, HPAI H5N1 spread from Asia to Europe, the Middle East, and Africa during the course of a few months. Although virus spread traditionally had been

^{*}Corresponding author. Email: Lkuiken@erasmusmc.nl †All authors with their affiliations appear at the end of this paper.

Fig. 2. Reconstruction of the transmission routes using phylogenetic data only from H5N8 HA sequences. At each time slice, the host-type and location coordinates on the branches of the posterior set of phylogenetic trees are inferred and plotted as a cloud of points. The host type was inferred by discrete trait model (as Fig. 1) (14), and the continuous location coordinates were inferred using a hornogeneous Brownian motion diffusion model (J5). The map projection used is the azimuthal equal areas projection, centered on the Notth Pole, which is marked with a + sign. Coor keys as for Fig. 1; see also movie SL.

Why it is important to incorporate space

Existence of a DFE Computational considerations

A few foot-and-mouth disease models

What are metapopulations?

Metapopulations are *populations* of *populations*.

Two main types of metapopulation models:

- patch occupancy models. Describe whether a location is occupied by a species or not. Depends on the occupancy of neighboring or connected locations. Dynamics describes the number of occupied locations
- Models with explicit movement. Movement between locations is described explicitly. In each location, a set of differential equations describes the dynamics of the populations present

What is a location?

A *location* is a unit (typically geographical) within which the population is considered homogeneous

- city
- region
- country

but also, location where a given species lives (for example, forest, swamp, etc.)

Locations may or may not overlap

Why it is important to incorporate space

Metapopulations à la Levins Metapopulations à la Levin The graph setting Generic model The movement matrix Behaviour of the mobility component A few sample models Existence of a DFE Computation of a reproduction number Computational considerations

A few foot-and-mouth disease models

A model of Richard Levins (1969)

R. Levins. Some Demographic and Genetic Consequences of Environmental Heterogeneity for Biological Control. Bulletin of the Entomological Society of America **15**(3): 237-240 (1969)

Cited 4,400+ times, numerous higher order "offspring"

Quickly evolved to include prey-predators or competition systems

The Levins model

Rate of change of # of local populations *P*:

$$P' = \beta P \left(1 - \frac{P}{T} \right) - \mu P \tag{1}$$

 β immigration rate between *locations*, T total number of locations and μ extinction rate of local populations

Ecologists & mathematicians think of patches differently. For mathematicians, typically, one place in space. To be clear, in the remainder of these slides, I will speak of *locations*

Metapopulations with implicit movement

Same philosophy as the Levins model

- There is a set P of locations called locations
- ▶ Each location $p \in \mathcal{P}$ has an internal dynamics $x'_p = f_p(x_p)$, where $x_p \in \mathbb{R}^{n_p}_+$ and $f_p : \mathbb{R}^{n_p} \to \mathbb{R}^{n_p}$
- No flow of individuals between locations
- ▶ The influence of location $q \neq p$ on p is described through a function $g_{qp}(x_p, x_q)$, where $x_q \in \mathbb{R}^{n_q}$ and $g_p : \mathbb{R}^{n_p} \times \mathbb{R}^{n_q} \to \mathbb{R}^{n_p}$

So the population in location $p \in \mathcal{P}$ has dynamics

$$x'_{p} = f_{p}(x_{p}) + \sum_{\substack{q \in \mathcal{P} \\ q \neq p}} g_{qp}(x_{p}, x_{q})$$

$$(2)$$

p. 52 - Metapopulation models

Why it is important to incorporate space

Metapopulations à la Levins The graph setting Generic model The movement matrix Behaviour of the mobility component A few sample models Existence of a DFE Computation of a reproduction number Computational considerations

A few foot-and-mouth disease models

Levins-type vs Explicit movement

Levins model and its offspring: movement is implicit

$$P' = \beta P \left(1 - \frac{P}{T} \right) - \mu P$$

 β immigration rate between locations incorporates geography

Sometimes we have explicit movement information or want to incorporate known spatial information \implies models with explicit movement

Levin (1974)

Metapopulations with explicit movement

Split continuous space into N discrete geographical locations (*ptatches*)

Each location contains **compartments** (homogeneous groups of individuals). E.g., preys, predators, etc.

Here, we consider a single compartment, the *species of interest*, with no further compartmentalisation

Individuals may move between locations; $m_{qp} \ge 0$ rate of movement of individuals from location p = 1, ..., N to location q = 1, ..., N

Explicit movement (focus on P_1)

or

$$P'_{1} = \sum_{j=1}^{N} m_{1j} P_{j}$$
 assuming $m_{11} = -\sum_{\substack{j=1 \ j \neq 1}}^{N} m_{j1}$

p. 55 - Metapopulation models

Why it is important to incorporate space

Metapopulations à la Levins Metapopulations à la Levin Generic model The movement matrix Behaviour of the mobility component A few sample models Existence of a DFE Computation of a reproduction number Computational considerations

A few foot-and-mouth disease models

Graph setting

Suppose

- \blacktriangleright $|\mathcal{P}|$ locations, vertices in a (directed) graph \mathcal{G}
- Each location contains a certain number of compartments belonging to a common set C of compartments
- Arcs of G represent the possibility for a given compartment to move between two locations; any two locations are connected by a maximum of |C| edges

Graph is a digraph: movement is not always symmetric

 $\mathcal{G} = (\mathcal{P}, \mathcal{A})$ is multi-digraph, where

P is the set of vertices (locations)

A is the set of arcs, i.e., an ordered multiset of pairs of elements of P

Any two vertices $X, Y \in \mathcal{P}$ are connected by at most $|\mathcal{C}|$ arcs from X to Y and at most $|\mathcal{C}|$ arcs from Y to X

Because there are $|\mathcal{C}|$ compartments and movements are compartment-specific, we also define, for all $c \in C$, \mathcal{P}_c and \mathcal{A}_c as well as the compartment-specific digraphs $\mathcal{G}^c = (\mathcal{P}_c, \mathcal{A}_c)$

Connection matrix

For a given compartment $c \in C$, a *connection matrix* can be associated to the digraph \mathcal{G}_c

This is the **adjacency matrix** of \mathcal{G}_c , but we emphasize the reason why we use \mathcal{G}_c by using the term *connection*

Choosing an ordering of elements of \mathcal{P} , the (i, j) entry of the $|\mathcal{P}| \times |\mathcal{P}|$ -matrix $\mathcal{N}_c = \mathcal{N}_c(\mathcal{G}_c)$ is one if $R^c(P_i, P_j)$ and zero otherwise, i.e., if P_i has no direct access to P_j

For convenience, the ordering of the locations is generally assumed the same for all compartments

Strongly connected multi-digraph

Definition 1 (Strongly connected components)

For a given compartment s, the **strongly connected components** (or **strong components**, for short) are such that, for all locations X, Y in a strong component, compartment s in X has access to Y

Definition 2 (Strong connectedness for a compartment)

The multi-digraph is strongly connected for compartment c if all locations belong to the same strong component of \mathcal{G}_c

Srong connectedness and irreducibility

Definition 3 (Reducible/irreducible matrix)

A matrix A is **reducible** if there exists a permutation matrix P such that $P^T A P$ is block upper triangular. A matrix that is not reducible is **irreducible**

Matrix $A \in \mathbb{F}^{n \times n}$ is irreducible if for all i, j = 1, ..., n, there exists k such that $a_{ij}^k > 0$, where a_{ij}^k is the (i, j)-entry in A^k

Theorem 4

Strong connectedness \Leftrightarrow irreducibility of the connection matrix C_c

Why it is important to incorporate space

Metapopulations à la Levins Metapopulations à la Levin The graph setting The movement matrix Behaviour of the mobility component A few sample models Existence of a DFE Computation of a reproduction number Computational considerations

A few foot-and-mouth disease models
Notation

N_{cp}(t) number of individuals of compartment c in location p at time t

▶ $\mathbf{N}_{c} = (N_{c1}, \dots, N_{c|\mathcal{P}|})^{T}$ distribution of individuals of compartment $c \in C$ among the different locations

►
$$N^p = \left(N_1^p, \dots, N_{|\mathcal{P}|}^p\right)^T$$
 composition of the population in location $p \in \mathcal{P}$

Metapopulation models with linear movement

Use a linear autonomous movement operator

Then, for a given compartment $c \in C$ and in a given location $p \in \mathcal{P}$

$$N_{cp}' = f_{cp}(N^p) + \sum_{\substack{q \in \mathcal{P} \\ q \neq p}} m_{cpq} N_{cq} - \left(\sum_{\substack{q \in \mathcal{P} \\ q \neq p}} m_{cqp}\right) N_{cp}$$

where m_{cpq} rate of movement of individuals in compartment $c \in C$ from location $q \in P$ to location $p \in P$

p. 62 - Metapopulation models

A more compact notation

To make

$$N_{cp}' = f_{cp}(N^p) + \sum_{\substack{q \in \mathcal{P} \\ q \neq p}} m_{cpq} N_{cq} - \left(\sum_{\substack{q \in \mathcal{P} \\ q \neq p}} m_{cqp}\right) N_{cp}$$

more compact, denote the rate of leaving location p as

$$m_{cpp} = -\sum_{\substack{q \in \mathcal{P} \\ q \neq p}} m_{cqp} \tag{3}$$

Then

$$N'_{s} = f_{cp}(N^{p}) + \sum_{q \in \mathcal{P}} m_{cpq} N_{cq}$$
(4)

p. 63 - Metapopulation models

Vector form of the system

For compartment $c \in C$,

$$\mathbf{N}_{c}' = f(\mathbf{N}) + \mathcal{M}_{c}\mathbf{N}_{c}$$
(5)

with

$$\mathcal{M}_{c} = \begin{pmatrix} -\sum_{k \in \mathcal{P}} m_{ck1} & m_{c12} & \cdots & m_{c1|\mathcal{P}|} \\ & & & \\ m_{c|\mathcal{P}|1} & m_{c|\mathcal{P}|2} & \cdots & -\sum_{k \in \mathcal{P}} m_{ck|\mathcal{P}|} \end{pmatrix}$$
(6)

Why it is important to incorporate space

Metapopulations à la Levins Metapopulations à la Levin The graph setting Generic model Behaviour of the mobility component A few sample models Existence of a DEE Computation of a reproduction number Computational considerations

A few foot-and-mouth disease models

A few avian influenza models

Definitions and notation for matrices

▶ $M \in \mathbb{R}^{n \times n}$ a square matrix with entries denoted m_{ij}

▶ $M \ge \mathbf{0}$ if $m_{ij} \ge 0$ for all i, j (could be the zero matrix); $M > \mathbf{0}$ if $M \ge \mathbf{0}$ and $\exists i, j$ with $m_{ij} > 0$; $M \gg \mathbf{0}$ if $m_{ij} > 0$ $\forall i, j = 1, ..., n$. Same notation for vectors

▶
$$\sigma(M) = \{\lambda \in \mathbf{C}; M\lambda = \lambda \mathbf{v}, \mathbf{v} \neq \mathbf{0}\}$$
 spectrum of M

▶
$$ho(M) = \max_{\lambda \in \sigma(M)} \{|\lambda|\}$$
 spectral radius

s(M) = max_{λ∈σ(M)}{Re (λ)} spectral abscissa (or stability modulus)

▶ *M* is an **M-matrix** if it is a **Z-matrix** $(m_{ij} \le 0 \text{ for } i \ne j)$ and M = sI - A, with $A \ge 0$ and $s \ge \rho(A)$

The movement matrix

The matrix

$$\mathcal{M}_{c} = \begin{pmatrix} -\sum_{k \in \mathcal{P}} m_{ck1} & m_{c12} & \cdots & m_{c1|\mathcal{P}|} \\ & & & & \\ m_{c|\mathcal{P}|1} & m_{c|\mathcal{P}|2} & \cdots & -\sum_{k \in \mathcal{P}} m_{ck|\mathcal{P}|} \end{pmatrix}$$
(6)

is the movement matrix

It plays an extremely important role in the analysis of metapopulation systems, so we'll spend some time discussing its properties

 \mathcal{M}_{c} describes

- existence of connections
- when they exist, their "intensity"

Properties of the movement matrix \mathcal{M}

First, remark $-\mathcal{M}_c$ is a Laplacian matrix

Lemma 5

- 1. $0 \in \sigma(\mathcal{M})$ corresponding to left e.v. $\mathbb{1}^{T}$ [σ spectrum]
- 2. $-\mathcal{M}$ is a singular M-matrix
- [3. $0 = s(\mathcal{M}) \in \sigma(\mathcal{M})$ [s spectral abscissa]
- 4. If \mathcal{M} irreducible, then $s(\mathcal{M})$ has multiplicity 1

For complete proof of Lemma 5 and Proposition 6 (next page), see Arino, Bajeux & Kirkland, BMB 2019

Proposition 6 (D a diagonal matrix)

- 1. $s(\mathcal{M} + d\mathbb{I}) = d, \forall d \in \mathbb{R}$
- 2. $s(\mathcal{M}+D) \in \sigma(\mathcal{M}+D)$ associated to $\mathbf{v} > \mathbf{0}$. If \mathcal{M} irreducible, $s(\mathcal{M}+D)$ has multiplicity 1 and is associated to $\mathbf{v} \gg \mathbf{0}$
- 3. If diag(D) $\gg \mathbf{0}$, then $D \mathcal{M}$ invertible M-matrix and $(D \mathcal{M})^{-1} > \mathbf{0}$
- 4. \mathcal{M} irreducible and diag $(D) > \mathbf{0} \Longrightarrow D \mathcal{M}$ nonsingular irreducible M-matrix and $(D \mathcal{M})^{-1} \gg \mathbf{0}$

