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Diseases have been known to be mobile for a while
The plague of Athens of 430 BCE

It first began, it is said, in the parts of Ethiopia
above Egypt, and thence descended into Egypt
and Libya and into most of the [Persian] King’s
country. Suddenly falling upon Athens, it first
attacked the population in Piraeus [..] and af-
terwards appeared in the upper city, when the
deaths became much more frequent.

Thucydides (c. 460 BCE - c. 395 BCE)
History of the Peloponnesian War
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The Black Death: a few facts

I First of the middle ages plagues to hit Europe

I Affected Afro-Eurasia from 1346 to 1353

I Europe 1347-1351

I Killed 75-200M in Eurasia & North Africa

I Killed 30-60% of European population
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Plague control measures

I Lazzarettos of Dubrovnik 1377 (30 days)

I Quarantena of Venice 1448 (40 days)

I Isolation of known or suspected cases as well as persons who
had been in contact with them, at first for 14 days and
gradually increased to 40 days

I Improvement of sanitation: development of pure water
supplies, garbage and sewage disposal, food inspection

I Find and kill a snake, chop it into pieces and rub the various
parts over swollen buboes. (Snake, synonymous with Satan,
was thought to draw the disease out of the body as evil would
be drawn to evil)
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Pathogen spread has evolved with mobility

I Pathogens travel along trade routes

I In ancient times, trade routes were relatively easy to
comprehend

I With acceleration and globalization of mobility, things have
changed
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Fragmented jurisdictional landscapes

I Political divisions (jurisdictions): nation groups (e.g., EU),
nations, provinces/states, regions, counties, cities..

I Travel between jurisdictions can be complicated or impossible

I Data is integrated at the jurisdictional level

I Policy is decided at the jurisdictional level
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Why mobility is important in the context of health

All migrants/travellers carry with them their ”health his-
tory”

I latent and/or active infections (TB, H1N1, polio)

I immunizations (schedules vary by country)

I health/nutrition practices (KJv)

I treatment methods (antivirals)

Pathogens ignore borders and politics
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Diseases in wild animals

Spread typically follows travelling wave patterns

Next slides: cases of rabies
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Diseases in livestock

Situation is more complicated
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2001 FMD epidemic in the UK

I Early February – Disease likely to have entered the UK

I 19th February – Foot-and-mouth disease first suspected

I 20th February – Foot-and-mouth disease confirmed

I 23rd February – Culling initiated of Infected Premises (IP) and Dangerous
Contacts (DC). Movement restrictions are brought into force

I 15th March – Sheep, goats and pigs within 3km of an IP in Lockerbie,
Carlisle and Solway are targeted for culling

I 23rd March – Contiguous Premises (CPs) are included in the cull

I 26th March – Epidemic reaches its maximum with 54 cases in one day

I 27th March – 3km cull begins in the Penrith valley, Cumbria

I 29th March – 24/48 hour policy begins, in which IPs are slaughtered
within 24 hours, and DCs and CPs are culled within 48 hours

I 14th April – 3km cull in Cumbria reaches its height

I 26th April – Sheep, pigs and especially cattle from farms with high
biosecurity may be exempt from culls

I 10th May – First case reported in the Settle area

I 20th June – First day with no reported cases
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I Avian Influenza global concern because it involves multiple
bird species, both wild and livestock

I The thing with wild birds is that they fly... :)
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What are metapopulations?

Metapopulations are populations of populations.

Two main types of metapopulation models:

I patch occupancy models. Describe whether a location is
occupied by a species or not. Depends on the occupancy of
neighboring or connected locations. Dynamics describes the
number of occupied locations

I Models with explicit movement. Movement between locations
is described explicitly. In each location, a set of differential
equations describes the dynamics of the populations present
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CONTEXT

What is a location?

A location is a unit (typically geographical) within which the
population is considered homogeneous

I city

I region

I country

I but also, location where a given species lives (for example,
forest, swamp, etc.)

Locations may or may not overlap
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A model of Richard Levins (1969)

R. Levins. Some Demographic and Genetic Consequences of
Environmental Heterogeneity for Biological Control. Bulletin of the
Entomological Society of America 15(3): 237-240 (1969)

Cited 4,400+ times, numerous higher order “offspring”

Quickly evolved to include prey-predators or competition systems
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The Levins model

Rate of change of # of local populations P:

P ′ = βP

(
1− P

T

)
− µP (1)

β immigration rate between locations, T total number of locations
and µ extinction rate of local populations

Ecologists & mathematicians think of patches differently. For
mathematicians, typically, one place in space. To be clear, in the
remainder of these slides, I will speak of locations
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Metapopulations with implicit movement

Same philosophy as the Levins model

I There is a set P of locations called locations

I Each location p ∈ P has an internal dynamics x ′p = fp(xp),

where xp ∈ Rnp
+ and fp : Rnp → Rnp

I No flow of individuals between locations

I The influence of location q 6= p on p is described through a
function gqp(xp, xq), where xq ∈ Rnq and
gp : Rnp × Rnq → Rnp

So the population in location p ∈ P has dynamics

x ′p = fp(xp) +
∑
q∈P
q 6=p

gqp(xp, xq) (2)
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Levins-type vs Explicit movement

Levins model and its offspring: movement is implicit

P ′ = βP

(
1− P

T

)
− µP

β immigration rate between locations incorporates geography

Sometimes we have explicit movement information or want to
incorporate known spatial information =⇒ models with explicit
movement

Levin (1974)
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Metapopulations with explicit movement

Split continuous space into N discrete geographical locations
(ptatches)

Each location contains compartments (homogeneous groups of
individuals). E.g., preys, predators, etc.

Here, we consider a single compartment, the species of interest,
with no further compartmentalisation

Individuals may move between locations; mqp ≥ 0 rate of
movement of individuals from location p = 1, . . . ,N to location
q = 1, . . . ,N
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Explicit movement (focus on P1)

P1

P2

P3

P4P5
P6

Pk

m21

m31

m51

m61

mk1 m12

m14

m16

m1k

P ′1 =
N∑
j=1
j 6=1

m1jPj−P1

N∑
j=1
j 6=1

mj1

or

P ′1 =
N∑
j=1

m1jPj assuming m11 = −
N∑
j=1
j 6=1

mj1
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The graph setting
Generic model
The movement matrix
Behaviour of the mobility component
A few sample models
Existence of a DFE
Computation of a reproduction number
Computational considerations

A few foot-and-mouth disease models

A few avian influenza models



Graph setting

Suppose

I |P| locations, vertices in a (directed) graph G
I Each location contains a certain number of compartments

belonging to a common set C of compartments

I Arcs of G represent the possibility for a given compartment to
move between two locations; any two locations are connected
by a maximum of |C| edges

Graph is a digraph: movement is not always symmetric
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G = (P,A) is multi-digraph, where

I P is the set of vertices (locations)

I A is the set of arcs, i.e., an ordered multiset of pairs of
elements of P

Any two vertices X ,Y ∈ P are connected by at most |C| arcs from
X to Y and at most |C| arcs from Y to X

Because there are |C| compartments and movements are
compartment-specific, we also define, for all c ∈ C, Pc and Ac as
well as the compartment-specific digraphs Gc = (Pc ,Ac)
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Connection matrix

For a given compartment c ∈ C, a connection matrix can be
associated to the digraph Gc

This is the adjacency matrix of Gc , but we emphasize the reason
why we use Gc by using the term connection

Choosing an ordering of elements of P, the (i , j) entry of the
|P| × |P|-matrix Nc = Nc(Gc) is one if Rc(Pi ,Pj) and zero
otherwise, i.e., if Pi has no direct access to Pj

For convenience, the ordering of the locations is generally assumed
the same for all compartments
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Strongly connected multi-digraph

Definition 1 (Strongly connected components)

For a given compartment s, the strongly connected components
(or strong components, for short) are such that, for all locations
X ,Y in a strong component, compartment s in X has access to Y

Definition 2 (Strong connectedness for a compartment)

The multi-digraph is strongly connected for compartment c if all
locations belong to the same strong component of Gc
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Srong connectedness and irreducibility

Definition 3 (Reducible/irreducible matrix)

A matrix A is reducible if there exists a permutation matrix P
such that PTAP is block upper triangular. A matrix that is not
reducible is irreducible

Matrix A ∈ Fn×n is irreducible if for all i , j = 1, . . . , n, there exists
k such that akij > 0, where akij is the (i , j)-entry in Ak

Theorem 4

Strong connectedness ⇔ irreducibility of the connection matrix Cc
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Notation

I Ncp(t) number of individuals of compartment c in location p
at time t

I Nc =
(
Nc1, . . . ,Nc|P|

)T
distribution of individuals of

compartment c ∈ C among the different locations

I Np =
(
Np

1 , . . . ,N
p
|P|

)T
composition of the population in

location p ∈ P
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Metapopulation models with linear movement

Use a linear autonomous movement operator

Then, for a given compartment c ∈ C and in a given location
p ∈ P

N ′cp = fcp(Np) +
∑
q∈P
q 6=p

mcpqNcq −

∑
q∈P
q 6=p

mcqp

Ncp

where mcpq rate of movement of individuals in compartment c ∈ C
from location q ∈ P to location p ∈ P
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A more compact notation

To make

N ′cp = fcp(Np) +
∑
q∈P
q 6=p

mcpqNcq −

∑
q∈P
q 6=p

mcqp

Ncp

more compact, denote the rate of leaving location p as

mcpp = −
∑
q∈P
q 6=p

mcqp (3)

Then
N ′s = fcp(Np) +

∑
q∈P

mcpqNcq (4)
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Vector form of the system

For compartment c ∈ C,

N′c = f (N) +McNc (5)

with

Mc =


−
∑
k∈P

mck1 mc12 · · · mc1|P|

mc|P|1 mc|P|2 · · · −
∑
k∈P

mck|P|

 (6)
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Definitions and notation for matrices

I M ∈ Rn×n a square matrix with entries denoted mij

I M ≥ 0 if mij ≥ 0 for all i , j (could be the zero matrix); M > 0
if M ≥ 0 and ∃i , j with mij > 0; M � 0 if mij > 0
∀i , j = 1, . . . , n. Same notation for vectors

I σ(M) = {λ ∈ C;Mλ = λv, v 6= 0} spectrum of M

I ρ(M) = maxλ∈σ(M){|λ|} spectral radius

I s(M) = maxλ∈σ(M){Re (λ)} spectral abscissa (or stability
modulus)

I M is an M-matrix if it is a Z-matrix (mij ≤ 0 for i 6= j) and
M = sI− A, with A ≥ 0 and s ≥ ρ(A)
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The movement matrix