Why it is important to incorporate space

Metapopulations à la Levins Metapopulations à la Levin The graph setting Generic model The movement matrix A few sample models Existence of a DFE Computation of a reproduction number Computational considerations

A few foot-and-mouth disease models

A few avian influenza models

Behaviour of the mobility component

Assume no within-location dynamics, just movement. Then (5) takes the form

$$\mathbf{N}_{c}^{\prime} = \mathcal{M}_{c} \mathbf{N}_{c} \tag{7}$$

Theorem 7

For a given compartment $c \in C$, suppose that the movement matrix \mathcal{M}_c is irreducible. Then for any $\mathbf{N}_c(0) > 0$, (7) satisfies

 $\lim_{t\to\infty} \mathbf{N}_c(t) = \mathbf{N}_c^{\star} \gg 0$

Note that \mathbf{N}_c^{\star} depends on $\mathbb{1}^T \mathbf{N}_c(0)$

Reduction to total population per location

Let

$$T_p = \sum_{c \in \mathcal{C}} N_{cp}$$

be the total population in location p

It is often posssible to obtain, in each location $p \in \mathcal{P}$, an equation for the evolution of the total population that takes the form

$$T'_{p} = D_{p}(T_{p}) + \sum_{c \in \mathcal{C}} \sum_{q \in \mathcal{P}} m_{cpq} N_{cq}$$
(8)

where $D_p(T_p)$ describes the demography in location p

p. 70 - Metapopulation models

Nature of the demography

Most common types of demographic functions

In what follows, assume

$$D_p(T_p) = b_p - d_p T_p \tag{9}$$

Vector / matrix form of the equation

Assuming demography is of the form (9), write (8) in vector form

$$\mathbf{T}' = \mathbf{b} - \mathbf{dT} + \sum_{c \in \mathcal{C}} \mathcal{M}_c \mathbf{N}_c$$
(10)

where

$$\mathbf{b} = (b_1, \dots, b_{|\mathcal{P}|})^T \in \mathbb{R}^{|\mathcal{P}|}$$

$$\mathbf{T} = (T_1, \dots, T_{|\mathcal{P}|})^T \in \mathbb{R}^{|\mathcal{P}|}$$

$$\mathbf{N} = (N_{c1}, \dots, N_{c|\mathcal{P}|})^T \in \mathbb{R}^{|\mathcal{P}|}$$

$$\mathbf{d} = \text{diag} (d_1, \dots, d_{|\mathcal{P}|}) \in \mathbb{R}^{|\mathcal{P}| \times |\mathcal{P}|}$$

$$\mathcal{M}_c \in \mathbb{R}^{|\mathcal{P}| \times |\mathcal{P}|}$$

The nice case

Suppose movement rates equal for all compartments, i.e.,

$$\mathcal{M}_{c} \equiv \mathcal{M}$$

Then

$$\mathbf{T}' = \mathbf{b} - \mathbf{dT} + \mathcal{M} \sum_{c \in \mathcal{C}} \mathbf{N}_{c}$$
$$= \mathbf{b} - \mathbf{dT} + \mathcal{M}\mathbf{T}$$
(11)

Equilibria

$$egin{aligned} \mathsf{T}' &= \mathbf{0} \Leftrightarrow \mathsf{b} - \mathsf{d}\mathsf{T} + \mathcal{M}\mathsf{T} = \mathbf{0} \ & \Leftrightarrow (\mathsf{d} - \mathcal{M})\mathsf{T} = \mathsf{b} \ & \Leftrightarrow \mathsf{T}^{\star} = (\mathsf{d} - \mathcal{M})^{-1}\mathsf{b} \end{aligned}$$

given, of course, that $d-\mathcal{M}$ (or, equivalently, $\mathcal{M}-d)$ is invertible.

ls it?

Nonsingularity of $\mathcal{M} - d$

Using the spectrum shift of Theorem 6(1)

$$s\left(\mathcal{M}-\min_{p\in\mathcal{P}}d_p\right)=-\min_{p\in\mathcal{P}}d_p$$

This gives a constraint: for total population to behave well (in general, we want this), we *must assume all death rates are positive*

Assume they are (in other words, assume **d** nonsingular). Then $\mathcal{M} - \mathbf{d}$ is nonsingular and $\mathbf{T}^* = (\mathbf{d} - \mathcal{M})^{-1}\mathbf{b}$ unique

p. 75 - Metapopulation models

Behaviour of the total population

Equal irreducible movement case

$$\mathbf{T}^{\star} = (\mathbf{d} - \mathcal{M})^{-1} \mathbf{b}$$
 attracts solutions of

$$\mathbf{T}' = \mathbf{b} - \mathbf{dT} + \mathcal{M}\mathbf{T} =: f(\mathbf{T})$$

Indeed, we have

$$Df = \mathcal{M} - \mathbf{d}$$

Since we now assume that **d** is nonsingular, we have by Theorem 6(1) that $s(\mathcal{M} - \min_{p \in \mathcal{P}} d_p) = -\min_{p \in \mathcal{P}} d_p < 0$

 \mathcal{M} irreducible $\rightarrow \mathbf{T}^{\star} \gg 0$ (provided $\mathbf{b} > \mathbf{0}$, of course)

Why it is important to incorporate space

Metapopulations à la Levins Metapopulations à la Levin The graph setting Generic model The movement matrix Behaviour of the mobility component Existence of a DEE Computation of a reproduction number Computational considerations

A few foot-and-mouth disease models

A few avian influenza models

The toy SLIRS model in patches

$$S' = b + \nu R - \Phi - dS \tag{12a}$$

$$L' = \Phi - (\varepsilon + d)L$$
 (12b)

$$I' = \varepsilon L - (\gamma + d + \delta)I$$
 (12c)

$$R' = \gamma I - (\nu + d)R \tag{12d}$$

 Φ force of infection. Depends on *S*, *I*, possibly *N*. In general

$$\Phi = \beta(N)\phi(S,I)$$

Mass action, $\Phi = \beta SI$, proportional incidence, $\Phi = \beta SI/N$ p. 77 – Metapopulation models

$|\mathcal{P}|$ -SLIRS model

$$S'_{\rho} = b_{\rho} + \nu_{\rho}R_{\rho} - \Phi_{\rho} - d_{\rho}S_{\rho} + \sum_{q \in \mathcal{P}} m_{Spq}S_{q}$$
(13a)

$$L'_{p} = \Phi_{p} - (\varepsilon_{p} + d_{p}) L_{p} + \sum_{q \in \mathcal{P}} m_{Lpq} L_{q}$$
(13b)

$$I'_{p} = \varepsilon_{p}L_{p} - (\gamma_{p} + d_{p})I_{p} + \sum_{q \in \mathcal{P}} m_{Ipq}I_{q}$$
(13c)

$$R'_{p} = \gamma_{p} I_{p} - (\nu_{p} + d_{p}) R_{p} + \sum_{q \in \mathcal{P}} m_{Rpq} R_{q}$$
(13d)

with incidence

$$\Phi_{\rho} = \beta_{\rho} \frac{S_{\rho} I_{\rho}}{N_{\rho}^{q_{\rho}}}, \qquad q_{\rho} \in \{0, 1\}$$
(13e)

p. 78 - Metapopulation models

|S| |P|-SLIRS (multiple species)

 $p \in \mathcal{P}$ and $s \in \mathcal{S}$ (a set of species)

$$S'_{sp} = b_{sp} + \nu_{sp}R_{sp} - \Phi_{sp} - d_{sp}S_{sp} + \sum_{q \in \mathcal{P}} m_{Sspq}S_{sq}$$
(14a)

$$L'_{sp} = \Phi_{sp} - (\varepsilon_{sp} + d_{sp})L_{sp} + \sum_{q \in \mathcal{P}} m_{Lspq} L_{sq}$$
(14b)

$$I'_{sp} = \varepsilon_{sp} L_{sp} - (\gamma_{sp} + d_{sp}) I_{sp} + \sum_{q \in \mathcal{P}} m_{lspq} I_{sq}$$
(14c)

$$R_{sp} = \gamma_{sp} I_{sp} - (\nu_{sp} + d_{sp}) R_{sp} + \sum_{q \in \mathcal{P}} m_{Rspq} R_{sq}$$
(14d)

with incidence

$$\Phi_{sp} = \sum_{k \in \mathcal{S}} \beta_{skp} \frac{S_{sp} I_{kp}}{N_p^{q_p}}, \qquad q_p \in \{0, 1\}$$
(14e)

 JA, Davis, Hartley, Jordan, Miller & PvdD. A multi-species epidemic model with spatial dynamics. Mathematical Medicine and Biology 22(2):129-142 (2005)

- JA, Jordan & PvdD. Quarantine in a multi-species epidemic model with spatial dynamics. Mathematical Biosciences 206(1):46-60 (2007)
- p. 79 Metapopulation models

$|\mathcal{P}|^2$ -SLIRS (residents-travellers)

$$S'_{pq} = b_{pq} + \nu_{pq}R_{pq} - \Phi_{pq} - d_{pq}S_{pq} + \sum_{k \in \mathcal{P}} m_{Spqk}S_{pk}$$
(15a)

$$L'_{pq} = \Phi_{pq} - (\varepsilon_{pq} + d_{pq})L_{pq} + \sum_{k \in \mathcal{P}} m_{Lpqk}L_{pk}$$
(15b)

$$I'_{pq} = \varepsilon_{pq} L_{pq} - (\gamma_{pq} + d_{pq}) I_{pq} + \sum_{k \in \mathcal{P}} m_{lpqk} I_{pk}$$
(15c)

$$R'_{pq} = \gamma_{pq} I_{pq} - (\nu_{pq} + d_{pq}) R_{pq} + \sum_{k \in \mathcal{P}} m_{Rpqk} R_{pk}$$
(15d)

with incidence

$$\Phi_{\rho q} = \sum_{k \in \mathcal{P}} \beta_{\rho q k} \frac{S_{\rho q} I_{kq}}{N_{\rho}^{q_q}}, \qquad q_q = \{0, 1\}$$
(15e)

- Sattenspiel & Dietz. A structured epidemic model incorporating geographic mobility among regions (1995)
- JA & PvdD. A multi-city epidemic model. Mathematical Population Studies 10(3):175-193 (2003)
- JA & PvdD. The basic reproduction number in a multi-city compartmental epidemic model. In Positive Systems (2003)

p. 80 - Metapopulation models

Steps for an analysis

Basic steps

- 1. Well-posedness of the system
- 2. Existence of disease free equilibria (DFE)
- 3. Computation of a reproduction number $\mathcal{R}_0,$ study local asymptotic stability of DFE
- 4. If DFE unique, prove global asymptotic stability when $\mathcal{R}_0 < 1$

Additional steps

- 5. Existence of *mixed* equilibria, with some locations at DFE and others with disease
- 6. Computation of some bounds on \mathcal{R}_{0}
- 7. EEP and its LAS & GAS properties

. . .

Analysis – Toy system

$$S'_{p} = b_{p} - \Phi_{p} - d_{p}S_{p} + \nu_{p}R_{p} + \sum_{q \in \mathcal{P}} m_{Spq}S_{q}$$
(16a)

$$L'_{p} = \Phi_{p} - (\varepsilon_{p} + d_{p}) L_{p} + \sum_{q \in \mathcal{P}} m_{Lpq} L_{q}$$
(16b)

$$I'_{p} = \varepsilon_{p}L_{p} - (\gamma_{p} + d_{p})I_{p} + \sum_{q \in \mathcal{P}} m_{lpq}I_{q}$$
(16c)

$$R'_{p} = \gamma_{p} I_{p} - (\nu_{p} + d_{p}) R_{p} + \sum_{q \in \mathcal{P}} m_{Rpq} R_{q}$$
(16d)

with incidence

$$\Phi_{\rho} = \beta_{\rho} \frac{S_{\rho} I_{\rho}}{N_{\rho}^{q_{\rho}}}, \qquad q_{\rho} \in \{0, 1\}$$
(16e)

System of $4|\mathcal{P}|$ equations

p. 82 - Metapopulation models

Don't panic: size is not that bad..

System of $4|\mathcal{P}|$ equations !!!