The matrix

Mc =


−
∑
k∈P

mck1 mc12 · · · mc1|P|

mc|P|1 mc|P|2 · · · −
∑
k∈P

mck|P|

 (6)

is the movement matrix

It plays an extremely important role in the analysis of
metapopulation systems, so we’ll spend some time discussing its
properties

Mc describes

I existence of connections

I when they exist, their “intensity”
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Properties of the movement matrix M

First, remark −Mc is a Laplacian matrix

Lemma 5

1. 0 ∈ σ(M) corresponding to left e.v. 1T [σ spectrum]

2. −M is a singular M-matrix

3. 0 = s(M) ∈ σ(M) [s spectral abscissa]

4. If M irreducible, then s(M) has multiplicity 1

For complete proof of Lemma 5 and Proposition 6 (next page), see
Arino, Bajeux & Kirkland, BMB 2019
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Proposition 6 (D a diagonal matrix)

1. s(M+ dI) = d , ∀d ∈ R
2. s(M+D) ∈ σ(M+D) associated to v > 0. IfM irreducible,

s(M+ D) has multiplicity 1 and is associated to v� 0

3. If diag(D)� 0, then D −M invertible M-matrix and
(D −M)−1 > 0

4. M irreducible and diag(D) > 0 =⇒ D −M nonsingular
irreducible M-matrix and (D −M)−1 � 0
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Behaviour of the mobility component

Assume no within-location dynamics, just movement. Then (5)
takes the form

N′c =McNc (7)

Theorem 7

For a given compartment c ∈ C, suppose that the movement
matrix Mc is irreducible. Then for any Nc(0) > 0, (7) satisfies

lim
t→∞

Nc(t) = N?
c � 0

Note that N?
c depends on 1lTNc(0)
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Reduction to total population per location

Let
Tp =

∑
c∈C

Ncp

be the total population in location p

It is often posssible to obtain, in each location p ∈ P, an equation
for the evolution of the total population that takes the form

T ′p = Dp(Tp) +
∑
c∈C

∑
q∈P

mcpqNcq (8)

where Dp(Tp) describes the demography in location p
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Nature of the demography

Most common types of demographic functions

I Dp(Tp) = bp − dpTp (asymptotically constant population)

I Dp(Tp) = bpTp − dpTp

I Dp(Tp) = dpTp − dpTp = 0 (constant population)

I Dp(Tp) = rpTp(1− Tp/Kp) (logistic demography)

In what follows, assume

Dp(Tp) = bp − dpTp (9)
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Vector / matrix form of the equation

Assuming demography is of the form (9), write (8) in vector form

T′ = b− dT +
∑
c∈C
McNc (10)

where

I b = (b1, . . . , b|P|)
T ∈ R|P|

I T = (T1, . . . ,T|P|)
T ∈ R|P|

I N = (Nc1, . . . ,Nc|P|)
T ∈ R|P|

I d = diag
(
d1, . . . , d|P|

)
∈ R|P|×|P|

I Mc ∈ R|P|×|P|
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The nice case

Suppose movement rates equal for all compartments, i.e.,

Mc ≡M

Then

T′ = b− dT +M
∑
c∈C

Nc

= b− dT +MT (11)
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Equilibria

T′ = 0⇔ b− dT +MT = 0

⇔ (d−M)T = b

⇔ T? = (d−M)−1b

given, of course, that d−M (or, equivalently, M− d) is
invertible..

Is it?
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Nonsingularity of M− d

Using the spectrum shift of Theorem 6(1)

s

(
M−min

p∈P
dp

)
= −min

p∈P
dp

This gives a constraint: for total population to behave well (in
general, we want this), we must assume all death rates are positive

Assume they are (in other words, assume d nonsingular). Then
M− d is nonsingular and T? = (d−M)−1b unique
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Behaviour of the total population
Equal irreducible movement case

T? = (d−M)−1b attracts solutions of

T′ = b− dT +MT =: f (T)

Indeed, we have
Df =M− d

Since we now assume that d is nonsingular, we have by
Theorem 6(1) that s(M−minp∈P dp) = −minp∈P dp < 0

M irreducible → T? � 0 (provided b > 0, of course)

p. 76 – Metapopulation models



Why it is important to incorporate space

Metapopulation models
Metapopulations à la Levins
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The toy SLIRS model in patches

S L I R
b Φ εL γI

νR

dS dL (d + δ)I dR

S ′ = b + νR − Φ− dS (12a)

L′ = Φ− (ε+ d)L (12b)

I ′ = εL− (γ + d + δ)I (12c)

R ′ = γI − (ν + d)R (12d)

Φ force of infection. Depends on S , I , possibly N. In general

Φ = β(N)φ(S , I )

Mass action, Φ = βSI , proportional incidence, Φ = βSI/N
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|P|-SLIRS model

S ′p = bp + νpRp − Φp − dpSp+
∑

q∈PmSpqSq (13a)

L′p = Φp − (εp + dp) Lp+
∑

q∈PmLpqLq (13b)

I ′p = εpLp − (γp + dp)Ip+
∑

q∈PmIpqIq (13c)

R ′p = γpIp − (νp + dp)Rp+
∑

q∈PmRpqRq (13d)

with incidence

Φp = βp
SpIp

N
qp
p
, qp ∈ {0, 1} (13e)
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|S| |P|-SLIRS (multiple species)

p ∈ P and s ∈ S (a set of species)