However, a lot of structure:

- \triangleright $|\mathcal{P}|$ copies of individual units, each comprising 4 equations
- Dynamics of individual units well understood
- Coupling is linear

 \implies Good case of large-scale system

(matrix analysis is your friend)

Existence and uniqueness

Existence and uniqueness of solutions classic, assured by good choice of birth and force of infection functions

- In the cases treated later, the birth function is either constant or a linear combination of state variables
- May exist problems at the origin, if the force of infection is not defined there

Assumption form now on: existence and uniqueness

Why it is important to incorporate space

Metapopulations à la Levins Metapopulations à la Levin The graph setting Generic model The movement matrix Behaviour of the mobility component A few sample models Existence of a DFE Computation of a reproduction number Computational considerations

A few foot-and-mouth disease models

A few avian influenza models

Disease free equilibrium

The model is at equilibrium if the time derivatives are zero

Definition 8 (Metapopulation DFE)

In the case of system (16), location $p \in \mathcal{P}$ is at a disease-free equilibrium (DFE) if $L_p = I_p = 0$, and the $|\mathcal{P}|$ -location model is at a **metapopulation DFE** if $L_p = I_p = 0$ for all $p \in \mathcal{P}$

Here, we want to find the DFE for the $|\mathcal{P}|$ -location model. Later, the existence of mixed equilibria, with some locations at the DFE and others at an endemic equilibrium, is considered

(For (14), replace L_p with L_{sp} and I_p with I_{sp} , for (15), replace L_p by L_{pp} and I_p by I_{pp} . To simplify notation, we could write L_{\bullet} and I_{\bullet})

Assume (16) at metapopulation DFE. Then $\Phi_p = 0$ and

$$0 = b_{p} - d_{p}S_{p} + \nu_{p}R_{p} + \sum_{q \in \mathcal{P}} m_{Spq}S_{q}$$
$$0 = -(\nu_{p} + d_{p})R_{p} + \sum_{q \in \mathcal{P}} m_{Rpq}R_{q}$$

Want to solve for S_p , R_p . Here, it is best (crucial in fact) to remember some linear algebra. Write system in vector form:

$$\mathbf{0} = \mathbf{b} - \mathbf{dS} + \nu \mathbf{R} + \mathcal{M}^{S}\mathbf{S}$$
$$\mathbf{0} = -(\nu + \mathbf{d})\mathbf{R} + \mathcal{M}^{R}\mathbf{R}$$

where $\mathbf{S}, \mathbf{R}, \mathbf{b} \in \mathbb{R}^{|\mathcal{P}|}, \mathbf{d}, \nu, \mathcal{M}^{S}, \mathcal{M}^{R} |\mathcal{P}| \times |\mathcal{P}|$ -matrices (\mathbf{d}, ν diagonal)

p. 86 - Metapopulation models

R at DFE

Recall second equation:

$$\mathbf{0} = -(\nu + \mathbf{d})\,\mathbf{R} + \mathcal{M}^{R}\,\mathbf{R} \Leftrightarrow (\mathcal{M}^{R} - \nu - \mathbf{d})\mathbf{R} = \mathbf{0}$$

So unique solution $\mathbf{R} = \mathbf{0}$ if $\mathcal{M}^{R} - \nu - \mathbf{d}$ invertible is it?

We have been here before!

From spectrum shift, $s(\mathcal{M}^R - \nu - \mathbf{d}) = -\min_{p \in \mathcal{P}}(\nu_p + d_p) < 0$

So, given $\mathbf{L} = \mathbf{I} = \mathbf{0}$, $\mathbf{R} = \mathbf{0}$ is the unique equilibrium and

 $\lim_{t\to\infty} \mathbf{R}(t) = \mathbf{0}$

 \implies DFE has $\mathbf{L} = \mathbf{I} = \mathbf{R} = \mathbf{0}$

p. 87 - Metapopulation models

S at the DFE

DFE has $\mathbf{L} = \mathbf{I} = \mathbf{R} = \mathbf{0}$ and $\mathbf{b} - \mathbf{dS} + \mathcal{M}^{S}\mathbf{S} = \mathbf{0}$, i.e.,

$$\mathsf{S} = (\mathsf{d} - \mathcal{M}^{\mathcal{S}})^{-1}$$
b

Recall: $-\mathcal{M}^{S}$ singular M-matrix. From previous reasoning, $\mathbf{d} - \mathcal{M}^{S}$ has **instability modulus** shifted *right* by $\min_{p \in \mathcal{P}} d_{p}$. So: $\mathbf{d} - \mathcal{M}^{S}$ invertible

▶ $\mathbf{d} - \mathcal{M}^{S}$ nonsingular M-matrix

Second point $\implies (\mathbf{d} - \mathcal{M}^S)^{-1} > \mathbf{0} \implies (\mathbf{d} - \mathcal{M}^S)^{-1}\mathbf{b} > \mathbf{0}$ (would have $\gg \mathbf{0}$ if \mathcal{M}^S irreducible)

So DFE makes sense with

$$(\boldsymbol{\mathsf{S}},\boldsymbol{\mathsf{L}},\boldsymbol{\mathsf{I}},\boldsymbol{\mathsf{R}}) = \left((\boldsymbol{\mathsf{d}}-\mathcal{M}^{\mathcal{S}})^{-1}\boldsymbol{\mathsf{b}},\boldsymbol{\mathsf{0}},\boldsymbol{\mathsf{0}},\boldsymbol{\mathsf{0}}\right)$$

Why it is important to incorporate space

Metapopulations à la Levins Metapopulations à la Levin The graph setting Generic model The movement matrix Behaviour of the mobility component A few sample models Existence of a DFE Computation of a reproduction number Computational considerations

A few foot-and-mouth disease models

A few avian influenza models

Computing the basic reproduction number \mathcal{R}_0

Use next generation method with
$$\Xi = \{L_1, \dots, L_{|\mathcal{P}|}, I_1, \dots, I_{|\mathcal{P}|}\},$$

 $\Xi' = \mathcal{F} - \mathcal{V}$

$$\mathcal{F} = (\Phi_1, \dots, \Phi_{|\mathcal{P}|}, 0, \dots, 0)^T$$

$$\begin{pmatrix} (\varepsilon_1 + d_1) L_1 - \sum_{q \in \mathcal{P}} m_{L1q} L_q \\ \vdots \\ (\varepsilon_{|\mathcal{P}|} + d_{|\mathcal{P}|}) L_{|\mathcal{P}|} - \sum_{q \in \mathcal{P}} m_{L|\mathcal{P}|q} L_q \\ -\varepsilon_1 L_1 + (\gamma_1 + d_1) I_1 - \sum_{q \in \mathcal{P}} m_{I1q} I_q \\ \vdots \\ -\varepsilon_{|\mathcal{P}|} L_{|\mathcal{P}|} + (\gamma_{|\mathcal{P}|} + d_{|\mathcal{P}|}) I_{|\mathcal{P}|} - \sum_{q \in \mathcal{P}} m_{I|\mathcal{P}|q} I_q \end{pmatrix}$$

Differentiate w.r.t. Ξ :

$$D\mathcal{F} = \begin{pmatrix} \frac{\partial \Phi_1}{\partial L_1} & \cdots & \frac{\partial \Phi_1}{\partial L_{|\mathcal{P}|}} & \frac{\partial \Phi_1}{\partial I_1} & \cdots & \frac{\partial \Phi_1}{\partial I_{|\mathcal{P}|}} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \frac{\partial \Phi_{|\mathcal{P}|}}{\partial L_1} & \cdots & \frac{\partial \Phi_{|\mathcal{P}|}}{\partial L_{|\mathcal{P}|}} & \frac{\partial \Phi_{|\mathcal{P}|}}{\partial I_1} & \cdots & \frac{\partial \Phi_{|\mathcal{P}|}}{\partial I_{|\mathcal{P}|}} \\ 0 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & 0 & 0 & \cdots & 0 \end{pmatrix}$$

p. 90 – Metapopulation models

Note that

$$\frac{\partial \Phi_p}{\partial L_k} = \frac{\partial \Phi_p}{\partial I_k} = 0$$

whenever $k \neq p$, so

$$D\mathcal{F} = \begin{pmatrix} \mathsf{diag}\left(\frac{\partial \Phi_1}{\partial L_1}, \dots, \frac{\partial \Phi_{|\mathcal{P}|}}{\partial L_{|\mathcal{P}|}}\right) & \mathsf{diag}\left(\frac{\partial \Phi_1}{\partial I_1}, \dots, \frac{\partial \Phi_{|\mathcal{P}|}}{\partial I_{|\mathcal{P}|}}\right) \\ \mathbf{0} & \mathbf{0} \end{pmatrix}$$
Evaluate $D\mathcal{F}$ at **DFE**

In both cases, $\partial/\partial L$ block is zero so

$$F = D\mathcal{F}(DFE) = \begin{pmatrix} \mathbf{0} & \text{diag}\left(\frac{\partial \Phi_1}{\partial I_1}, \dots, \frac{\partial \Phi_{|\mathcal{P}|}}{\partial I_{|\mathcal{P}|}}\right) \\ \mathbf{0} & \mathbf{0} \end{pmatrix}$$

p. 92 - Metapopulation models

Compute $D\mathcal{V}$ and evaluate at DFE

$$V = egin{pmatrix} {\operatorname{diag}}_p(arepsilon_p + d_p) - \mathcal{M}^L & \mathbf{0} \ -{\operatorname{diag}}_p(arepsilon_p) & {\operatorname{diag}}_p(\gamma_p + d_p) - \mathcal{M}^I \end{pmatrix}$$
e ${\operatorname{diag}}_p(z_p) := {\operatorname{diag}}(z_1, \dots, z_{|\mathcal{P}|})$

Inverse of V easy $(2 \times 2 \text{ block lower triangular})$:

$$V^{-1} = \begin{pmatrix} \left(\operatorname{diag}_{p}(\varepsilon_{p} + d_{p}) - \mathcal{M}^{L} \right)^{-1} & \mathbf{0} \\ \tilde{V}_{21}^{-1} & \left(\operatorname{diag}_{p}(\gamma_{p} + d_{p}) - \mathcal{M}^{I} \right)^{-1} \end{pmatrix}$$

where

wher

$$\begin{split} \tilde{V}_{21}^{-1} &= \left(\mathsf{diag}_p(\varepsilon_p + d_p) - \mathcal{M}^L \right)^{-1} \\ &\qquad \mathsf{diag}_p(\varepsilon_p) \left(\mathsf{diag}_p(\gamma_p + d_p) - \mathcal{M}^I \right)^{-1} \end{split}$$

p. 93 - Metapopulation models

 \mathcal{R}_0 as $ho(FV^{-1})$

Next generation matrix

$$FV^{-1} = \begin{pmatrix} \mathbf{0} & F_{12} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \tilde{V}_{11}^{-1} & \mathbf{0} \\ \tilde{V}_{21}^{-1} & \tilde{V}_{22}^{-1} \end{pmatrix} = \begin{pmatrix} F_{12}\tilde{V}_{21}^{-1} & F_{12}\tilde{V}_{22}^{-1} \\ \mathbf{0} & \mathbf{0} \end{pmatrix}$$

where $ilde{V}_{ij}^{-1}$ is block ij in V^{-1} . So

$$\mathcal{R}_0 = \rho\left(\mathcal{F}_{12}\tilde{\mathcal{V}}_{21}^{-1}\right)$$

i.e.,

$$\mathcal{R}_{0} = \rho \left(\operatorname{diag} \left(\frac{\partial \Phi_{1}}{\partial I_{1}}, \dots, \frac{\partial \Phi_{|\mathcal{P}|}}{\partial I_{|\mathcal{P}|}} \right) \left(\operatorname{diag}_{p}(\varepsilon_{p} + d_{p}) - \mathcal{M}^{L} \right)^{-1} \right)$$
$$\operatorname{diag}_{p}(\varepsilon_{p}) \left(\operatorname{diag}_{p}(\gamma_{p} + d_{p}) - \mathcal{M}^{I} \right)^{-1} \right)$$

p. 94 - Metapopulation models

Local asymptotic stability of the DFE

Theorem 9

Define \mathcal{R}_0 for the $|\mathcal{P}|\text{-}SLIRS$ as

$$\mathcal{R}_{0} = \rho \left(\operatorname{diag} \left(\frac{\partial \Phi_{1}}{\partial I_{1}}, \dots, \frac{\partial \Phi_{|\mathcal{P}|}}{\partial I_{|\mathcal{P}|}} \right) \left(\operatorname{diag}_{p}(\varepsilon_{p} + d_{p}) - \mathcal{M}^{L} \right)^{-1} \right.$$
$$\operatorname{diag}_{p}(\varepsilon_{p}) \left(\operatorname{diag}_{p}(\gamma_{p} + d_{p}) - \mathcal{M}^{I} \right)^{-1} \right)$$

Then the DFE

$$(\mathsf{S},\mathsf{L},\mathsf{I},\mathsf{R})=\left((\mathsf{d}-\mathcal{M}^{\mathcal{S}})^{-1}\mathsf{b},\mathbf{0},\mathbf{0},\mathbf{0}
ight)$$

is locally asymptotically stable if $\mathcal{R}_0 < 1$ and unstable if $\mathcal{R}_0 > 1$

From PvdD & Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, *Bulletin of Mathematical Biology* **180**(1-2): 29-48 (2002) – Metapopulation models

Some remarks about \mathcal{R}_0

The expression for \mathcal{R}_0 in Theorem 9 is exact

However, unless you consider a very small set of locations, you will not get a closed form expression

Indeed, by Theorem 6(3) and more importantly (often \mathcal{M} is irreducible), Theorem 6(4), the two inverses in \mathcal{R}_0 are likely crowded ($\gg 0$ in the irreducible case)

However, numerically, this works easy unless conditioning is bad

The toy $|\mathcal{P}|$ -SLIRS

LAS results for $\mathcal{R}_0 < 1$ can sometimes be strengthened to GAS. One class of models where this works often is when the population is either constant or asymptotically constant and incidence is *standard*

Theorem 10

Let \mathcal{R}_0 be defined as in Theorem 9 and use proportional incidence $\Phi_p = \beta_p S_p I_p / N_p$. If $\mathcal{R}_0 < 1$, then the DFE of system (16) is globally asymptotically stable

$|\mathcal{S}|$ $|\mathcal{P}|$ -SLIRS with multiple species

In the case in which movement is equal for all compartments and there is no disease death, a comparison theorem argument can be used as in Theorem 10 to show that if $\mathcal{R}_0 < 1$, then the DFE of the $|\mathcal{S}| |\mathcal{P}|$ -SLIRS (14) is globally asymptotically stable.

Theorem 11

For system (14) with |S| species and $|\mathcal{P}|$ locations, with movement equal for all compartments, define \mathcal{R}_0 appropriately and use proportional incidence. If $\mathcal{R}_0 < 1$, then the DFE is globally asymptotically stable

Why it is important to incorporate space

Metapopulations à la Levins Metapopulations à la Levin The graph setting Generic model The movement matrix Behaviour of the mobility component A few sample models Existence of a DFE Computation of a reproduction number Computational considerations

A few foot-and-mouth disease models

A few avian influenza models

Set up parameters

Work out movement matrix

```
p = list()
# Use the approximation explained in Arino & Portet (JMB 2015)
p$M = mat.or.vec(nr = dim(T)[1], nc = dim(T)[2])
for (from in 1:5) {
   for (to in 1:5) {
      for (to in 1:5) {
      p$M[to, from] = -log(1 - T[from, to]/pop[from])
      }
      p$M[from, from] = 0
}
p$M = p$M - diag(colSums(p$M))
```

```
p$P = dim(p$M)[1]
p$eta = rep(0.3, p$P)
p$epsilon = rep((1/1.5), p$P)
p$pi = rep(0.7, p$P)
p$gammaI = rep((1/5), p$P)
p$gammaA = rep((1/3), p$P)
# The desired values for R_0
R_0 = rep(1.5, p$P)
```

Write down indices of the different state variable types

Save index of state variable types in state variables vector (we have to use a vector and thus, for instance, the name "S" needs to be defined)

```
p$idx_S = 1:p$P
p$idx_L = (p$P+1):(2*p$P)
p$idx_I = (2*p$P+1):(3*p$P)
p$idx_A = (3*p$P+1):(4*p$P)
p$idx_R = (4*p$P+1):(5*p$P)
```

Set up IC and time

```
# Set initial conditions. For example, we start with 2
# infectious individuals in Canada.
L0 = mat.or.vec(p$P, 1)
I0 = mat.or.vec(p$P, 1)
A0 = mat.or.vec(p$P, 1)
R0 = mat.or.vec(p$P, 1)
I0[1] = 2
S0 = pop - (L0 + I0 + A0 + R0)
# Vector of initial conditions to be passed to ODE solver.
IC = c(S = S0, L = L0, I = I0, A = A0, R = R0)
# Time span of the simulation (5 years here)
tspan = seg(from = 0, to = 5 * 365.25, by = 0.1)
```

Set up β to avoid blow up

Let us take $\mathcal{R}_0 = 1.5$ for patches in isolation. Solve \mathcal{R}_0 for β

$$\beta = \frac{\mathcal{R}_0}{S(0)} \left(\frac{1 - \pi_p}{\gamma_{Ip}} + \frac{\pi_p \eta_p}{\gamma_{Ap}} \right)^{-1}$$

Define the vector field

```
SLIAR_metapop_rhs <- function(t, x, p) {</pre>
    with(as.list(p), {
        S = x[idx_S]
        L = x[idx_L]
        I = x [idx I]
        A = x[idx_A]
        R = x [idx R]
        N = S + I_{1} + T + A + R_{1}
        Phi = beta * S * (I + eta * A) / N
        dS = - Phi + MS \% \%
        dL = Phi - epsilon * L + p ML %*% L
        dI = (1 - pi) * epsilon * L - gammaI * I + MI %*% I
        dA = pi * epsilon * L - gammaA * A + MA %*% A
        dR = gammaI * I + gammaA * A + MR %*% R
        dx = list(c(dS, dL, dI, dA, dR))
        return(dx)
    })
}
```

And now call the solver

```
# Call the ODE solver
sol <- ode(y = IC,
    times = tspan,
    func = SLIAR_metapop_rhs,
    parms = p,
    method = "ode45")</pre>
```

One little trick (case with demography)

Suppose demographic EP is $\mathbf{N}^* = (\mathbf{d} - \mathcal{M})^{-1}\mathbf{b}$ Want to maintain $\mathbf{N}(t) = \mathbf{N}^*$ for all t to ignore convergence to demographic EP. Think in terms of **b**:

$$\mathbf{N}' = 0 \iff \mathbf{b} - \mathbf{dN} + \mathcal{M}\mathbf{N} = 0 \iff \mathbf{b} = (\mathbf{d} - \mathcal{M})\mathbf{N}$$

So take $\mathbf{b} = (\mathbf{d} - \mathcal{M}) \mathbf{N}^{\star}$ Then

$$\mathbf{N}' = (\mathbf{d} - \mathcal{M})\mathbf{N}^{\star} - \mathbf{dN} + \mathcal{MN}$$

and thus if $\mathbf{N}(0) = \mathbf{N}^*$, then $\mathbf{N}'(0) = 0$ and thus $\mathbf{N}' = 0$ for all $t \ge 0$, i.e., $\mathbf{N}(t) = \mathbf{N}^*$ for all $t \ge 0$

Word of warning about that trick, though...

 $\mathbf{b} = (\mathbf{d} - \mathcal{M}) \mathbf{N}^{\star}$

 $\textbf{d}-\mathcal{M}$ has nonnegative (typically positive) diagonal entries and nonpositive off-diagonal entries

Easy to think of situations where the diagonal will be dominated by the off-diagonal, so ${\bf b}$ could have negative entries

 \implies use this for numerics, not for the mathematical analysis

Why it is important to incorporate space

Metapopulation models

A few foot-and-mouth disease models A few models of Woolhouse and collaborators Ringa & Bauch Cabezas *et al* Bradhurst *et al* Buhnerkempe *et al* Glass & Barnes

A few avian influenza models

Why it is important to incorporate space

Metapopulation models

A few foot-and-mouth disease models A few models of Woolhouse and collaborators Ringa & Bauch Cabezas *et al* Bradhurst *et al* Buhnerkempe *et al* Glass & Barnes

A few avian influenza models

Most models are à la Levins

Space is implicit: count infected herds

In simplest models, space is entirely implicit

Herds are spatially located, so there is space

p. 109 - A few foot-and-mouth disease models

IMA Journal of Mathematics Applied in Medicine & Biology (1997) 14, 1-9

An analysis of foot-and-mouth-disease epidemics in the UK

D. T. HAYDON[†] AND M. E. J. WOOLHOUSE Department of Zoology, University of Oxford, South Parks Road, Oxford OXI 3PS, UK

R. P. KITCHING

Institute for Animal Health, Pirbright Laboratory, Pirbright, Surrey GU24 ONF, UK

The model

$$\Delta S(t) = -\beta(t)S(t)I(t)$$
(17a)

$$\Delta L(t) = \beta(t)S(t)I(t) - \beta(t-\sigma)S(t-\sigma)I(t-\sigma)$$
(17b)
$$\Delta I(t) = \beta(t-\sigma)S(t-\sigma)I(t-\sigma)$$

$$-\beta(t-\sigma-\nu)S(t-\sigma-\nu)I(t-\sigma-\nu)$$
(17c)

$$\Delta R(t) = \beta (t - \sigma - \nu) S(t - \sigma - \nu) I(t - \sigma - \nu)$$
(17d)

where $\Delta X(t) = \overline{X(t+1) - X(t)}$, σ is the fixed latent period and ν is the fixed infectious period

Reproduction number

Provided $N \gg 1$,

$$\mathcal{R}_0 = rac{eta(0) \mathsf{N}}{
u}$$

Estimates of $\beta(t)$ obtained using

$$eta(t) = rac{\Delta L(t) + eta(t-\sigma)S(t-\sigma)I(t-\sigma)}{S(t)I(t)}$$

Used for the 1967-1968 UK epidemic, time unit of 1 day, $\sigma=5$ days, $\nu=4$ days and N=16,507 herds

Here, space is purely implicit, in the sense that the only source of spatiality is the fact that the data comes from farms that are spatially located

From: Foot-and-Mouth Disease: Current Perspectives. Edited by: Francisco Sobrino and Esteban Domingo

Chapter 13

Mathematical Models of the Epidemiology and Control of Foot-and-Mouth Disease

Mark E. J. Woolhouse

FIG. 1. $(-\Box -)$ Cumulative numbers of the herds removed, R(t), and (\leftrightarrow) the reconstructed number of infectives calculated from equation (3) during the 1967–68 UK (FMD) epidemic.

Figure 1. Compartments, in theory and practice. A) A diagrammatic representation of a simple

Figure 3. Examples of transmission kernels, relative per capita rate of transmission as a function of distance between farms. Empirical results (symbols) derived using data tracing studies carried out during the UK 2001 epidemic after the imposition of a national ban on livestock movements (Keeling *et al.*, 2001) are compared with two standard functions: 1) k/d^2 with k=0.41 (broken line); and 2) gexp[-hd] with g=4.8 and h=2.4 (solid line). All functions show per capita transmission rates relative to that over distances of 0 to 0.5km. The constants k, g and h were fitted using the least squares method. The empirically-derived transmission kernel equates to 70% of transmission occurring over distances up to 3km. Note that function (1) overestimates transmission rates at longer distances, whereas function (2) underestimates these.

Dynamics of the 2001 UK Foot and Mouth Epidemic: Stochastic Dispersal in a Heterogeneous Landscape

Matt J. Keeling,^{1*} Mark E. J. Woolhouse,² Darren J. Shaw,² Louise Matthews,² Margo Chase-Topping,² Dan T. Haydon,³ Stephen J. Cornell,¹ Jens Kappey,¹ John Wilesmith,⁴ Bryan T. Grenfell¹

Incorporating space

Transmission between farms determined by number and type of livestock and distance between susceptible and infectious farms

Probability that a susceptible farm *i* becomes infected a given day

$$\mathbb{P} = 1 - \exp\left(-SN_i \sum_{j \in \text{infectious}} TN_j K(d_{ij})\right)$$
(18)

K infection kernel, d_{ij} distance between farms i and j

Table 1. Results from the stochastic spatial model (2, 10) considering a variety of control options. The total reported cases (on an individual farm basis) for each control policy and the total cull (including IP slaughtering, DC, and CP culls) are given as a percentage of the results from the full model using the observed control policy, including the extended 3-km and welfare culls. The total number of farms vaccinated is given as a percentage of the total cull in the full model. All of the control policies tested below ignore the extended 3-km and welfare culls used in some locations. The standard control policy follows the timing and level of the observed measure. The prompt cull follows the level of the observed measures but achieves a 24/48-hour delay from reporting to slaughter/cull throughout the epidemic. The intensive cull follows the timing of the observed measures but matches the levels achieved in the latter stages of the epidemic. The 3-km ring cull removes infected premises and all other farms within a 3-km radius. The next three measures include vaccination of cattle (at 90% coverage) within a 3-km ring around all infected premises in addition to the slaughter and cull policy. Vaccination of all species gives somewhat better, but qualitatively similar, results. Finally, we consider barrier vaccination (as in Fig. 3D) at 90% coverage. More details about the various control measures are given in the supplementary material (10).

Control measure	Total cases	Total cull	Total vaccinated
Standard	105%	84%	0%
IP cull only	927%	342%	0%
Prompt cull (24/48-hour delay throughout)	57%	54%	0%
Intensive cull (high levels throughout)	45%	73%	0%
3-km ring cull only	47%	142%	0%
Standard + 90% vaccination	84%	72%	76%
Standard + vaccination from May	97%	81%	8%
IP only + vaccination	784%	156%	453%
Standard + barrier vaccination	70%	69%	251%

Received 7 February 2003 Accepted 14 April 2003 Published online 7 July 2003

Neighbourhood control policies and the spread of infectious diseases

L. Matthews^{1*}, D. T. Haydon², D. J. Shaw¹, M. E. Chase-Topping¹, M. J. Keeling^{3,4} and M. E. J. Woolhouse¹

¹Centre for Tropical Veterinary Medicine, University of Edinburgh, Easter Bush, Roslin EH25 9RG, UK
 ²Department of Zoology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
 ³Mathematics Institute, and ⁴Department of Biological Sciences, University of Warwick, Gibbet Hill, Coventry CV4 7AL, UK

Another model

$$S' = -\beta(1 - f(c))\frac{SI}{N} - c\frac{SI}{N}$$
(19a)

$$I' = \beta(1 - f(c))\frac{3I}{N} - \sigma I$$
(19b)

$$R' = \sigma I + c \frac{SI}{N} \tag{19c}$$

f(c) proportion of exposed holdings removed, c the removal rate (level of control)

$$\mathcal{R}_0=eta/\sigma$$
 and $\mathcal{R}_c=etarac{1-f}{\sigma}=(1-f)\mathcal{R}_0$
They then consider a metapopulation version

Break down susceptible population into clusters of holdings within which short-range transmission occurs, and between which long-range transmission occurs

Transmission rate β broken down into a short-range transmission rate, β_s , corresponding to infections generated within the cluster, and a long-rangetransmission rate, β_I , corresponding to infections generated outside the cluster in question

Modelling vaccination strategies against foot-and-mouth disease

M. J. Keeling*, M. E. J. Woolhouse†, R. M. May‡, G. Davies§ & B. T. Grenfell||

* Department of Biological Science & Mathematics Institute, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK † Centre for Infectious Diseases, College of Medicine and Veterinary Medicine, University of Edinburgh, Easter Bush, Roslin, Midlothian, EH25 9RG, UK ‡ Department of Zoology, University of Oxford, Oxford, OX13PS, UK § Zinnia, Ketlwevell Hill, Woking, Surrey, GU21 4JJ, UK || Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK

Vaccination has proved a powerful defence against a range of infectious diseases of humans and animals. However, its potential to control major epidemics of foot-and-mouth disease (FMD) in livestock is contentious. Using an individual farm-based model, we consider either national prophylactic vaccination campaigns in advance of an outbreak, or combinations of reactive vaccination and culling strategies during an epidemic. Consistent with standard epidemiological theory, mass prophylactic vaccination could reduce greatly the potential for a major epidemic, while the targeting of high-risk farms increases efficiency. Given sufficient resources and preparation, a combination of reactive vaccination and culling might control ongoing epidemics. We also explore a reactive strategy, 'predictive' vaccination, which targets key spatial transmission loci and can reduce markedly the long tail that characterizes many FMD epidemics. These analyses have broader implications for the control of human and livestock infectious diseases in heterogeneous spatial landscapes.