S ′sp = bsp + νspRsp − Φsp − dspSsp+
∑

q∈PmSspqSsq (14a)

L′sp = Φsp − (εsp + dsp)Lsp+
∑

q∈PmLspqLsq (14b)

I ′sp = εspLsp − (γsp + dsp)Isp+
∑

q∈PmIspqIsq (14c)

Rsp = γspIsp − (νsp + dsp)Rsp+
∑

q∈PmRspqRsq (14d)

with incidence

Φsp =
∑
k∈S

βskp
SspIkp

N
qp
p

, qp ∈ {0, 1} (14e)

I JA, Davis, Hartley, Jordan, Miller & PvdD. A multi-species epidemic model with spatial dynamics.
Mathematical Medicine and Biology 22(2):129-142 (2005)

I JA, Jordan & PvdD. Quarantine in a multi-species epidemic model with spatial dynamics. Mathematical
Biosciences 206(1):46-60 (2007)
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|P|2-SLIRS (residents-travellers)

S ′pq =bpq + νpqRpq − Φpq − dpqSpq+
∑

k∈PmSpqkSpk (15a)

L′pq =Φpq − (εpq + dpq)Lpq+
∑

k∈PmLpqkLpk (15b)

I ′pq =εpqLpq − (γpq + dpq)Ipq+
∑

k∈PmIpqk Ipk (15c)

R ′pq =γpqIpq − (νpq + dpq)Rpq+
∑

k∈PmRpqkRpk (15d)

with incidence

Φpq =
∑
k∈P

βpqk
SpqIkq

N
qq
p

, qq = {0, 1} (15e)

I Sattenspiel & Dietz. A structured epidemic model incorporating geographic mobility among regions (1995)

I JA & PvdD. A multi-city epidemic model. Mathematical Population Studies 10(3):175-193 (2003)

I JA & PvdD. The basic reproduction number in a multi-city compartmental epidemic model. In Positive
Systems (2003)
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Steps for an analysis

Basic steps

1. Well-posedness of the system

2. Existence of disease free equilibria (DFE)

3. Computation of a reproduction number R0, study local
asymptotic stability of DFE

4. If DFE unique, prove global asymptotic stability when R0 < 1

Additional steps

5. Existence of mixed equilibria, with some locations at DFE and
others with disease

6. Computation of some bounds on R0

7. EEP and its LAS & GAS properties

. . .
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Analysis – Toy system

S ′p = bp − Φp − dpSp + νpRp +
∑

q∈PmSpqSq (16a)

L′p = Φp − (εp + dp) Lp +
∑

q∈PmLpqLq (16b)

I ′p = εpLp − (γp + dp)Ip +
∑

q∈PmIpqIq (16c)

R ′p = γpIp − (νp + dp)Rp +
∑

q∈PmRpqRq (16d)

with incidence

Φp = βp
SpIp

N
qp
p
, qp ∈ {0, 1} (16e)

System of 4|P| equations
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Don’t panic: size is not that bad..

System of 4|P| equations !!!

However, a lot of structure:

I |P| copies of individual units, each comprising 4 equations

I Dynamics of individual units well understood

I Coupling is linear

=⇒ Good case of large-scale system

(matrix analysis is your friend)
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Existence and uniqueness

I Existence and uniqueness of solutions classic, assured by good
choice of birth and force of infection functions

I In the cases treated later, the birth function is either constant
or a linear combination of state variables

I May exist problems at the origin, if the force of infection is
not defined there

I Assumption form now on: existence and uniqueness
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Disease free equilibrium

The model is at equilibrium if the time derivatives are zero

Definition 8 (Metapopulation DFE)

In the case of system (16), location p ∈ P is at a disease-free
equilibrium (DFE) if Lp = Ip = 0, and the |P|-location model is at
a metapopulation DFE if Lp = Ip = 0 for all p ∈ P

Here, we want to find the DFE for the |P|-location model. Later,
the existence of mixed equilibria, with some locations at the DFE
and others at an endemic equilibrium, is considered

(For (14), replace Lp with Lsp and Ip with Isp, for (15), replace Lp
by Lpp and Ip by Ipp. To simplify notation, we could write L• and
I•)
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Assume (16) at metapopulation DFE. Then Φp = 0 and

0 = bp − dpSp + νpRp +
∑

q∈PmSpqSq

0 = − (νp + dp)Rp +
∑

q∈PmRpqRq

Want to solve for Sp,Rp. Here, it is best (crucial in fact) to
remember some linear algebra. Write system in vector form:

0 = b− dS + νR +MSS

0 = − (ν + d) R +MRR

where S,R,b ∈ R|P|, d, ν,MS ,MR |P| × |P|-matrices (d, ν
diagonal)
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R at DFE

Recall second equation:

0 = − (ν + d) R +MRR⇔ (MR − ν − d)R = 0

So unique solution R = 0 if MR − ν − d invertible Is it?

We have been here before!