Basic model – Spatial stochastic model

Infectious state of every livestock farm in Britain predicted daily Rate r at which currently susceptible farm i is infected given by

$$R_i = \sum_{L \in ext{livestock}} S_L N_L^i \sum_{j \in ext{infectious}} \sum_{L \in ext{livestock}} T_L N_L^j K(d_{ij})$$

- Nⁱ_L number of livestock of type L in farm i
- \triangleright S_L susceptibility of livestock L
- T_L transmission rate of livestock L
- *d_{ij}* distance between farms *i* and *j*
- K transmission kernel

Infected farm "incubates" for 4 days, then becomes infectious; 9 days after infection, presence of disease reported; 1–3 days (depending on epidemic status), animals are slaughtered and appropriate neighbourhood cull performed

p. 127 - A few foot-and-mouth disease models

The efficacy of predictive vaccination depends on how reliably risk factors for infection and transmission can be identified. Here we have assumed complete knowledge of those risk factors (although the actual outcome is still stochastic in nature). The effectiveness of the strategy will be less if risk factors are less well known.

Why it is important to incorporate space

Metapopulation models

A few foot-and-mouth disease models A few models of Woolhouse and collaborators Ringa & Bauch Cabezas et al Bradhurst et al Buhnerkempe et al Glass & Barnes

A few avian influenza models

Contents lists available at ScienceDirect

Journal of Theoretical Biology

journal homepage: www.elsevier.com/locate/yjtbi

Dynamics and control of foot-and-mouth disease in endemic countries: A pair approximation model

N. Ringa ^{a,*}, C.T. Bauch ^{a,b}

^a Department of Mathematics and Statistics, University of Guelph, 50 Stone Rd E, Guelph, Canada ON N1G 2W1
^b Department of Applied Mathematics, University of Waterloo, 200 University Avenue West Waterloo, Canada ON N2L 3G1

нісніснтя

- Traditional models of FMD focus on control and dynamics in disease-free settings.
- · We analyze long-term dynamics and control of FMD in endemic countries.
- · Success of vaccination depends on rates of vaccine and natural immunity waning.
- Prophylactic vaccination performs better that ring vaccination.
- More mathematical models applicable to FMD-endemic countries need to be developed.

Pair approximation models

Suppose farms are in status X or Y (e.g., susceptible and infected). Pair approximation models consider the *expected* number [XY] of pairs of the form X and Y at time t

A sample derivation (appendix in the paper)

The dynamics of [SI] are governed by the equation

$$g'(t) = \sum r(\varepsilon) \Delta g(\varepsilon)$$

where g(t) state variable of interest ([SI] here), $r(\varepsilon)$ rate of event ε and $\Delta g(\varepsilon)$ change this event causes in g(t)

We're interested in transformation of edges, e.g., infection through an S - I edge converts S into E, i.e. $SI \mapsto EI$ (\mapsto means "transformed to")

What affects [S/]'

- ▶ Infection of susceptible farm by infectious farm in the S I edge converts S into E, i.e. $SI \mapsto EI$. Adds $-\tau[SI]$, since this "destroys" S I edges
- ▶ Infection of susceptible farm "from the left" in a triple I S I, i.e. $I \leftrightarrow SI$ gives rise to $SI \mapsto EI$, i.e., $-\tau[ISI]$
- ▶ Latent period $1/\nu$, so $SE \mapsto SI$, "creating" an S I
- Infectious farm recovers at rate σ, therefore SI → SR contributes σ[SI]
- ▶ Ring vaccination (vaccination of E and S farms with links with I farms) in the S farm in a pair S − I, at rate ψ_r converts S − I to I − V and adds ψ_r[SI]
- ▶ Ring vaccination in the susceptible farm in a triple I S I, at rate ψ_r converts S I to I V and adds $\psi_r[ISI]$
- A recovered farm in an I R pair loses natural immunity at rate ω to form an S I pair, thus adding $\omega[IR]$
- A vaccinated farm in an I V pair loses vaccine protection at rate θ to form an S I pair, thus adding $\theta[IV]$

p. 132 - A few foot-and-mouth disease models

Therefore the equation of motion for [SI] is

$$[SI]' = -\tau([ISI] + [SI]) + \nu[SE] - \sigma[SI] - \psi_r([SI] + [ISI]) - \psi_p[SI] + \omega[IR] + \theta[IV]$$

S, E, I, R and V respectively, represent epidemiological states of the host population (farms): susceptible, exposed, infectious, recovered and vaccinated. The full model equations are given by

$$\begin{split} \frac{d[S]}{dt} &= -\tau[SI] - \psi_r[SI] - \psi_p[S] + \omega[R] + \theta[V] \\ \frac{d[E]}{dt} &= \tau[SI] - \nu[E] - \varphi_r[EI] \\ \frac{d[I]}{dt} &= \nu[E] - \sigma[I] \\ \frac{d[R]}{dt} &= \sigma[I] - \omega[R] \\ \frac{d[V]}{dt} &= \psi_r([SI] + [EI]) + \psi_p[S] - \theta[V] \\ \frac{d[SS]}{dt} &= -2\tau[SSI] - 2\psi_r[SSI] - 2\psi_p[SS] + 2\omega[SR] + 2\theta[SV] \\ \frac{d[SS]}{dt} &= -\tau([ISE] - [SSI]) - \nu[SE] - \psi_r([ISE] + [SEI]) \\ &- \psi_p[SE] + \omega[ER] + \theta[EV] \\ \frac{d[SI]}{dt} &= -\tau([ISI] + [SI]) + \nu[SE] - \sigma[SI] - \psi_r([SI] + [ISI]) \\ &- \psi_p[SI] + \omega[IR] + \theta[IV] \\ \frac{d[SR]}{dt} &= -\tau[ISR] + \sigma[SI] - \psi_r(ISR] - \psi_p[SR] - \omega([SR] - [RR]) + \theta[RV] \\ \frac{d[SR]}{dt} &= -\tau[ISV] - \psi_r(ISV] - [SSI] - [SEI]) - \psi_p([SV] - [SS]) \\ &+ \omega[RV] + \theta([VV] - [SV]) \\ \frac{d[EE]}{dt} &= 2\tau[ESI] - 2\nu[EE] - 2\psi_r[EEI] \\ \frac{d[EI]}{dt} &= \tau(ISR] - \nu[ER] + \sigma[EI] - \psi_r(IER] - \omega[ER] \\ \frac{d[ER]}{dt} &= \tau[ISR] - \nu[ER] + \sigma[EI] - \psi_r(IER] - \omega[ER] \\ \frac{d[EV]}{dt} &= \tau[ISV] - \nu[EV] - \psi_r(IEV] - [ISE] - [EEI]) + \psi_p[SE] - \theta[EV] \\ \end{split}$$

$$\begin{aligned} \frac{d[II]}{dt} &= 2\nu[EI] - 2\sigma[II] \\ \frac{d[IR]}{dt} &= \sigma([II] - [IR]) + \nu[ER] - \omega[IR] \\ \frac{d[IV]}{dt} &= -\sigma[IV] + \nu[EV] + \psi_r([SI] + [ISI] + [EI] + [IEI]) + \psi_p[SI] - \theta[IV] \\ \frac{d[RR]}{dt} &= 2\sigma[IR] - 2\omega[RR] \\ \frac{d[RV]}{dt} &= \sigma[IV] + \psi_r([ISR] + [IER]) + \psi_p[SR] - \omega[RV] - \theta[RV] \\ \frac{d[VV]}{dt} &= 2\psi_r([IEV] + [ISV]) + 2\psi_p[SV] - 2\theta[VV] \end{aligned}$$

The basic reproduction number, R_0 , is defined as the expected number of secondary cases produced by a single infection in a completely susceptible population (Hethcote, 2000; Bauch, 2005; Li et al., 2011; Schimit and Monteiro, 2012). An epidemic is expected if $R_0 > 1$ and the infection is expected to die out if $R_0 < 1$ (Schimit and Monteiro, 2012; Heffernan et al., 2005). In Appendix B we illustrate the derivation of a spatially oriented basic reproduction number for a pair approximation model without control measures:

$$R_0 = \frac{\beta(n-1)^2}{\sigma n \left[(n-1) + \left(\frac{\beta}{\nu}\right) \right]},\tag{5}$$

where $\beta = \tau n$, *n* is the number of neighboring farms. The basic reproduction number increases with the number of neighbors, *n*, on account of decreased opportunities for localized clustering of infected individuals to interfere with further transmission.

The basic reproduction number with ring vaccination as the only control measure is

$$\frac{m_3\tau(m_1\nu+m_2\psi_r)}{m_3\tau\psi_r+(m_1\nu+m_2\psi_r)\left(\frac{\sigma(m_4\nu+m_5\tau)}{\nu}+m_5\frac{\sigma\psi_r\nu}{\nu}\right)},$$

where m_i , i=1...5, are constants (n-1)/n+1, (n-1/n)Nq, $n(n-1)^2$, n(n-1) and n^2 , respectively. In our model n=4 neighbors per farm, N=40,000 farms and q=1.5 (q represents a ratio, [EI]/[E] and converges to 1.5 as $t \to \infty$, on a square grid). Therefore $m_1=1.75$, $m_2=4.5 \times 10^4$, $m_3=36$, $m_4=12$ and $m_5=16$. The basic reproduction number with prophylactic vaccination only is

$$\frac{m_3\tau(m_1\nu+\psi_p)}{(m_1\nu+\psi_p)\left[\frac{\sigma(m_4\nu+m_5\tau)}{\nu}+\frac{m_6\nu+m_5\tau}{\nu}\psi_p\right]},$$

where $m_6 = (n-1)^2 = 9$. The appearance of quadratic form of

The basic reproduction number in the presence of prophylactic, ψ_p and ring, ψ_r vaccination (see Appendix B) is considerably more complicated and is given by

$$R_{0} \approx \frac{m_{8}\tau(n-1)^{3} + m_{7}\tau n(n-1)^{2}}{m_{9}n(n-1)^{2} + \left(m_{8}\frac{n-1}{n} + m_{7}\right)[\sigma n(n-1) + m_{10}\sigma n^{2} + \psi_{p}(n-1)^{2} + m_{10}\psi_{p}n(n-1)]},$$
(6)

where $m_7 = \nu + \psi_r + \psi_p$, $m_8 = \nu + \psi_r Nq$, $m_9 = \tau \psi_r$ and $m_{10} = (\tau + \psi_r)/\nu$.

Why it is important to incorporate space

Metapopulation models

A few foot-and-mouth disease models

A few models of Woolhouse and collaborators Ringa & Bauch Cabezas *et al* Bradhurst *et al* Buhnerkempe *et al* Glass & Barnes

A few avian influenza models

ORIGINAL RESEARCH published: 23 September 2020 doi: 10.3389/fvets.2020.527558

A Meta-Population Model of Potential Foot-and-Mouth Disease Transmission, Clinical Manifestation, and Detection Within U.S. Beef Feedlots

OPEN ACCESS

Aurelio H. Cabezas^{1,2}, Michael W. Sanderson^{1,2*} and Victoriya V. Volkova^{1,2*†}

Disease progression

Infection progression

$$\frac{dS}{dt} = -\beta_{wp}S(I_1+I_2+I_3) - \varphi S - Bin\left(\varphi_{(t-1)}S_{(t-1)}, p_{-inf}hp_{l_{(t-1)}}\right) - \left\{S\beta_{bp}(I_1+I_2+I_3)_j; j \text{ present} \\ 0; \text{ otherwise}\right\} - \left\{S\beta_{bp}(I_1+I_2+I_3)_h; h \text{ present} \\ 0; \text{ otherwise}\right\} - \left\{S\beta_{bp}(I_1+I_2+I_3)_h; h \text{ present} \\ 0; \text{ otherwise}\right\} - \left\{S\beta_{bp}(I_1+I_2+I_3)_h; h \text{ present} \\ 0; \text{ otherwise}\right\} - \left\{S\beta_{bp}(I_1+I_2+I_3)_h; h \text{ present} \\ 0; \text{ otherwise}\right\} - \left\{S\beta_{bp}(I_1+I_2+I_3)_h; h \text{ present} \\ 0; \text{ otherwise}\right\} - \left\{S\beta_{bp}(I_1+I_2+I_3)_h; h \text{ present} \\ 0; \text{ otherwise}\right\} - \left\{S\beta_{bp}(I_1+I_2+I_3)_h; h \text{ present} \\ S\beta_{bp}(I_1+I_2+I_3)_h; h \text{ present} \\ 0; \text{ otherwise}\right\} - \left\{S\beta_{bp}(I_1+I_2+I_3)_h; h \text{ present} \\ 0; \text{ otherwise}\right\} - \left\{S\beta_{bp}(I_1+I_2+I_3)_h; h \text{ present} \\ 0; \text{ otherwise}\right\} - \left\{S\beta_{bp}(I_1+I_2+I_3)_h; h \text{ present} \\ 0; \text{ otherwise}\right\} - \left\{S\beta_{bp}(I_1+I_2+I_3)_h; h \text{ present} \\ 0; \text{ otherwise}\right\} - \left\{S\beta_{bp}(I_1+I_2+I_3)_h; h \text{ present} \\ 0; \text{ otherwise}\right\} - \left\{S\beta_{bp}(I_1+I_2+I_3)_h; h \text{ present} \\ 0; \text{ otherwise}\right\} - \left\{S\beta_{bp}(I_1+I_2+I_3)_h; h \text{ present} \\ 0; \text{ otherwise}\right\} - \left\{S\beta_{bp}(I_1+I_2+I_3)_h; h \text{ present} \\ 0; \text{ otherwise}\right\} - \left\{S\beta_{bp}(I_1+I_2+I_3)_h; h \text{ present} \\ 0; \text{ otherwise}\right\} - \left\{S\beta_{bp}(I_1+I_2+I_3)_h; h \text{ present} \\ 0; \text{ otherwise}\right\} - \left\{S\beta_{bp}(I_1+I_2+I_3)_h; h \text{ present} \\ 0; \text{ otherwise}\right\} - \left\{S\beta_{bp}(I_1+I_2+I_3)_h; h \text{ present} \\ 0; \text{ otherwise}\right\} - \left\{S\beta_{bp}(I_1+I_2+I_3)_h; h \text{ present} \\ 0; \text{ otherwise}\right\} - \left\{S\beta_{bp}(I_1+I_2+I_3)_h; h \text{ present} \\ 0; \text{ otherwise}\right\} - \left\{S\beta_{bp}(I_1+I_2+I_3)_h; h \text{ present} \\ 0; \text{ otherwise}\right\} - \left\{S\beta_{bp}(I_1+I_2+I_3)_h; h \text{ present} \\ 0; \text{ otherwise}\right\} - \left\{S\beta_{bp}(I_1+I_2+I_3)_h; h \text{ present} \\ 0; \text{ otherwise}\right\} - \left\{S\beta_{bp}(I_1+I_2+I_3)_h; h \text{ present} \\ 0; \text{ otherwise}\right\} - \left\{S\beta_{bp}(I_1+I_2+I_3)_h; h \text{ present} \\ 0; \text{ otherwise}\right\} - \left\{S\beta_{bp}(I_1+I_2+I_3)_h; h \text{ present} \\ 0; \text{ otherwise}\right\} - \left\{S\beta_{bp}(I_1+I_2+I_3)_h; h \text{ present} \\ 0; \text{ otherwise}\right\} - \left\{S\beta_{bp}(I_1+I_2+I_3)_h; h \text{ present} \\ 0; \text{ present} \\ 0; \text{ present} \\ 0; \text{$$

$$\begin{split} &\frac{\mathrm{II}}{\mathrm{If}} = \beta_{wp} \mathrm{S}(\mathrm{I}_{1}+\mathrm{I}_{2}+\mathrm{I}_{3}) - \varphi \mathrm{L} + Bin\left(\varphi_{(t-1)}\mathrm{S}_{(t-1)}, p_{-}\mathrm{inf}\mathrm{Lhp}_{l_{(t-1)}}\right) + \\ &\mathrm{S}\beta_{bp}(\mathrm{I}_{1}+\mathrm{I}_{2}+\mathrm{I}_{3})_{j}; \ j \ \mathrm{present}}_{0; \ \mathrm{otherwise}} \right\} + \left\{ \begin{split} &\mathrm{S}\beta_{bp}(\mathrm{I}_{1}+\mathrm{I}_{2}+\mathrm{I}_{3})_{h}; \ h \ \mathrm{present}}_{0; \ \mathrm{otherwise}} \right\} + \\ &Bin(\mathrm{S}, \ 0.5); \ j \ \mathrm{present}, \ \mathrm{shares} \ \mathrm{water-trough} \ \mathrm{with} \ i, \ \mathrm{and} \ \mathrm{FMDv} \ \mathrm{load} \ \mathrm{in} \ 1 \ \mathrm{L} \ \mathrm{of} \ \mathrm{the} \ \mathrm{water} \ \geq ID_{50} \ \mathrm{per} \ \mathrm{oral} \\ &\mathrm{O}; \ \mathrm{otherwise} \\ \\ &Bin(\mathrm{S}, \ 0.5); \ h \ \mathrm{present}, \ \mathrm{shares} \ \mathrm{water-trough} \ \mathrm{with} \ i, \ \mathrm{and} \ \mathrm{FMDv} \ \mathrm{load} \ \mathrm{in} \ 1 \ \mathrm{L} \ \mathrm{of} \ \mathrm{the} \ \mathrm{water} \ \geq ID_{50} \ \mathrm{per} \ \mathrm{oral} \\ &\mathrm{O}; \ \mathrm{otherwise} \\ \\ \\ &Bin\left[\left(\frac{FMDv_{-}floor_{j} \times \sigma}{ID_{50} \ \mathrm{per} \ \mathrm{oral}}\right), \ 0.5\right]; \ j \ \mathrm{present} \ \mathrm{and} \ \left(\frac{FMDv_{-}floor_{j} \times \sigma}{ID_{50} \ \mathrm{per} \ \mathrm{oral}}\right) \\ &\mathrm{O}; \ \mathrm{otherwise} \\ \\ \\ \\ \\ Bin(\mathrm{S}, \ p_{-}air_{i}); \ \sum_{k=1}^{n} \mathrm{I}_{3} \geq 0 \\ \mathrm{O}; \ \mathrm{otherwise} \\ \end{array} \right\} - \delta \mathrm{L} - \mu \mathrm{L} \end{split}$$

Other compartments

 I_1 , I_2 subclinical infectious, I_3 clinical infectious, C clinical non-infectious, R recovered

$$\begin{split} l'_{1} &= \delta L - \theta l_{1} - \varphi l_{1} + \varphi_{(t-1)} l_{1(t-1)} - \mu l_{1} \\ l'_{2} &= \theta l_{1} - \varepsilon l_{2} - \varphi l_{2} + \varphi_{(t-1)} l_{2(t-1)} - \mu l_{2} \\ l'_{3} &= \varepsilon l_{2} - \gamma l_{3} - (\varphi + \zeta) l_{3} + (\varphi_{(t-1)} + \zeta) l_{3(t-1)} - (\mu + \psi) l_{3} \\ C' &= \gamma l_{3} - \tau C - (\varphi + \zeta) C + (\varphi_{(t-1)} + \zeta) C_{(t-1)} - (\mu + \psi) C \\ R' &= \tau C - \varphi R + \varphi_{(t-1)} R_{(t-1)} - \mu R \end{split}$$

S-L Susceptible-Latent model of FMD infection dynamics in a hospital-pen l

$$\frac{\mathrm{dS}_{hpl}}{\mathrm{dt}} = \sum_{i=1}^{m} \varphi S_i - \beta_{hp} \sum_{i=1}^{m} \varphi S_i \left[\sum_{i=1}^{m} \varphi I_{1_i} + \sum_{i=1}^{m} \varphi I_{2_i} + \sum_{i=1}^{m} (\varphi + \varsigma) I_{3_i} \right]$$
$$\frac{\mathrm{dL}_{hpl}}{\mathrm{dt}} = \beta_{hp} \sum_{i=1}^{m} \varphi S_i \left[\sum_{i=1}^{m} \varphi I_{1_i} + \sum_{i=1}^{m} \varphi I_{2_i} + \sum_{i=1}^{m} (\varphi + \varsigma) I_{3_i} \right]$$

TABLE 3 | Estimated percentage of latent cattle and home-pens with latent cattle on a U.S. beef cattle feedlot depending on the outbreak detection day since foot-and-mouth disease introduction.

Feedlot ^a	Percentage (%) of latent cattle and home-pens with latent cattle in the feedlot on the day of FMD outbreak detection (10th, 50th, 90th percentiles of $n = 2,000$ simulated outbreaks) ^b						
		Day 5	Day 6	Day 7	Day 8	Day 9	
FS1	Cattle	<1, 4, 7	1, 10, 14	2, 14, 18	6, 18, 24	13, 24, 25	
	Home-pens	25, 25, 25	25, 25, 30	25, 30, 41	25, 35, 50	25, 50, 65	
FM1	Cattle	<1, 1, 2	0, 3, 4	1, 5, 5	3, 6, 6	4, 6, 7	
	Home-pens	7, 7, 8	7, 7, 8	8, 10, 13	8, 12, 18	8, 15, 25	
FM2	Cattle	<1, 1, 2	0, 3, 4	1, 5, 5	3, 6, 6	4, 6, 7	
	Home-pens	7, 7, 8	7, 7, 8	8, 10, 13	8, 10, 15	8, 13, 18	
FL1	Cattle		0, 2, 2	1, 2, 3	1, 3, 3	2, 3, 4	
	Home-pens	3, 3, 4	3, 3, 4	4, 4, 7	4, 5, 8	4, 7, 11	
FL2	Cattle		0, 2, 2	1, 2, 3	1, 3, 3	2, 3, 4	
	Home-pens	3, 3, 3	3, 3, 4	4, 4, 7	4, 5, 8	4, 7, 9	

^a Feadot sizes and leyouts modeled are detailed in Table 2 and Supplementary Figure 1. Briefly, FS1 is a 4,000 cattle feedlot with one hospital-pen; FM2 is a 12,000 cattle feedlot with two hospital-pens; FL1 is a 24,000 feedlot with two hospital-pens; and FL2 is a 24,000 cattle feedlot with four hospital-pens; fL1 is a 24,000 feedlot with two hospital-pens; and FL2 is a 24,000 cattle feedlot with four hospital-pens; fL1 is a 24,000 feedlot with two hospital-pens; fL1 is a 24,000 feedlot with feedlot with flux hospital-pens; fL1 is a 24,000 feedlot with flux hospital-pens; fL1 is a 24,000

^b We show results of latent cattle and latent home-pens on days 5–9 (only) of outbreak detection on each feedlot size and layout modeled because those were the most common days of outbreak detection for the three detection thresholds modeled (3, 5, and 10% clinical cattle in the index home-pen).

Target parameter* Parameter value Strength of the correlation (Spearman correlation coefficient value) between the distribution model parameter value and outcome variable value for the feedlot of that size and layout Peak day of the outbreak^a Duration of the outbreak FS1^b FM1 FM2 FL1 FL2 FS1 FM1 FM2 FL1 FL2 Beta transmission parameter in Triangular (0.02. -0.14* -0.21* -0.09* -0.09* -0.10* -0.05* -0.08* -0.14* -0.09* -0.08* home-pens (β_{WD}) 0.026. 0.031) Bovine respiratory disease morbidity Vector (0.05, 0.30, -0.01 -0.05 -0.10^{*} -0.17* -0.05* -0.13* -0.15* -0.07*-0.05* during the first 30 days of cattle 0.05) placement in the feedlot (π) Depth of the home-pen floor top Vector (2, 5, 3) -0.03-0.06-0.06contaminated by fresh animal excreta (d pen) (m) Vector (0.005. -0.42* -0.29* -0.09* -0.15* -0.17* -0.11* -0.09* -0.08* -0.09* -0.09* Initial proportion of latent cattle in the index home-pen (lat_initial) 0.105, 0.020) 0.04* 0.03* Fraction of saliva daily produced by Vector (0.1, 0.5, -0.01* -0.01* 0.01* the animal that is excreted into the home-pen environment (σ) Duration of FMD latent period (lat) Weibull ($\alpha =$ 0.67* 0.62* 0.25* 0 48* 0.64* 0.75* 0.77* 0.77* 0.82* 0.83* 1.782, B = 3.974(days) -0.11* 0.48* 0.42* 0.23* 0.29* Duration of FMD infectious period (inf) Gamma ($\alpha =$ -0.14* -0.12^{*} 0.35* (days) $3.969, \beta = 1.107$ Duration of FMD subclinical period Gamma ($\alpha =$ 0.19* 0.25* 0.07* 0.18* 0.22* -0.21* -0.17* -0.03* _0.09* -0.06* 1.222, $\beta = 1.672$) (sub) (days) Water intake by the animal per visit to Vector (1, 5, 4) -0.09 -0.06 the water-trough in the home-pen (wat_int) (I)

TABLE 4 | Target parameters investigated for associations with the projected outbreak's peak day with highest number of clinical cattle since foot-and-mouth disease introduction and the total outbreak duration on a U.S. beef cattle feedlot.

^a Bold coefficients with * indicate p < 0.05 for the correlation coefficient between the parameter value and outcome variable value.