From spectrum shift, s(MR − ν − d) = −minp∈P(νp + dp) < 0

So, given L = I = 0, R = 0 is the unique equilibrium and

lim
t→∞

R(t) = 0

=⇒ DFE has L = I = R = 0
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S at the DFE

DFE has L = I = R = 0 and b− dS +MSS = 0, i.e.,

S = (d−MS)−1b

Recall: −MS singular M-matrix. From previous reasoning,
d−MS has instability modulus shifted right by minp∈P dp. So:

I d−MS invertible

I d−MS nonsingular M-matrix

Second point =⇒ (d−MS)−1 > 0 =⇒ (d−MS)−1b > 0
(would have � 0 if MS irreducible)

So DFE makes sense with

(S,L, I,R) =
(

(d−MS)−1b, 0, 0, 0
)
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Computing the basic reproduction number R0

Use next generation method with Ξ = {L1, . . . , L|P|, I1, . . . , I|P|},
Ξ′ = F − V

F =
(
Φ1, . . . ,Φ|P|, 0, . . . , 0

)T

V =



(ε1 + d1) L1 −
∑
q∈P

mL1qLq

...(
ε|P| + d|P|

)
L|P| −

∑
q∈P

mL|P|qLq

−ε1L1 + (γ1 + d1)I1 −
∑
q∈P

mI1qIq

...
−ε|P|L|P| + (γ|P| + d|P|)I|P| −

∑
q∈P

mI |P|qIq
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Differentiate w.r.t. Ξ:

DF =



∂Φ1

∂L1
· · · ∂Φ1

∂L|P|

∂Φ1

∂I1
· · · ∂Φ1

∂I|P|
...

...
...

...
∂Φ|P|
∂L1

· · ·
∂Φ|P|
∂L|P|

∂Φ|P|
∂I1

· · ·
∂Φ|P|
∂I|P|

0 · · · 0 0 · · · 0
...

...
...

...
0 · · · 0 0 · · · 0
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Note that
∂Φp

∂Lk
=
∂Φp

∂Ik
= 0

whenever k 6= p, so

DF =

(
diag

(
∂Φ1
∂L1

, . . . ,
∂Φ|P|
∂L|P|

)
diag

(
∂Φ1
∂I1
, . . . ,

∂Φ|P|
∂I|P|

)
0 0

)

p. 91 – Metapopulation models



Evaluate DF at DFE

If Φp = βpSpIp, then

I
∂Φp

∂Lp
= 0

I
∂Φp

∂Ip
= βpSp

If Φp = βp
SpIp
Np

, then

I
∂Φp

∂Lp
= βp

SpIp
N2
p

= 0 at

DFE

I
∂Φp

∂Ip
= βp

Sp
Np

at DFE

In both cases, ∂/∂L block is zero so

F = DF(DFE ) =

(
0 diag

(
∂Φ1
∂I1
, . . . ,

∂Φ|P|
∂I|P|

)
0 0

)
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Compute DV and evaluate at DFE

V =

(
diagp(εp + dp)−ML 0

−diagp(εp) diagp(γp + dp)−MI

)
where diagp(zp) := diag(z1, . . . , z|P|)

Inverse of V easy (2× 2 block lower triangular):

V−1 =

((
diagp(εp + dp)−ML

)−1
0

Ṽ−1
21

(
diagp(γp + dp)−MI

)−1

)

where

Ṽ−1
21 =

(
diagp(εp + dp)−ML

)−1

diagp(εp)
(

diagp(γp + dp)−MI
)−1
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R0 as ρ(FV−1)

Next generation matrix

FV−1 =

(
0 F12

0 0

)(
Ṽ−1

11 0

Ṽ−1
21 Ṽ−1

22

)
=

(
F12Ṽ

−1
21 F12Ṽ

−1
22

0 0

)
where Ṽ−1

ij is block ij in V−1. So

R0 = ρ
(
F12Ṽ

−1
21

)
i.e.,

R0 = ρ

(
diag

(
∂Φ1

∂I1
, . . . ,

∂Φ|P|
∂I|P|

)(
diagp(εp + dp)−ML

)−1

diagp(εp)
(

diagp(γp + dp)−MI
)−1

)
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Local asymptotic stability of the DFE

Theorem 9

Define R0 for the |P|-SLIRS as

R0 = ρ

(
diag

(
∂Φ1

∂I1
, . . . ,

∂Φ|P|
∂I|P|

)(
diagp(εp + dp)−ML

)−1

diagp(εp)
(

diagp(γp + dp)−MI
)−1

)

Then the DFE

(S,L, I,R) =
(

(d−MS)−1b, 0, 0, 0
)

is locally asymptotically stable if R0 < 1 and unstable if R0 > 1

From PvdD & Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models

of disease transmission, Bulletin of Mathematical Biology 180(1-2): 29-48 (2002)
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Some remarks about R0

The expression for R0 in Theorem 9 is exact

However, unless you consider a very small set of locations, you will
not get a closed form expression

Indeed, by Theorem 6(3) and more importantly (often M is
irreducible), Theorem 6(4), the two inverses in R0 are likely
crowded (� 0 in the irreducible case)

However, numerically, this works easy unless conditioning is bad
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The toy |P|-SLIRS

LAS results for R0 < 1 can sometimes be strengthened to GAS.
One class of models where this works often is when the population
is either constant or asymptotically constant and incidence is
standard

Theorem 10

Let R0 be defined as in Theorem 9 and use proportional incidence
Φp = βpSpIp/Np. If R0 < 1, then the DFE of system (16) is
globally asymptotically stable
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|S| |P|-SLIRS with multiple species

In the case in which movement is equal for all compartments and
there is no disease death, a comparison theorem argument can be
used as in Theorem 10 to show that if R0 < 1, then the DFE of
the |S| |P|-SLIRS (14) is globally asymptotically stable.