^b Feedict sizes and layouts modeled are detailed in Table 2 and Supplementary Figure 1. Briefly, FS1 is a 4,000 cattle feediot with one hospital-pen; FM1 is a 12,000 cattle feediot with one hospital-pens; FL1 is a 24,000 feediot with two hospital-pens; and FL2 is a 24,000 cattle feediot with four hospital-pens; FL1 is a 24,000 feediot with two hospital-pens; and FL2 is a 24,000 cattle feediot with four hospital-pens; FL1 is a 24,000 feediot with two hospital-pens; and FL2 is a 24,000 cattle feediot with four hospital-pens; fL1 is a 24,000 feediot with two hospital-pens; and FL2 is a 24,000 cattle feediot with four hospital-pens; fL1 is a 24,000 feediot with two hospital-pens; and FL2 is a 24,000 cattle feediot with four hospital-pens; fL1 is a 24,000 feediot with two hospital-pens;

*Pesults of the following target parameters were not included in the table above because were found to be not influential to model outputs: mortality rate for animals with BPD and other production diseases (andemic infectious diseases) (day⁻¹) (µ), Mortality rate for animals with clinical FMD (day⁻¹) (µ), unive volume produced by an animal (Uday) (µ), alive volume produced by an animal (Uday) (sal), volume of feces produced by an animal in the FMD clinical high infectious status (uvi), virus quantity shed in saliva (PFU/mL) by an animal in the FMD clinical high infectious status (uvi), virus quantity shed in saliva (PFU/mL) by an animal in the FMD clinical high infectious status (salv), virus quantity shed in feces (PFU/mL) by an animal in the FMD clinical high infectious status (lecv), and the proportion of the cattle daily saliva volume deposited into the home-pen environment (dmmI) (Isal_env). Their distributions can be found in **Table 1**. Why it is important to incorporate space

Metapopulation models

A few foot-and-mouth disease models

A few models of Woolhouse and collaborators Ringa & Bauch Cabezas *et al* **Bradhurst** *et al* Buhnerkempe *et al* Glass & Barnes

A few avian influenza models

ORIGINAL RESEARCH published: 19 March 2015 doi: 10.3389/fenvs.2015.00017

A hybrid modeling approach to simulating foot-and-mouth disease outbreaks in Australian livestock

Richard A. Bradhurst^{1*}, Sharon E. Roche², Iain J. East², Paul Kwan¹ and M. Graeme Garner²

¹ Discipline of Computer Science, School of Science and Technology, University of New England, Armidale, NSW, Australia, ² Epidemiology and One Health Program, Animal Health Policy Branch, Department of Agriculture, Canberra, ACT, Australia

$$\frac{dS}{dt} = \mu - \beta I S - \mu S$$

$$\frac{dE}{dt} = \beta I S - \mu E - \sigma E$$

$$\frac{\mu}{dt} = \sigma E - \mu I - \gamma I$$

$$\frac{dR}{dt} = \gamma I - \mu R$$

where S = proportion of the herd that are susceptible

- E = proportion of the herd that are exposed
- I = proportion of the herd that are infectious
- R = proportion of the herd that are recovered
- $\frac{1}{u}$ = average natural lifespan of the host, (μ = birth rate = natural mortality rate)
- β = effective contact rate (contact rate×transmission probability)
- $\frac{1}{\sigma}$ = average duration of the latent period, (σ = progression rate from exposed to infectious)
- $\frac{1}{V}$ = average duration of the infectious period, (γ = recovery rate)

Farm type	Number of farms	Mean farm population size (min-max)	Herd type	Number of herds
Extensive beef	1331	1909 (1200–46, 575)	Extensive beef	3993
Intensive beef	51,383	280 (30 - 7436)	Intensive beef	51,383
Feedlot	508	1825 (100–39, 963)	Feedlot	508
Mixed beef/sheep	21,556	242 (30 - 5700)	Mixed beef	21,556
			Mixed sheep	21,556
Dairy	8675	298 (40 – 2742)	Dairy	8675
Small pigs	1873	244 (40 - 4850)	Small pigs	1873
Large pigs	333	4922 (1000-17, 896)	Large pigs	333
Sheep	22,150	1649 (20-44, 000)	Sheep	22,150
Small holder	103,641	5 (1 – 14)	Small holder	103,641
Total	202,775			235,668

TABLE 1 | Herd and farm types used in AADIS.

Why it is important to incorporate space

Metapopulation models

A few foot-and-mouth disease models

A few models of Woolhouse and collaborators Ringa & Bauch Cabezas *et al* Bradhurst *et al* Buhnerkempe *et al* Glass & Barnes

A few avian influenza models

The Impact of Movements and Animal Density on Continental Scale Cattle Disease Outbreaks in the United States

Michael G. Buhnerkempe¹*[¤], Michael J. Tildesley², Tom Lindström³, Daniel A. Grear¹, Katie Portacci⁴, Ryan S. Miller⁴, Jason E. Lombard⁴, Marleen Werkman², Matt J. Keeling², Uno Wennergren³, Colleen T. Webb¹

1 Department of Biology, Colorado State University, Fort Collins, Colorado, United States of America, 2 Center for Complexity Science, Mathematics Institute, University of Warwick, Coventry, United Kingdom, 3 Department of Physics, Chemistry, and Biology, Linköping University, Linköping, Sweden, 4 United States Department of Agriculture, Animal and Plant Health Inspection Service, Centers for Epidemiology and Animal Health, Fort Collins, Colorado, United States of America

Table 1. Disease transmission routes in the model.

	Movement spread*	Non-movement spread			
		Within-county	Local cross-border		
Cause	Animal Shipments	Aerosol, fence-line contact, or fomite transmission	Aerosol, fence-line contact, or fomite transmission		
Spatial Scale	All counties in the US	Premises within an infected county	All neighboring counties		
Assumptions	 Premises density-dependent; 2)Spatially explicit[†]; 3)Differs by state and production type 	1) Premises density-dependent; 2)Premises size dependent	 Premises density-dependent[‡]; Premises size dependent[‡]; Spatially implicit^{\$} 		
Informed by or data from	 ICVI records; Number of premises by county and production type^{\$}; State cattle inflows [38] 	 2001 UK FMD outbreak [39]; US premises density and size distributions¹ 	 2001 UK FMD outbreak [39]; US premises density and size distributions ¹; Shared county border length 		
Parameter Uncertainty	Estimated through Bayesian inference and incorporated in the simulations via multiple realizations of shipment networks.	Broad parameter ranges explored in a sensitivity analysis ^{II} .	Broad parameter ranges explored in a sensitivity analysis ^{II} .		

*See Section C in Text S1 and Lindström et al. [24].

[†]Based on county centroids.

[‡]In both the focal and neighboring counties.

[§]Based on randomly distributed premises in the focal and neighboring counties.

See Section B in Text S1 and NASS census data [15].

See Section E in Text S1.

doi:10.1371/journal.pone.0091724.t001

Туре	Parameter	Value	Range	Description
Transmission	β	0.0003508"	[2×10 ⁻⁵ , 4×10 ⁻²]	Transmission rate between cattle on different premises
		4.6 [†]	[2.1, 6]	Shape of the local, non-movement spatial kernel
		1.6 [‡]	[1,6]	Scale of the local, non-movement spatial kernel
	p	0.414 [†]	[0, 1]	Non-linear scaling of the effect of premises size (i.e., number of cattle) on susceptibility to infection
	q	0.424 [†]	[0, 1]	Non-linear scaling of the effect of premises size (i.e., number of cattle) on transmission of infection
Control		100%†	[50%,100%]	Percentage of movements to/from an area that are stopped by a movement ban
		7 ⁵	7, 14, 21	The delay between a premises becoming infected and subsequently being identified and removed, which triggers movement bans
Other		5*	NA ¹	The latent period; amount of time between a premises being exposed to infection and becoming infectious

Table 2. Disease simulation model parameters.

^{*}Units in Premises (days) ⁻¹.

[†]Unit-less parameter.

[‡]Units in kilometers.

[§]Units in days.

¹Sensitivity analysis was not performed on this parameter.

doi:10.1371/journal.pone.0091724.t002

Figure 2. The giant strongly connected component (GSCC) of the network from a 10% sample of ICVIs. Maps at the (A) state and (B) county scales. Orange denotes a node in the GSCC. Brown denotes a node outside of the GSCC that either sends to or receives from nodes in the GSC but not both, and black indicates nodes that are irelated from the GSC because it was the only state not to supply ICVI d doi:10.1371/journal.pone.0091724.g002

2000

200 20 Frequency 50

0

2 0

Metapopulation models

A few foot-and-mouth disease models

A few models of Woolhouse and collaborators Ringa & Bauch Cabezas *et al* Bradhurst *et al* Buhnerkempe *et al* Glass & Barnes

A few avian influenza models

Theoretical Population Biology 85 (2013) 63-72

Eliminating infectious diseases of livestock: A metapopulation model of infection control

Kathryn Glass*, Belinda Barnes

National Centre for Epidemiology and Population Health, Australian National University, Canberra, Australia

Metapopulation models

A few foot-and-mouth disease models

Metapopulation models

A few foot-and-mouth disease models

Avian Influenza Spread and Transmission Dynamics*

Lydia Bourouiba

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, USA

Stephen Gourley Department of Mathematics, University of Surrey, Guildford, Surrey, UK

Rongsong Liu Department of Mathematics, University of Wyoming, Laramie, WY, USA

John Takekawa USGS Western Ecological Research Center, Vallejo, CA, USA

Jianhong Wu

Centre for Disease Modelling, York University, Toronto, ON, Canada

Metapopulation models

A few foot-and-mouth disease models

A metapopulation model for highly pathogenic avian influenza: implications for compartmentalization as a control measure

S. NICKBAKHSH¹, L. MATTHEWS¹, S. W. J. REID² AND R. R. KAO¹*

 ¹ Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Bearsden Road, Scotland, UK
 ² Royal Veterinary College, University of London, North Mymms, Hatfield, Hertfordshire, UK

Received 4 July 2013; Final revision 18 October 2013; Accepted 30 October 2013; first published online 5 December 2013

Interactions b/w network core & periphery groups

 $p = \{1, 2\}$ for population 1 (network *core* group) and population 2 (network *periphery* group), $j = \{MS, SS\}$ for multi-site and single-site premises

$$\begin{split} S'_{\rho j} &= -S_{\rho j}(W_{\rho j} + B_{\rho j}) \\ I'_{\rho j}S_{\rho j}(W_{\rho j} + B_{\rho j}) - \gamma I_{\rho j} \\ R'_{\rho j} &= \gamma I_{\rho j} \end{split}$$

with W_{pj} and B_{pj} the within- and between-population forces of infection acting upon premises of type $j = \{MS, SS\}$ within population $p = \{1, 2\}$

Force of infection on MS premises within core group

$$W_{1,MS} = \beta \left(\omega_{MS,MS} \frac{l_{1,MS}}{n_{1,MS}} + \omega_{MS,SS} \frac{l_{1,SS}}{n_{1,SS}} + \theta \delta_{MS,1} \frac{l_{1,MS}}{n_{1,MS}} \right)$$
$$+ \beta'_{1,MS} \left(\sigma_{MS,MS} \frac{l_{1,MS}}{n_{1,MS}} + \sigma_{MS,SS} \frac{l_{1,SS}}{n_{1,SS}} \right)$$
$$B_{1,MS} = \beta \left(\Omega_{MS,MS} \nu \frac{l_{2,MS}}{n_{2,MS}} + \Omega_{MS,SS} \nu \frac{l_{2,MS}}{n_{2,MS}} \right)$$

 β and $\beta'_{1,MS}$ density-dependent and density-independent transmission rates, $\sigma_{MS,k}$ and $\omega_{MS,k}$ weight on rate of transmission for premises of type $k = \{MS, SS\}$ to MS premises through spatial proximity and network links, resp., θ weight on rate of transmission between MS premises of same company, $\delta_{MS,1}$ Kronecker delta, $\Omega_{MS,k}$ weights rate of transmission between populations and ν uniform weighting applied to vary transmission strength

Two types of control mechanisms

Zoning (or regionalisation): geographical boundaries separate parts of a territory (or country). E.g., implementation of control zones used to enforce movement restrictions and enhanced biosecurity measures during outbreaks of notifiable disease

Allow within-population network-mediated links (beyond 10 km) and between-population network links

Compartmentalisation: extends zoning by considering pathways other than geographical proximity that may jeopardize biosecurity of a compartment. Here, focus on premises with common ownership, due to vertical integration of their business

allow spatial and within-company links

(b) Zoning

Interaction strength (v)

Transmission rate (eta)

Metapopulation models

A few foot-and-mouth disease models

Epidemics 28 (2019) 100340

Highly pathogenic avian influenza H5N8 in south-west France 2016–2017: A modeling study of control strategies

Alessio Andronico^{a,}, Aurélie Courcoul^{b,1}, Anne Bronner^c, Axelle Scoizec^d, Sophie Lebouquin-Leneveu^d, Claire Guinat^e, Mathilde C. Paul^e, Benoît Durand^b, Simon Cauchemez^a

^a Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, UMR2000, CNRS, 75015, Paris, France

^b Epidemiology Unit, Paris-Est University, Laboratory for Animal Health, French Agency for Food, Environment and Occupational Health and Safety (ANSES), Maisons-Alfort, France

^cDirection générale de l'Alimentation, Paris, 75015, France

^d Anses, Laboratoire de Ploufragan-Plouzané, Unité d'épidémiologie et bien-être en aviculture et cuniculture, Ploufragan, 22440, France

° IHAP, Université de Toulouse, INRA, ENVT, Toulouse, France

We developed a space-time survival model in which the daily force of infection experienced at time t by susceptible farm j is given by:

$$\lambda_j(t) = \sum_i \lambda_{i \to j}(t) \cdot I [iinfectious att] + \lambda_j^{ext}$$
(1)

where *I* is the indicator function, $\lambda_{i\rightarrow j}(t)$ is the force of infection that farm *i* exerts on *j* at time *t*, and λ_j^{ext} is an external term accounting for infection sources other than IPs - e.g. the presence of infectious wild birds or backyard poultry.