Theorem 11

For system (14) with |S| species and |P| locations, with movement
equal for all compartments, define R0 appropriately and use
proportional incidence. If R0 < 1, then the DFE is globally
asymptotically stable
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Set up parameters

pop = c(34.017, 1348.932, 1224.614, 173.593, 93.261) * 1e+06

countries = c("Canada", "China", "India", "Pakistan", "

Philippines")

T = matrix(data =

c(0, 1268, 900, 489, 200,

1274, 0, 678, 859, 150,

985, 703, 0, 148, 58,

515, 893, 144, 0, 9,

209, 174, 90, 2, 0),

nrow = 5, ncol = 5, byrow = TRUE)
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Work out movement matrix

p = list()

# Use the approximation explained in Arino & Portet (JMB 2015)

p$M = mat.or.vec(nr = dim(T)[1], nc = dim(T)[2])

for (from in 1:5) {

for (to in 1:5) {

p$M[to, from] = -log(1 - T[from, to]/pop[from])

}

p$M[from, from] = 0

}

p$M = p$M - diag(colSums(p$M))
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p$P = dim(p$M)[1]

p$eta = rep(0.3, p$P)

p$epsilon = rep((1/1.5), p$P)

p$pi = rep(0.7, p$P)

p$gammaI = rep((1/5), p$P)

p$gammaA = rep((1/3), p$P)

# The desired values for R_0

R_0 = rep(1.5, p$P)
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Write down indices of the different state variable
types

Save index of state variable types in state variables vector (we have
to use a vector and thus, for instance, the name “S” needs to be
defined)

p$idx_S = 1:p$P

p$idx_L = (p$P+1):(2*p$P)

p$idx_I = (2*p$P+1):(3*p$P)

p$idx_A = (3*p$P+1):(4*p$P)

p$idx_R = (4*p$P+1):(5*p$P)
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Set up IC and time

# Set initial conditions. For example, we start with 2

# infectious individuals in Canada.

L0 = mat.or.vec(p$P, 1)

I0 = mat.or.vec(p$P, 1)

A0 = mat.or.vec(p$P, 1)

R0 = mat.or.vec(p$P, 1)

I0[1] = 2

S0 = pop - (L0 + I0 + A0 + R0)

# Vector of initial conditions to be passed to ODE solver.

IC = c(S = S0, L = L0, I = I0, A = A0, R = R0)

# Time span of the simulation (5 years here)

tspan = seq(from = 0, to = 5 * 365.25, by = 0.1)
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Set up β to avoid blow up

Let us take R0 = 1.5 for patches in isolation. Solve R0 for β

β =
R0

S(0)

(
1− πp
γIp

+
πpηp
γAp

)−1

for (i in 1:p$P) {

p$beta[i] =

R_0[i] / S0[i] * 1/((1 - p$pi[i])/p$gammaI[i] + p$pi[i] *

p$eta[i]/p$gammaA[i])

}
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Define the vector field

SLIAR_metapop_rhs <- function(t, x, p) {

with(as.list(p), {

S = x[idx_S]

L = x[idx_L]

I = x[idx_I]

A = x[idx_A]

R = x[idx_R]

N = S + L + I + A + R

Phi = beta * S * (I + eta * A) / N

dS = - Phi + MS %*% S

dL = Phi - epsilon * L + p$ML %*% L

dI = (1 - pi) * epsilon * L - gammaI * I + MI %*% I

dA = pi * epsilon * L - gammaA * A + MA %*% A

dR = gammaI * I + gammaA * A + MR %*% R

dx = list(c(dS, dL, dI, dA, dR))

return(dx)

})

}
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And now call the solver

# Call the ODE solver

sol <- ode(y = IC,

times = tspan,

func = SLIAR_metapop_rhs,

parms = p,

method = "ode45")
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One little trick (case with demography)

Suppose demographic EP is N? = (d−M)−1b
Want to maintain N(t) = N? for all t to ignore convergence to
demographic EP. Think in terms of b:

N′ = 0 ⇐⇒ b− dN +MN = 0 ⇐⇒ b = (d−M)N

So take b = (d−M)N?

Then
N′ = (d−M)N? − dN +MN

and thus if N(0) = N?, then N′(0) = 0 and thus N′ = 0 for all
t ≥ 0, i.e., N(t) = N? for all t ≥ 0
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Word of warning about that trick, though..

b = (d−M)N?

d−M has nonnegative (typically positive) diagonal entries and
nonpositive off-diagonal entries

Easy to think of situations where the diagonal will be dominated
by the off-diagonal, so b could have negative entries

=⇒ use this for numerics, not for the mathematical analysis

p. 108 – Metapopulation models
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Most models are à la Levins

Space is implicit: count infected herds

In simplest models, space is entirely implicit

Herds are spatially located, so there is space

p. 109 – A few foot-and-mouth disease models





The model

∆S(t) = −β(t)S(t)I (t) (17a)

∆L(t) = β(t)S(t)I (t)− β(t − σ)S(t − σ)I (t − σ) (17b)

∆I (t) = β(t − σ)S(t − σ)I (t − σ)

− β(t − σ − ν)S(t − σ − ν)I (t − σ − ν) (17c)

∆R(t) = β(t − σ − ν)S(t − σ − ν)I (t − σ − ν) (17d)

where ∆X (t) = X (t + 1)− X (t), σ is the fixed latent period and
ν is the fixed infectious period
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Reproduction number

Provided N � 1,

R0 =
β(0)N

ν

Estimates of β(t) obtained using

β(t) =
∆L(t) + β(t − σ)S(t − σ)I (t − σ)

S(t)I (t)
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Used for the 1967-1968 UK epidemic, time unit of 1 day, σ = 5
days, ν = 4 days and N = 16, 507 herds

Here, space is purely implicit, in the sense that the only source of
spatiality is the fact that the data comes from farms that are
spatially located
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Incorporating space

Transmission between farms determined by number and type of
livestock and distance between susceptible and infectious farms

Probability that a susceptible farm i becomes infected a given day

P = 1− exp

−SNi

∑
j∈infectious

TNjK (dij)

 (18)

K infection kernel, dij distance between farms i and j
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Another model

S ′ = −β(1− f (c))
SI

N
− c

SI

N
(19a)

I ′ = β(1− f (c))
SI

N
− σI (19b)

R ′ = σI + c
SI

N
(19c)

f (c) proportion of exposed holdings removed, c the removal rate
(level of control)

R0 = β/σ and

Rc = β
1− f

σ
= (1− f )R0

p. 124 – A few foot-and-mouth disease models



They then consider a metapopulation version

Break down susceptible population into clusters of holdings within
which short-range transmission occurs, and between which
long-range transmission occurs

Transmission rate β broken down into a short-range transmission
rate, βs , corresponding to infections generated within the cluster,
and a long-rangetransmission rate,βl , corresponding to infections
generated outside the cluster in question
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Basic model – Spatial stochastic model

Infectious state of every livestock farm in Britain predicted daily

Rate r at which currently susceptible farm i is infected given by

Ri =
∑

L∈livestock

SLN
i
L

∑
j∈infectious

∑
L∈livestock

TLN
j
LK (dij)

I N i
L number of livestock of type L in farm i

I SL susceptibility of livestock L

I TL transmission rate of livestock L

I dij distance between farms i and j

I K transmission kernel

Infected farm “incubates” for 4 days, then becomes infectious; 9
days after infection, presence of disease reported; 1–3 days
(depending on epidemic status), animals are slaughtered and
appropriate neighbourhood cull performed

p. 127 – A few foot-and-mouth disease models
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Pair approximation models

Suppose farms are in status X or Y (e.g., susceptible and
infected). Pair approximation models consider the expected
number [XY ] of pairs of the form X and Y at time t

p. 130 – A few foot-and-mouth disease models



A sample derivation (appendix in the paper)

The dynamics of [SI ] are governed by the equation

g ′(t) =
∑

r(ε)∆g(ε)

where g(t) state variable of interest ([SI ] here), r(ε) rate of event
ε and ∆g(ε) change this event causes in g(t)

We’re interested in transformation of edges, e.g., infection through
an S − I edge converts S into E , i.e. SI 7→ EI (7→ means
“transformed to”)
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What affects [SI ]′

I Infection of susceptible farm by infectious farm in the S − I
edge converts S into E , i.e. SI 7→ EI . Adds −τ [SI ], since this
“destroys” S − I edges

I Infection of susceptible farm “from the left” in a triple
I − S − I , i.e. I ↔ SI gives rise to SI 7→ EI , i.e., −τ [ISI ]

I Latent period 1/ν, so SE 7→ SI , “creating” an S − I
I Infectious farm recovers at rate σ, therefore SI 7→ SR

contributes σ[SI ]
I Ring vaccination (vaccination of E and S farms with links

with I farms) in the S farm in a pair S − I , at rate ψr

converts S − I to I − V and adds ψr [SI ]
I Ring vaccination in the susceptible farm in a triple I − S − I ,

at rate ψr converts S − I to I − V and adds ψr [ISI ]
I A recovered farm in an I − R pair loses natural immunity at

rate ω to form an S − I pair, thus adding ω[IR]
I A vaccinated farm in an I − V pair loses vaccine protection at

rate θ to form an S − I pair, thus adding θ[IV ]
p. 132 – A few foot-and-mouth disease models



Therefore the equation of motion for [SI ] is

[SI ]′ = −τ([ISI ] + [SI ]) + ν[SE ]− σ[SI ]− ψr ([SI ] + [ISI ])

− ψp[SI ] + ω[IR] + θ[IV ]

p. 133 – A few foot-and-mouth disease models
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Other compartments

I1, I2 subclinical infectious, I3 clinical infectious, C clinical
non-infectious, R recovered

I ′1 = δL− θI1 − ϕI1 + ϕ(t−1)I1(t−1)
− µI1

I ′2 = θI1 − εI2 − ϕI2 + ϕ(t−1)I2(t−1)
− µI2

I ′3 = εI2 − γI3 − (ϕ+ ζ)I3 + (ϕ(t−1) + ζ)I3(t−1)
− (µ+ ψ)I3

C ′ = γI3 − τC − (ϕ+ ζ)C + (ϕ(t−1) + ζ)C(t−1) − (µ+ ψ)C

R ′ = τC − ϕR + ϕ(t−1)R(t−1) − µR

p. 144 – A few foot-and-mouth disease models











Why it is important to incorporate space

Metapopulation models

A few foot-and-mouth disease models
A few models of Woolhouse and collaborators
Ringa & Bauch
Cabezas et al
Bradhurst et al
Buhnerkempe et al
Glass & Barnes

A few avian influenza models













Why it is important to incorporate space

Metapopulation models

A few foot-and-mouth disease models
A few models of Woolhouse and collaborators
Ringa & Bauch
Cabezas et al
Bradhurst et al
Buhnerkempe et al
Glass & Barnes