For $\lambda_{i \to j}(t)$ we assumed a frequency-dependent functional form:

$$\lambda_{i \to j}(t) = \psi_{i} \cdot \phi_{j} \cdot \alpha_{SZ}(i, j, t) \cdot \frac{\beta(t)}{N_{i}(d_{c})} \cdot I(d_{ij} \le d_{c})$$
(2)

where ψ_i is the relative infectivity of *i* (with $\psi_i = 1$ for palmipeds and $\psi_i = \psi$ for galliformes farms), ϕ_j is the relative susceptibility of *j* (with $\phi_i = 1$ for palmipeds and $\phi_i = \phi$ for galliformes farms), $\alpha_{SZ}(i, j, t)$ is a multiplicative term accounting for changes in transmission in the surveillance zones, $\beta(t)$ is the transmission rate, d_c is a cutoff distance, $N_i(d_c)$ is the number of farms within distance d_c from *i*, and d_{ij} is the distance between farms *i* and *j*. This choice of functional form for the force of infection assumes that transmission between farms was only possible for distances below d_c and that each IP had a fixed number of contacts, irrespective of the number of farms around it.

The term $\alpha_{SZ}(i, j, t)$ was defined as:

$$\alpha_{SZ}(i, j, t) = \begin{cases} \alpha_{SZ} \text{ if } i \text{ or } j \text{ are in a surveillance zone at time } t \\ 1 \text{ otherwise} \end{cases}$$
(3)

In other words, we assumed that if either one of the farms in contact - i or j in Eq. (3) – happened to be in a surveillance zone at time t, all the measures implemented therein (movement restrictions, active surveillance, and biosecurity) would result in a change of transmission rate.

We tested different functional forms for the transmission rate $\beta(t)$ (Supplement 2), but the one providing the best fit to the data was a stepwise transmission rate with two switch points (t_1 and t_2) for the Landes department:

$$\beta(t) = \begin{cases} \beta_1 \text{ if } t < t_1 \\ \beta_2 \text{ if } t_1 \le t < t_2 \\ \beta_3 \text{ if } t \ge t_2 \end{cases}$$

and a constant transmission rate for all other departments. The external force of infection was defined as:

$$\lambda_j^{ext} = \beta_{ext} \cdot \phi_j \tag{5}$$

(4)

1. IPs detected by passive surveillance

2. Preventively culled IPs

3. IPs detected by active surveillance

Metapopulation models

A few foot-and-mouth disease models

J. R. Soc. Interface (2011) 8, 1079–1089 doi:10.1098/rsif.2010.0510 Published online 3 December 2010

Impact of the implementation of rest days in live bird markets on the dynamics of H5N1 highly pathogenic avian influenza

G. Fournié^{1,*}, F. J. Guitian¹, P. Mangtani² and A. C. Ghani³

 ¹Veterinary Epidemiology and Public Health Group, Department of Veterinary Clinical Sciences, Royal Veterinary College, London, UK
 ²Infectious Disease Epidemiology Unit, London School of Hygiene and Tropical Medicine, London, UK
 ³MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, UK

Direct and indirect transmission

Infection through direct contact

$$\mathsf{inf}_{\mathsf{contact}} = \int_0^{T_{\mathit{inf}}} \beta \ dt = \beta T_{\mathit{inf}}$$

Infection through environment

$$\inf_{env} = \int_0^{T_{inf}} dt \int_0^H \beta \eta (1-\Theta)^t dt = T_{inf} \int_0^H \beta \eta (1-\Theta)^t dt$$

 T_{inf} infectious period, H length of time faeces remain infectious, Θ rate of loss of infectiousness of faeces, β rate of transmission per unit time and η relative rate of transmission from the environmental reservoir compared to β

Reproduction number

If population size is stable and infectious period goes to its end without being stopped by selling or slaughtering, then basic reproduction number is

$$\mathcal{R}_0 = (\inf_{contact} + \inf_{env})N_0$$

 N_0 initial number of susceptible birds in the market

Environmental contamination ratio

Environmental contamination ratio ζ is proportion of infectivity mediated by the environment

$$\zeta = \frac{\inf_{\mathsf{env}} N_0}{\mathcal{R}_0} = \frac{\beta \eta \, T_{inf} \, N_0}{\mathcal{R}_0} \int_0^H (1 - \Theta)^t \, dt$$

Given ζ and \mathcal{R}_0 , one can compute β and η

Infection process is stochastic and density dependent; mixing is homogeneous

p. 190 - A few avian influenza models

In farm *i* in cluster *j* with $S_{i,j}^{\rm F}(t)$ susceptible birds at time *t*, the number of newly infected birds at t + dt is given by a stochastic binomial variable $B(\lambda_{i,j}^{\rm F}(t), S_{i,j}^{\rm F}(t))$, where $\lambda_{i,j}^{\rm F}(t)$ is the force of infection (i.e. the rate at which poultry gets infected between *t* and t + dt) defined by:

$$\lambda_{i,j}^{\mathrm{F}}(t) = 1 - \exp\left\{-\delta_{i,j}^{\mathrm{F}}(t)\mathrm{d}t\right\}.$$
(2.7)

Here $\delta_{i,j}^{\rm F}(t)$ is the instantaneous hazard of infection:

$$\begin{split} \boldsymbol{\delta}_{i,j}^{\mathrm{F}}(t) &= \boldsymbol{\beta}^{\mathrm{F}} \Big[I_{i,j}^{\mathrm{F}}(t) + \boldsymbol{\eta}^{\mathrm{F}} \boldsymbol{\psi}_{i,j}^{\mathrm{F}}(t) \Big] + \left[\boldsymbol{\gamma}_{\mathrm{ff}} \sum_{l \neq j} \boldsymbol{\psi}_{i,l}^{\mathrm{F}}(t) \right] \\ &+ \left[\boldsymbol{\Gamma}_{\mathrm{ff}} \sum_{k \neq i,l} \boldsymbol{\psi}_{k,l}^{\mathrm{F}}(t) \right] + \left[\boldsymbol{\gamma}_{\mathrm{fm}} \boldsymbol{\psi}_{i}^{\mathrm{M}}(t) \right] + \left[\boldsymbol{\Gamma}_{\mathrm{fm}} \sum_{k \neq i} \boldsymbol{\psi}_{k}^{\mathrm{M}}(t) \right] \end{split}$$

Similarly in a regional market *i*: $\lambda_i^{\rm M}(t) = 1 - \exp\{-\delta_i^{\rm M}(t)dt\}, \qquad (2.9)$

with the hazard of infection $\delta_i^{\rm M}(t)$ given by:

$$\delta_{i}^{\mathrm{M}}(t) = \boldsymbol{\beta}^{\mathrm{M}} \left[I_{i}^{\mathrm{M}}(t) + \boldsymbol{\eta}^{\mathrm{M}} \boldsymbol{\psi}_{i}^{\mathrm{M}}(t) \right] + \left[\boldsymbol{\gamma}_{\mathrm{fm}} \sum_{l} \boldsymbol{\psi}_{i,l}^{\mathrm{F}}(t) \right] + \left[\boldsymbol{\Gamma}_{\mathrm{fm}} \sum_{k \neq i, l} \boldsymbol{\psi}_{k,l}^{\mathrm{F}}(t) \right] + \left[\boldsymbol{\Gamma}_{\mathrm{mm}} \sum_{k \neq i} \boldsymbol{\psi}_{k}^{\mathrm{M}}(t) \right]. \quad (2.10)$$

Here the first component is the within-market infection process, the second the hazard of infection from farms in the same cluster, the third from farms in other clusters and the fourth from markets in other clusters.

At the wholesale market, the force of infection is assumed to depend only on within-market infection process.

We assume that $\Gamma_{\rm fm} = \Gamma_{\rm mm}$ and $\gamma_{\rm ff}/\gamma_{\rm fm} = \Gamma_{\rm ff}/\Gamma_{\rm fm}$. Both models were implemented in BERKELEY MADONNA v. 8.4.14 [28].

Why it is important to incorporate space

Metapopulation models

A few foot-and-mouth disease models

A few avian influenza models Bourouiba et al Nickbakhsh et al Andronico et al Fournié et al Lee et al RESEARCH ARTICLE

Effective control measures considering spatial heterogeneity to mitigate the 2016–2017 avian influenza epidemic in the Republic of Korea

Jonggul Lee¹, Youngsuk Ko², Eunok Jung⁶²*

1 National Institute for Mathematical Sciences, Daejeon, Republic of Korea, 2 Mathematic department, Konkuk University, Seoul, Republic of Korea

* junge@konkuk.ac.kr

Abstract

During the winter of 2016-2017, an epidemic of highly pathogenic avian influenza (HPAI) led to high mortality in poultry and put a serious burden on the poultry industry of the Republic of Korea. Effective control measures considering spatial heterogeneity to mitigate the HPAI epidemic is still a challenging issue. Here we develop a spatial-temporal compartmental model that incorporates the culling rate as a function of the reported farms and farm density in each town. The epidemiological and geographical data of two species, chickens and ducks, from the farms in the sixteen towns in Euroseong-gun and Jincheon-gun are used to find the best-fitted parameters of the metapopulation model. The best culling radius to maxi-

GOPEN ACCESS

Citation: Lee J, Ko Y, Jung E (2019) Effective control measures considering spatial heterogeneity to mitigate the 2016-2017 avian influenza epidemic in the Republic of Korea. PLoS ONE 14(6): e0218202. https://doi.org/10.1371/journal. pone.0218202

Metapopulation model with one species

 S_i , I_i , R_i numbers of susceptible, infective but not identified and reported farms in location i = 0, ..., 15

 I_i and R_i both infectious, with R_i less so because of control measures

$$S'_{i} = -\sum_{j=0}^{15} \beta(I_{j} + \varepsilon R_{j})K(i, j)S_{i} - \psi(R_{i}, D_{i}; R)S_{i}$$
$$I'_{i} = \sum_{j=0}^{15} \beta(I_{j} + \varepsilon R_{j})K(i, j)S_{i} - \alpha I_{i} - \psi(R_{i}, D_{i}; R)I_{i}$$
$$R'_{i} = \alpha I_{i} - \phi(R)R_{i}$$

with $K(i,j) = e^{d(i,j)/r_0}$

p. 199 - A few avian influenza models

Metapopulation model with two species

Add indices c for chicken farms and d for duck farms

$$\begin{split} S_{ci}' &= -\sum_{j=0}^{15} \left(\beta_{cc} (I_{cj} + \varepsilon R_{cj}) \beta_{cd} (I_{dj} + \varepsilon R_{dj}) \right) K(i,j) S_{ci} - \psi(R_i, D_i; R) S_{ci} \\ I_{ci}' &= \sum_{j=0}^{15} \left(\beta_{cc} (I_{cj} + \varepsilon R_{cj}) \beta_{cd} (I_{dj} + \varepsilon R_{dj}) \right) K(i,j) S_{ci} - \alpha_c I_{ci} - \psi(R_i, D_i; R) I_{ci} \\ R_{ci}' &= \alpha_c I_{ci} - \phi(R) R_{ci} \\ S_{di}' &= -\sum_{j=0}^{15} \left(\beta_{dc} (I_{cj} + \varepsilon R_{cj}) \beta_{dd} (I_{dj} + \varepsilon R_{dj}) \right) K(i,j) S_{di} - \psi(R_i, D_i; R) S_{di} \\ I_{di}' &= \sum_{j=0}^{15} \left(\beta_{dc} (I_{cj} + \varepsilon R_{cj}) \beta_{dd} (I_{dj} + \varepsilon R_{dj}) \right) K(i,j) S_{di} - \alpha_d I_{di} - \psi(R_i, D_i; R) I_{di} \\ R_{di}' &= \alpha_d I_{di} - \phi(R) R_{di} \end{split}$$

with $K(i,j) = e^{d(i,j)/r_0}$

Reproductive numbers

When an infected individual invades the susceptible population, the average number of secondary infection generated by the primary case over the infectious period, called the *basic reproductive number* and denoted by \mathcal{R}_0 , is an important threshold quantity [31–33]. In this work, to find the basic reproductive number, we use the next generation method [33, 34]. Let **G** be the next generation matrix, then $\mathcal{R}_0 = \rho(\mathbf{G})$ where ρ is the spectral radius. The (*i*, *j*) element of **G** means how many new infections are introduced into compartment *i* by the infected from compartment *j*. We now define the *local* reproductive number in town *j*, $\mathcal{R}_0^{(j)}$, as how many poultry farms are newly infected by infected poultry farms from town *j*, and it is obtained by the maximum value among the farming types in each town after the sum of each column of **G**. As we consider two types of poultry farms, the next generation matrix can be written as a 2×2 block matrix,

$$\mathbf{G} = \begin{bmatrix} G_{cc} \mid G_{cd} \\ \overline{G_{dc}} \mid \overline{G_{dd}} \end{bmatrix}$$
(3)

where the block $G_{k_1k_2}$ for $k_1, k_2 \in \{c, d\}$ is a 16×16 matrix, and the entry of $G_{k_1k_2}$ is given by

$$G_{k_1k_2}[i,j] = \beta_{k_1k_2} S_{k_1i}(0) \left(\frac{1}{\alpha_{k_2}} + \frac{\epsilon}{\gamma}\right) K(i,j).$$

$$\tag{4}$$