A few avian influenza models





















Why it is important to incorporate space

Metapopulation models

A few foot-and-mouth disease models
A few models of Woolhouse and collaborators
Ringa & Bauch
Cabezas et al
Bradhurst et al
Buhnerkempe et al
Glass & Barnes

A few avian influenza models











Why it is important to incorporate space

Metapopulation models

A few foot-and-mouth disease models

A few avian influenza models
Bourouiba et al
Nickbakhsh et al
Andronico et al
Fournié et al
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Interactions b/w network core & periphery groups

p = {1, 2} for population 1 (network core group) and population 2
(network periphery group), j = {MS ,SS} for multi-site and
single-site premises

S ′pj = −Spj(Wpj + Bpj)

I ′pjSpj(Wpj + Bpj)− γIpj
R ′pj = γIpj

with Wpj and Bpj the within- and between-population forces of
infection acting upon premises of type j = {MS ,SS} within
population p = {1, 2}

p. 174 – A few avian influenza models





Force of infection on MS premises within core group

W1,MS = β

(
ωMS ,MS

I1,MS

n1,MS
+ ωMS ,SS

I1,SS
n1,SS

+ θδMS ,1
I1,MS

n1,MS

)
+ β′1,MS

(
σMS ,MS

I1,MS

n1,MS
+ σMS ,SS

I1,SS
n1,SS

)
B1,MS = β

(
ΩMS,MSν

I2,MS

n2,MS
+ ΩMS,SSν

I2,MS

n2,MS

)
β and β′1,MS density-dependent and density-independent
transmission rates, σMS,k and ωMS ,k weight on rate of transmission
for premises of type k = {MS , SS} to MS premises through spatial
proximity and network links, resp., θ weight on rate of transmission
between MS premises of same company, δMS ,1 Kronecker delta,
ΩMS ,k weights rate of transmission between populations and ν
uniform weighting applied to vary transmission strength

p. 176 – A few avian influenza models



Two types of control mechanisms

I Zoning (or regionalisation): geographical boundaries separate
parts of a territory (or country). E.g., implementation of
control zones used to enforce movement restrictions and
enhanced biosecurity measures during outbreaks of notifiable
disease
Allow within-population network-mediated links (beyond 10
km) and between-population network links

I Compartmentalisation: extends zoning by considering
pathways other than geographical proximity that may
jeopardize biosecurity of a compartment. Here, focus on
premises with common ownership, due to vertical integration
of their business
allow spatial and within-company links

p. 177 – A few avian influenza models
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Direct and indirect transmission

Infection through direct contact

infcontact =

∫ Tinf

0
β dt = βTinf

Infection through environment

infenv =

∫ Tinf

0
dt

∫ H

0
βη(1−Θ)t dt = Tinf

∫ H

0
βη(1−Θ)t dt

Tinf infectious period, H length of time faeces remain infectious, Θ
rate of loss of infectiousness of faeces, β rate of transmission per
unit time and η relative rate of transmission from the
environmental reservoir compared to β

p. 188 – A few avian influenza models



Reproduction number

If population size is stable and infectious period goes to its end
without being stopped by selling or slaughtering, then basic
reproduction number is

R0 = (infcontact + infenv)N0

N0 initial number of susceptible birds in the market

p. 189 – A few avian influenza models



Environmental contamination ratio

Environmental contamination ratio ζ is proportion of infectivity
mediated by the environment

ζ =
infenvN0

R0
=
βηTinfN0

R0

∫ H

0
(1−Θ)t dt

Given ζ and R0, one can compute β and η

Infection process is stochastic and density dependent; mixing is
homogeneous

p. 190 – A few avian influenza models















Why it is important to incorporate space

Metapopulation models

A few foot-and-mouth disease models
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Metapopulation model with one species

Si , Ii , Ri numbers of susceptible, infective but not identified and
reported farms in location i = 0, . . . , 15

Ii and Ri both infectious, with Ri less so because of control
measures

S ′i = −
15∑
j=0

β(Ij + εRj)K (i , j)Si − ψ(Ri ,Di ;R)Si

I ′i =
15∑
j=0

β(Ij + εRj)K (i , j)Si − αIi − ψ(Ri ,Di ;R)Ii

R ′i = αIi − φ(R)Ri

with K (i , j) = ed(i ,j)/r0

p. 199 – A few avian influenza models



Metapopulation model with two species

Add indices c for chicken farms and d for duck farms

S ′ci = −
15∑
j=0

(βcc(Icj + εRcj)βcd(Idj + εRdj))K(i , j)Sci − ψ(Ri ,Di ;R)Sci

I ′ci =
15∑
j=0

(βcc(Icj + εRcj)βcd(Idj + εRdj))K(i , j)Sci − αc Ici − ψ(Ri ,Di ;R)Ici

R ′ci = αc Ici − φ(R)Rci

S ′di = −
15∑
j=0

(βdc(Icj + εRcj)βdd(Idj + εRdj))K(i , j)Sdi − ψ(Ri ,Di ;R)Sdi

I ′di =
15∑
j=0

(βdc(Icj + εRcj)βdd(Idj + εRdj))K(i , j)Sdi − αd Idi − ψ(Ri ,Di ;R)Idi

R ′di = αd Idi − φ(R)Rdi

with K(i , j) = ed(i,j)/r0

p. 200 – A few avian influenza models
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